Pub Date : 2024-04-01Epub Date: 2024-05-30DOI: 10.1080/13543776.2024.2358818
Petar Iliev, Carolin Jaworski, Carmen Wängler, Björn Wängler, Brent D G Page, Ralf Schirrmacher, Justin J Bailey
Introduction: The Trk family proteins are membrane-bound kinases predominantly expressed in neuronal tissues. Activated by neurotrophins, they regulate critical cellular processes through downstream signaling pathways. Dysregulation of Trk signaling can drive a range of diseases, making the design and study of Trk inhibitors a vital area of research. This review explores recent advances in the development of type II and III Trk inhibitors, with implications for various therapeutic applications.
Areas covered: Patents covering type II and III inhibitors targeting the Trk family are discussed as a complement of the previous review, Type I inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update. Relevant patents were identified using the Web of Science database, Google, and Google Patents.
Expert opinion: While type II and III Trk inhibitor development has advanced more gradually compared to their type I counterparts, they hold significant promise in overcoming resistance mutations and achieving enhanced subtype selectivity - a critical factor in reducing adverse effects associated with pan-Trk inhibition. Recent interdisciplinary endeavors have marked substantial progress in the design of subtype selective Trk inhibitors, with impressive success heralded by the type III inhibitors. Notably, the emergence of mutant-selective Trk inhibitors introduces an intriguing dimension to the field, offering precise treatment possibilities.
引言Trk 家族蛋白是主要在神经元组织中表达的膜结合激酶。在神经营养素的激活下,它们通过下游信号通路调节关键的细胞过程。Trk 信号传导失调可导致一系列疾病,因此设计和研究 Trk 抑制剂是一个重要的研究领域。本综述探讨了开发 II 型和 III 型 Trk 抑制剂的最新进展,以及对各种治疗应用的影响:本综述讨论了针对Trk家族的II型和III型抑制剂的专利,作为上一篇综述《肌球蛋白受体激酶(Trk)的I型抑制剂:2020-2022年专利更新》的补充。相关专利是通过科学网数据库、谷歌和谷歌专利来确定的:虽然II型和III型Trk抑制剂的开发与I型抑制剂相比进展较为缓慢,但它们在克服耐药性突变和增强亚型选择性方面大有可为--这是减少与泛Trk抑制相关的不良反应的一个关键因素。最近的跨学科努力标志着亚型选择性 Trk 抑制剂的设计取得了重大进展,III 型抑制剂取得了令人瞩目的成功。值得注意的是,突变选择性 Trk 抑制剂的出现为这一领域引入了一个有趣的维度,提供了精确治疗的可能性。
{"title":"Type II & III inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update.","authors":"Petar Iliev, Carolin Jaworski, Carmen Wängler, Björn Wängler, Brent D G Page, Ralf Schirrmacher, Justin J Bailey","doi":"10.1080/13543776.2024.2358818","DOIUrl":"10.1080/13543776.2024.2358818","url":null,"abstract":"<p><strong>Introduction: </strong>The Trk family proteins are membrane-bound kinases predominantly expressed in neuronal tissues. Activated by neurotrophins, they regulate critical cellular processes through downstream signaling pathways. Dysregulation of Trk signaling can drive a range of diseases, making the design and study of Trk inhibitors a vital area of research. This review explores recent advances in the development of type II and III Trk inhibitors, with implications for various therapeutic applications.</p><p><strong>Areas covered: </strong>Patents covering type II and III inhibitors targeting the Trk family are discussed as a complement of the previous review, <i>Type I inhibitors of tropomyosin receptor kinase (Trk): a 2020-2022 patent update</i>. Relevant patents were identified using the Web of Science database, Google, and Google Patents.</p><p><strong>Expert opinion: </strong>While type II and III Trk inhibitor development has advanced more gradually compared to their type I counterparts, they hold significant promise in overcoming resistance mutations and achieving enhanced subtype selectivity - a critical factor in reducing adverse effects associated with pan-Trk inhibition. Recent interdisciplinary endeavors have marked substantial progress in the design of subtype selective Trk inhibitors, with impressive success heralded by the type III inhibitors. Notably, the emergence of mutant-selective Trk inhibitors introduces an intriguing dimension to the field, offering precise treatment possibilities.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141086799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-06-19DOI: 10.1080/13543776.2024.2362203
Lakshmi Mounika Kelam, Vaishnavi Chhabra, Sarika Dhiman, Deevena Kumari, M Elizabeth Sobhia
Introduction: Protein tyrosine phosphatases (PTPs), essential and evolutionarily highly conserved enzymes, govern cellular functions by modulating tyrosine phosphorylation, a pivotal post-translational modification for signal transduction. The recent strides in phosphatase drug discovery, leading to the identification of selective modulators for enzymes, restoring interest in the therapeutic targeting of protein phosphatases.
