Increasingly high interest in yeast–yeast interactions in mixed-culture fermentation is seen along with beer consumers’ demands driving both market growth and requests for biotechnological solutions that can provide better sensory characteristics. In this study, Lachancea thermotolerans and Saccharomyces cerevisiae with a cell population ratio of 10:1 were inoculated for sour beer fermentation while the process conditions within the brewing industry remained unchanged. With L. thermotolerans producing lactic acid (1.5–1.8 g/L) and bringing down the pH to 3.3–3.4 whilst adding no foreign flavors herein, this study revealed a new natural, fruity sour beer with a soft, sour taste. In this study, the double-yeast mixed-culture fermentation produced more flavor substances than a single-culture process, and plenty of isobutyl acetate and isoamyl acetate enhanced the fruit aroma and balanced the sour beer with a refreshing taste. While playing a positive role in improving the beer’s quality, the double-yeast mixed-culture fermentation developed in this study helps to offer an alternative mass production solution for producing sour beer with the processes better controlled and the fermentation time reduced. The stress responses of the L. thermotolerans during the fermentation were revealed by integrating RNA sequencing (RNA-Seq) and metabolite data. Given that the metabolic flux distribution of the S. cerevisiae during the fermentation differed from that of the non-Saccharomyces yeasts, transcriptional analysis of non-Saccharomyces yeast and S. cerevisiae could be suitable in helping to develop strategies to modulate the transcriptional responses of specific genes that are associated with the aroma compounds released by S. cerevisiae and non-Saccharomyces yeasts. In the case of some non-Saccharomyces yeast species/strains, the diversion of alcoholic fermentation and the formation of a great number of secondary compounds may, in part, account for the low ethanol yield.
{"title":"Transcriptional Analysis of Mixed-Culture Fermentation of Lachancea thermotolerans and Saccharomyces cerevisiae for Natural Fruity Sour Beer","authors":"Xiaofen Fu, Liyun Guo, Yumeng Li, Xinyu Chen, Yumei Song, Shizhong Li","doi":"10.3390/fermentation10040180","DOIUrl":"https://doi.org/10.3390/fermentation10040180","url":null,"abstract":"Increasingly high interest in yeast–yeast interactions in mixed-culture fermentation is seen along with beer consumers’ demands driving both market growth and requests for biotechnological solutions that can provide better sensory characteristics. In this study, Lachancea thermotolerans and Saccharomyces cerevisiae with a cell population ratio of 10:1 were inoculated for sour beer fermentation while the process conditions within the brewing industry remained unchanged. With L. thermotolerans producing lactic acid (1.5–1.8 g/L) and bringing down the pH to 3.3–3.4 whilst adding no foreign flavors herein, this study revealed a new natural, fruity sour beer with a soft, sour taste. In this study, the double-yeast mixed-culture fermentation produced more flavor substances than a single-culture process, and plenty of isobutyl acetate and isoamyl acetate enhanced the fruit aroma and balanced the sour beer with a refreshing taste. While playing a positive role in improving the beer’s quality, the double-yeast mixed-culture fermentation developed in this study helps to offer an alternative mass production solution for producing sour beer with the processes better controlled and the fermentation time reduced. The stress responses of the L. thermotolerans during the fermentation were revealed by integrating RNA sequencing (RNA-Seq) and metabolite data. Given that the metabolic flux distribution of the S. cerevisiae during the fermentation differed from that of the non-Saccharomyces yeasts, transcriptional analysis of non-Saccharomyces yeast and S. cerevisiae could be suitable in helping to develop strategies to modulate the transcriptional responses of specific genes that are associated with the aroma compounds released by S. cerevisiae and non-Saccharomyces yeasts. In the case of some non-Saccharomyces yeast species/strains, the diversion of alcoholic fermentation and the formation of a great number of secondary compounds may, in part, account for the low ethanol yield.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":" 1237","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140382657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-25DOI: 10.3390/fermentation10040179