Areas covered: The compilation of patents up to the year 2023 focuses on the efficacy of various classes of Tyrosine phosphatases and their inhibitors, detailing their chemical structure and biochemical characteristics. These findings have broad implications, as they can be applied to treating diverse conditions like cancer, diabetes, autoimmune disorders, and neurological diseases. The search for scientific articles and patent literature was conducted using well known different platforms to gather information up to 2023.
Expert opinion: The latest improvements in protein tyrosine phosphatase (PTP) research include the discovery of new inhibitors targeting specific PTP enzymes, with a focus on developing allosteric site covalent inhibitors for enhanced efficacy and specificity. These advancements have not only opened up new possibilities for therapeutic interventions in various disease conditions but also hold the potential for innovative treatments. PTPs offer promising avenues for drug discovery efforts and innovative treatments across a spectrum of health conditions.
{"title":"Protein tyrosine phosphatase inhibitors: a patent review and update (2012-2023).","authors":"Lakshmi Mounika Kelam, Vaishnavi Chhabra, Sarika Dhiman, Deevena Kumari, M Elizabeth Sobhia","doi":"10.1080/13543776.2024.2362203","DOIUrl":"https://doi.org/10.1080/13543776.2024.2362203","url":null,"abstract":"<p><strong>Introduction: </strong>Protein tyrosine phosphatases (PTPs), essential and evolutionarily highly conserved enzymes, govern cellular functions by modulating tyrosine phosphorylation, a pivotal post-translational modification for signal transduction. The recent strides in phosphatase drug discovery, leading to the identification of selective modulators for enzymes, restoring interest in the therapeutic targeting of protein phosphatases.</p><p><strong>Areas covered: </strong>The compilation of patents up to the year 2023 focuses on the efficacy of various classes of Tyrosine phosphatases and their inhibitors, detailing their chemical structure and biochemical characteristics. These findings have broad implications, as they can be applied to treating diverse conditions like cancer, diabetes, autoimmune disorders, and neurological diseases. The search for scientific articles and patent literature was conducted using well known different platforms to gather information up to 2023.</p><p><strong>Expert opinion: </strong>The latest improvements in protein tyrosine phosphatase (PTP) research include the discovery of new inhibitors targeting specific PTP enzymes, with a focus on developing allosteric site covalent inhibitors for enhanced efficacy and specificity. These advancements have not only opened up new possibilities for therapeutic interventions in various disease conditions but also hold the potential for innovative treatments. PTPs offer promising avenues for drug discovery efforts and innovative treatments across a spectrum of health conditions.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141450177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-06-11DOI: 10.1080/13543776.2024.2363885
Jamshed Iqbal, Sehrish Bano, Imtiaz Ali Khan, Qing Huang
Introduction: The purinergic P2X7 receptor (P2X7R) is expressed on the surface of many different types of cells, including immune cells. Targeting P2X7R with antagonists has been studied for its potential therapeutic effects in a variety of inflammatory illnesses.
Area covered: Many chemical substances, including carboxamides, benzamides and nitrogen containing heterocyclic derivatives have demonstrated promising inhibitory potential for P2X7 receptor. The chemistry and clinical applications of P2X7R antagonists patented from 2018- present are discussed in this review.
Expert opinion: Purinergic receptor inhibitor discovery and application has demonstrated the potential for therapeutic intervention, as demonstrated by pharmacological research. Few chemical modalities have been authorized for use in clinical settings, despite the fact that breakthroughs in crystallography and chemical biology have increased the knowledge of purinergic signaling and its consequences in disease. The many research projects and pharmaceutical movements that sustain dynamic P2X receptor programs over decades are evidence of the therapeutic values and academic persistence in purinergic study. P2X7R is an intriguing therapeutic target and possible biomarker for inflammation. Although several companies like Merck and AstraZeneca have published patents on P2X3 antagonists, the search for P2X7R antagonists has not stopped. Numerous pharmaceutical companies have disclosed different scaffolds, and some molecules are presently being studied in clinical studies.
{"title":"A patent review of P2X7 receptor antagonists to treat inflammatory diseases (2018-present).","authors":"Jamshed Iqbal, Sehrish Bano, Imtiaz Ali Khan, Qing Huang","doi":"10.1080/13543776.2024.2363885","DOIUrl":"10.1080/13543776.2024.2363885","url":null,"abstract":"<p><strong>Introduction: </strong>The purinergic P2X7 receptor (P2X7R) is expressed on the surface of many different types of cells, including immune cells. Targeting P2X7R with antagonists has been studied for its potential therapeutic effects in a variety of inflammatory illnesses.</p><p><strong>Area covered: </strong>Many chemical substances, including carboxamides, benzamides and nitrogen containing heterocyclic derivatives have demonstrated promising inhibitory potential for P2X7 receptor. The chemistry and clinical applications of P2X7R antagonists patented from 2018- present are discussed in this review.</p><p><strong>Expert opinion: </strong>Purinergic receptor inhibitor discovery and application has demonstrated the potential for therapeutic intervention, as demonstrated by pharmacological research. Few chemical modalities have been authorized for use in clinical settings, despite the fact that breakthroughs in crystallography and chemical biology have increased the knowledge of purinergic signaling and its consequences in disease. The many research projects and pharmaceutical movements that sustain dynamic P2X receptor programs over decades are evidence of the therapeutic values and academic persistence in purinergic study. P2X7R is an intriguing therapeutic target and possible biomarker for inflammation. Although several companies like Merck and AstraZeneca have published patents on P2X3 antagonists, the search for P2X7R antagonists has not stopped. Numerous pharmaceutical companies have disclosed different scaffolds, and some molecules are presently being studied in clinical studies.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141199485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01Epub Date: 2024-06-25DOI: 10.1080/13543776.2024.2363890
Thabo Brighton Makgoba, Erika Kapp, Samuel Egieyeh, Jacques Joubert
Introduction: Histone deacetylases (HDACs) are a class of zinc-dependent enzymes. They maintain acetylation homeostasis, with numerous biological functions and are associated with many diseases. HDAC3 strictly requires multi-subunit complex formation for activity. It is associated with the progression of numerous non-communicable diseases. Its widespread involvement in diseases makes it an epigenetic drug target. Preexisting HDAC3 inhibitors have many uses, highlighting the need for continued research in the discovery of HDAC3-selective inhibitors.
Area covered: This review provides an overview of 24 patents published from 2010 to 2023, focusing on compounds that inhibit the HDAC3 isoenzyme.
Expert opinion: HDAC3-selective inhibitors - pivotal for pharmacological applications, as single or combination therapies - are gaining traction as a strategy to move away from complications laden pan-HDAC inhibitors. Moreover, there is an unmet need for HDAC3 inhibitors with alternative zinc-binding groups (ZBGs) because some preexisting ZBGs have limitations related to toxicity and side effects. Difficulties in achieving HDAC3 selectivity may be due to isoform selectivity. However, advancements in computer-aided drug design and experimental data of HDAC3 3D co-crystallized models could lead to the discovery of novel HDAC3-selective inhibitors, which bear alternative ZBGs with balanced selectivity for HDAC3 and potency.