Yan Zhou, Xuedong Zhang, Yue Wang, Hongbo Liu
Amino acids, particularly the ones that cannot be synthesised during fermentation, are reportedly to be key nutrients for anaerobic fermentation processes, and some of the acids are also intermediate products of anaerobic fermentation of protein-rich waste. To date, particularly, there is a lack of research on the effects of some amino acids, such as cysteine, glycine, aspartic acid, and valine, on lactic production from the fermentation of food waste and also the mechanisms involved in the process. Thus, this study investigated the effects of the four different amino acids on lactic acid production during the acidic anaerobic fermentation of food waste. Firstly, batch experiments on synthetic food waste at different pHs (4.0, 5.0, and 6.0) were executed. The results harvested in this study showed that higher LA concentrations and yields could be obtained at pH 5.0 and pH 6.0, compared with those at pH 4.0. The yield of lactic acid was slightly lower at pH 5.0 than at pH 6.0. Furthermore, caustic consumption at pH 5.0 was much lower. Therefore, we conducted batch experiments with additions of different amino acids (cysteine, glycine, aspartic acid, and valine) under pH 5.0. The additions of the four different amino acids showed different or even opposite influences on LA production. Glycine and aspartic acids presented no noticeable effects on lactic acid production, but cysteine evidently enhanced the lactic acid yield of food waste by 13%. Cysteine addition increased α-glucosidase activity and hydrolysis rate and simultaneously enhanced the abundance of Lactobacillus at the acidification stage as well as lactate dehydrogenase, which also all favoured lactic acid production. However, the addition of valine evidently reduced lactic acid yield by 18%, and the results implied that valine seemingly inhibited the conversion of carbohydrate. In addition, the low abundance of Lactobacillus was observed in the tests with valine, which appeared to be detrimental to lactic acid production. Overall, this study provides a novel insight into the regulation of lactic acid production from anaerobic fermentation of food waste by adding amino acids under acidic fermentation conditions.
{"title":"Mechanism and Effect of Amino Acids on Lactic Acid Production in Acidic Fermentation of Food Waste","authors":"Yan Zhou, Xuedong Zhang, Yue Wang, Hongbo Liu","doi":"10.3390/fermentation10040179","DOIUrl":"https://doi.org/10.3390/fermentation10040179","url":null,"abstract":"Amino acids, particularly the ones that cannot be synthesised during fermentation, are reportedly to be key nutrients for anaerobic fermentation processes, and some of the acids are also intermediate products of anaerobic fermentation of protein-rich waste. To date, particularly, there is a lack of research on the effects of some amino acids, such as cysteine, glycine, aspartic acid, and valine, on lactic production from the fermentation of food waste and also the mechanisms involved in the process. Thus, this study investigated the effects of the four different amino acids on lactic acid production during the acidic anaerobic fermentation of food waste. Firstly, batch experiments on synthetic food waste at different pHs (4.0, 5.0, and 6.0) were executed. The results harvested in this study showed that higher LA concentrations and yields could be obtained at pH 5.0 and pH 6.0, compared with those at pH 4.0. The yield of lactic acid was slightly lower at pH 5.0 than at pH 6.0. Furthermore, caustic consumption at pH 5.0 was much lower. Therefore, we conducted batch experiments with additions of different amino acids (cysteine, glycine, aspartic acid, and valine) under pH 5.0. The additions of the four different amino acids showed different or even opposite influences on LA production. Glycine