{"title":"HDAC3 inhibitors: a patent review of their broad-spectrum applications as therapeutic agents.","authors":"Thabo Brighton Makgoba, Erika Kapp, Samuel Egieyeh, Jacques Joubert","doi":"10.1080/13543776.2024.2363890","DOIUrl":"10.1080/13543776.2024.2363890","url":null,"abstract":"<p><strong>Introduction: </strong>Histone deacetylases (HDACs) are a class of zinc-dependent enzymes. They maintain acetylation homeostasis, with numerous biological functions and are associated with many diseases. HDAC3 strictly requires multi-subunit complex formation for activity. It is associated with the progression of numerous non-communicable diseases. Its widespread involvement in diseases makes it an epigenetic drug target. Preexisting HDAC3 inhibitors have many uses, highlighting the need for continued research in the discovery of HDAC3-selective inhibitors.</p><p><strong>Area covered: </strong>This review provides an overview of 24 patents published from 2010 to 2023, focusing on compounds that inhibit the HDAC3 isoenzyme.</p><p><strong>Expert opinion: </strong>HDAC3-selective inhibitors - pivotal for pharmacological applications, as single or combination therapies - are gaining traction as a strategy to move away from complications laden pan-HDAC inhibitors. Moreover, there is an unmet need for HDAC3 inhibitors with alternative zinc-binding groups (ZBGs) because some preexisting ZBGs have limitations related to toxicity and side effects. Difficulties in achieving HDAC3 selectivity may be due to isoform selectivity. However, advancements in computer-aided drug design and experimental data of HDAC3 3D co-crystallized models could lead to the discovery of novel HDAC3-selective inhibitors, which bear alternative ZBGs with balanced selectivity for HDAC3 and potency.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":5.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20DOI: 10.1080/13543776.2024.2332663
Clemente Capasso, Claudiu T. Supuran
Carbonic anhydrases (CAs, EC 4.2.1.1) play a pivotal role in the regulation of carbon dioxide , bicarbonate, and hydrogen ions within bacterial cells, ensuring pH homeostasis and facilitating energ...
{"title":"Carbonic anhydrase and bacterial metabolism: a chance for antibacterial drug discovery","authors":"Clemente Capasso, Claudiu T. Supuran","doi":"10.1080/13543776.2024.2332663","DOIUrl":"https://doi.org/10.1080/13543776.2024.2332663","url":null,"abstract":"Carbonic anhydrases (CAs, EC 4.2.1.1) play a pivotal role in the regulation of carbon dioxide , bicarbonate, and hydrogen ions within bacterial cells, ensuring pH homeostasis and facilitating energ...","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140166770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bromodomain and ExtraTerminal (BET) domain proteins are transcriptional cofactors that, recognizing acetylated lysines of histone and non-histone proteins, can modulate gene expression. BET family ...
{"title":"Successes and challenges in the development of BD1-selective BET inhibitors: a patent review","authors":"Monica Viviano, Alessandra Cipriano, Emanuele Fabbrizi, Alessandra Feoli, Sabrina Castellano, Gianluca Sbardella, Antonello Mai, Ciro Milite, Dante Rotili","doi":"10.1080/13543776.2024.2327300","DOIUrl":"https://doi.org/10.1080/13543776.2024.2327300","url":null,"abstract":"Bromodomain and ExtraTerminal (BET) domain proteins are transcriptional cofactors that, recognizing acetylated lysines of histone and non-histone proteins, can modulate gene expression. BET family ...","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-04-09DOI: 10.1080/13543776.2024.2338100
Dima A Sabbah, Rima Hajjo, Sanaa K Bardaweel, Haizhen A Zhong
Introduction: Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed.
Area covered: This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023.
Expert opinion: To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.
{"title":"Targeting the PI3K/AKT signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023).","authors":"Dima A Sabbah, Rima Hajjo, Sanaa K Bardaweel, Haizhen A Zhong","doi":"10.1080/13543776.2024.2338100","DOIUrl":"10.1080/13543776.2024.2338100","url":null,"abstract":"<p><strong>Introduction: </strong>Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed.</p><p><strong>Area covered: </strong>This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023.</p><p><strong>Expert opinion: </strong>To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140335336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-04-09DOI: 10.1080/13543776.2024.2338105
Richa Raj, Pingping Shen, Boyang Yu, Jian Zhang
Introduction: HMGB1 is a non-histone chromatin protein released or secreted in response to tissue damage or infection. Extracellular HMGB1, as a crucial immunomodulatory factor, binds with several different receptors to innate inflammatory responses that aggravate acute and chronic liver diseases. The increased levels of HMGB1 have been reported in various liver diseases, highlighting that it represents a potential biomarker and druggable target for therapeutic development.
Areas covered: This review summarizes the current knowledge on the structure, function, and interacting receptors of HMGB1 and its significance in multiple liver diseases. The latest patented and preclinical studies of HMGB1 inhibitors (antibodies, peptides, and small molecules) for liver diseases are summarized by using the keywords 'HMGB1,' 'HMGB1 antagonist, HMGB1-inhibitor,' 'liver disease' in Web of Science, Google Scholar, Google Patents, and PubMed databases in the year from 2017 to 2023.
Expert opinions: In recent years, extensive research on HMGB1-dependent inflammatory signaling has discovered potent inhibitors of HMGB1 to reduce the severity of liver injury. Despite significant progress in the development of HMGB1 antagonists, few of them are approved for clinical treatment of liver-related diseases. Developing safe and effective specific inhibitors for different HMGB1 isoforms and their interaction with receptors is the focus of future research.
{"title":"A patent review on HMGB1 inhibitors for the treatment of liver diseases.","authors":"Richa Raj, Pingping Shen, Boyang Yu, Jian Zhang","doi":"10.1080/13543776.2024.2338105","DOIUrl":"10.1080/13543776.2024.2338105","url":null,"abstract":"<p><strong>Introduction: </strong>HMGB1 is a non-histone chromatin protein released or secreted in response to tissue damage or infection. Extracellular HMGB1, as a crucial immunomodulatory factor, binds with several different receptors to innate inflammatory responses that aggravate acute and chronic liver diseases. The increased levels of HMGB1 have been reported in various liver diseases, highlighting that it represents a potential biomarker and druggable target for therapeutic development.</p><p><strong>Areas covered: </strong>This review summarizes the current knowledge on the structure, function, and interacting receptors of HMGB1 and its significance in multiple liver diseases. The latest patented and preclinical studies of HMGB1 inhibitors (antibodies, peptides, and small molecules) for liver diseases are summarized by using the keywords 'HMGB1,' 'HMGB1 antagonist, HMGB1-inhibitor,' 'liver disease' in Web of Science, Google Scholar, Google Patents, and PubMed databases in the year from 2017 to 2023.</p><p><strong>Expert opinions: </strong>In recent years, extensive research on HMGB1-dependent inflammatory signaling has discovered potent inhibitors of HMGB1 to reduce the severity of liver injury. Despite significant progress in the development of HMGB1 antagonists, few of them are approved for clinical treatment of liver-related diseases. Developing safe and effective specific inhibitors for different HMGB1 isoforms and their interaction with receptors is the focus of future research.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140335335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-12DOI: 10.1080/13543776.2024.2327307
Rima Hajjo, Dima A Sabbah, Sanaa K Bardaweel, Haizhen A Zhong
Introduction: Recent years have seen significant strides in drug developmenttargeting the EGFR/RAS/RAF signaling pathway which is critical forcell growth and proliferation. Protein-protein interaction networksamong EGFR, RAS, and RAF proteins offer insights for drug discovery. This review discusses the drug design and development efforts ofinhibitors targeting these proteins over the past 3 years, detailingtheir structures, selectivity, efficacy, and combination therapy.Strategies to combat drug resistance and minimize toxicities areexplored, along with future research directions.
Area covered: This review encompasses clinical trials and patents on EGFR, KRAS,and BRAF inhibitors from 2020 to 2023, including advancements indesign and synthesis of proteolysis targeting chimeras (PROTACs) forprotein degradation.
Expert opinion: To tackle drug resistance, designing allosteric fourth-generationEGFR inhibitors is vital. Covalent, allosteric, or combinationaltherapies, along with PROTAC degraders, are key methods to addressresistance and toxicity in KRAS and BRAF inhibitors.
{"title":"Targeting the EGFR/RAS/RAF signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023).","authors":"Rima Hajjo, Dima A Sabbah, Sanaa K Bardaweel, Haizhen A Zhong","doi":"10.1080/13543776.2024.2327307","DOIUrl":"10.1080/13543776.2024.2327307","url":null,"abstract":"<p><strong>Introduction: </strong>Recent years have seen significant strides in drug developmenttargeting the EGFR/RAS/RAF signaling pathway which is critical forcell growth and proliferation. Protein-protein interaction networksamong EGFR, RAS, and RAF proteins offer insights for drug discovery. This review discusses the drug design and development efforts ofinhibitors targeting these proteins over the past 3 years, detailingtheir structures, selectivity, efficacy, and combination therapy.Strategies to combat drug resistance and minimize toxicities areexplored, along with future research directions.</p><p><strong>Area covered: </strong>This review encompasses clinical trials and patents on EGFR, KRAS,and BRAF inhibitors from 2020 to 2023, including advancements indesign and synthesis of proteolysis targeting chimeras (PROTACs) forprotein degradation.</p><p><strong>Expert opinion: </strong>To tackle drug resistance, designing allosteric fourth-generationEGFR inhibitors is vital. Covalent, allosteric, or combinationaltherapies, along with PROTAC degraders, are key methods to addressresistance and toxicity in KRAS and BRAF inhibitors.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140049165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-03-20DOI: 10.1080/13543776.2024.2332661
Barbara De Filippis, Arianna Granese, Alessandra Ammazzalorso
Introduction: The search for novel compounds targeting Peroxisome Proliferator-Activated Receptors (PPARs) is currently ongoing, starting from the previous successfully identification of selective, dual or pan agonists. In last years, researchers' efforts are mainly paid to the discovery of PPARγ and δ modulators, both agonists and antagonists, selective or with a dual-multitarget profile. Some of these compounds are currently under clinical trials for the treatment of primary biliary cirrhosis, nonalcoholic fatty liver disease, hepatic, and renal diseases.
Areas covered: A critical analysis of patents deposited in the range 2020-2023 was carried out. The novel compounds discovered were classified as selective PPAR modulators, dual and multitarget PPAR agonists. The use of PPAR ligands in combination with other drugs was also discussed, together with novel therapeutic indications proposed for them.
Expert opinion: From the analysis of the patent literature, the current emerging landscape sees the necessity to obtain PPAR multitarget compounds, with a balanced potency on three subtypes and the ability to modulate different targets. This multitarget action holds great promise as a novel approach to complex disorders, as metabolic, inflammatory diseases, and cancer. The utility of PPAR ligands in the immunotherapy field also opens an innovative scenario, that could deserve further applications.
{"title":"Peroxisome Proliferator-Activated Receptor agonists and antagonists: an updated patent review (2020-2023).","authors":"Barbara De Filippis, Arianna Granese, Alessandra Ammazzalorso","doi":"10.1080/13543776.2024.2332661","DOIUrl":"10.1080/13543776.2024.2332661","url":null,"abstract":"<p><strong>Introduction: </strong>The search for novel compounds targeting Peroxisome Proliferator-Activated Receptors (PPARs) is currently ongoing, starting from the previous successfully identification of selective, dual or pan agonists. In last years, researchers' efforts are mainly paid to the discovery of PPARγ and δ modulators, both agonists and antagonists, selective or with a dual-multitarget profile. Some of these compounds are currently under clinical trials for the treatment of primary biliary cirrhosis, nonalcoholic fatty liver disease, hepatic, and renal diseases.</p><p><strong>Areas covered: </strong>A critical analysis of patents deposited in the range 2020-2023 was carried out. The novel compounds discovered were classified as selective PPAR modulators, dual and multitarget PPAR agonists. The use of PPAR ligands in combination with other drugs was also discussed, together with novel therapeutic indications proposed for them.</p><p><strong>Expert opinion: </strong>From the analysis of the patent literature, the current emerging landscape sees the necessity to obtain PPAR multitarget compounds, with a balanced potency on three subtypes and the ability to modulate different targets. This multitarget action holds great promise as a novel approach to complex disorders, as metabolic, inflammatory diseases, and cancer. The utility of PPAR ligands in the immunotherapy field also opens an innovative scenario, that could deserve further applications.</p>","PeriodicalId":12314,"journal":{"name":"Expert Opinion on Therapeutic Patents","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140157879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}