and aspartic acids presented no noticeable effects on lactic acid production, but cysteine evidently enhanced the lactic acid yield of food waste by 13%. Cysteine addition increased α-glucosidase activity and hydrolysis rate and simultaneously enhanced the abundance of Lactobacillus at the acidification stage as well as lactate dehydrogenase, which also all favoured lactic acid production. However, the addition of valine evidently reduced lactic acid yield by 18%, and the results implied that valine seemingly inhibited the conversion of carbohydrate. In addition, the low abundance of Lactobacillus was observed in the tests with valine, which appeared to be detrimental to lactic acid production. Overall, this study provides a novel insight into the regulation of lactic acid production from anaerobic fermentation of food waste by adding amino acids under acidic fermentation conditions.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"111 51","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140381666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.3390/fermentation10040177
Isabela Maria Macedo Simon Sola, Larissa Deckij Evers, José Pedro Wojeicchowski, Tatiane Martins de Assis, Marina Tolentino Marinho, I. Demiate, A. Alberti, Alessandro Nogueira
Pure, co-, and sequential fermentations of Hanseniaspora uvarum, H. guilliermondii, and Saccharomyces cerevisiae strains were evaluated to improve the aromatic quality of ciders. In sequential fermentations, Hanseniaspora strains were used as starter, followed by S. cerevisiae inoculation succeeding one, two, and three days of fermentation. Kinetics, physicochemical parameters, and volatile compounds were assessed during 10 days of fermentation. The headspace technique was used to capture the volatile compounds from the ciders obtained in each experiment and analyzed by gas chromatography. Fermentations with pure strains of Hansenisaspora sp. showed a high population (>1010 CFU/mL) but had a low fermentation rate (2.3–3.8 CO2 g/L/d), low consumption of amino acids (20–40 mg/L) with a high residual content, high sugar consumption (80–90 g/L), and low alcohol content (<2.0% v/v). The H. uvarum strain produced a notably high ester content (245 mg/L). In the co-fermentations, H. guilliermondii with S. cerevisiae highlighted a significant production of higher alcohols, similar to that produced by S. cerevisiae alone (152–165 mg/L). In general, the maximum fermentation rate of the sequential inoculations was lower than co-fermentations but showed low residual nitrogen content (<69 mg/L) and good conversion of sugars into ethanol (4.3–5.7% v/v). The highest concentrations of volatile compounds were observed in treatments involving the two non-conventional strains: H. uvarum with S. cerevisiae inoculation after three days (564 mg/L) and H. guilliermondii after just one day (531 mg/L) of fermentation. These differences stemmed from the metabolic activity of the strains. H. uvarum was influenced by the presence of Saccharomyces, whereas H. guilliermondii did not exhibit this effect. Thus, a pure H. uvarum inoculum has the potential to produce a demi-sec cider with low alcohol content and high content of esters, contributing to a fruity aroma. In addition, ciders with sequential inoculation were the most promising for dry cider processing concerning fermentation parameters and bioaroma enrichment.
对汉森氏菌(Hanseniaspora uvarum)、吉利蒙氏菌(H. guilliermondii)和酿酒酵母(Saccharomyces cerevisiae)菌株的纯发酵、联合发酵和连续发酵进行了评估,以改善苹果酒的芳香质量。在顺序发酵过程中,先用汉森氏菌作为起始菌,然后接种酿酒酵母,发酵 1 天、2 天和 3 天。在 10 天的发酵过程中,对动力学、理化参数和挥发性化合物进行了评估。采用顶空技术从每次实验获得的苹果酒中捕获挥发性化合物,并用气相色谱法进行分析。纯种汉逊孢属菌株的发酵显示出较高的种群数量(>1010 CFU/mL),但发酵率较低(2.3-3.8 CO2 g/L/d),氨基酸消耗量低(20-40 mg/L),残留物含量高,糖消耗量高(80-90 g/L),酒精含量低(<2.0% v/v)。H. uvarum 菌株产生的酯含量明显较高(245 毫克/升)。在共同发酵过程中,H. guilliermondii 与 S. cerevisiae 共同发酵产生的酒精含量较高,与 S. cerevisiae 单独发酵产生的酒精含量(152-165 mg/L)相近。一般来说,顺序接种的最大发酵率低于共同发酵,但残氮含量低(<69 毫克/升),糖分转化为乙醇的转化率高(4.3-5.7% v/v)。在涉及两种非常规菌株的处理中观察到的挥发性化合物浓度最高:H. uvarum 与 S. cerevisiae 接种后发酵三天(564 mg/L),H. guilliermondii 仅发酵一天(531 mg/L)。这些差异源于菌株的代谢活性。酵母菌的存在对 H. uvarum 有影响,而 H. guilliermondii 则没有这种影响。因此,纯净的 H. uvarum 接种物有可能酿造出酒精含量低、酯类含量高、具有水果香味的苹果酒。此外,在发酵参数和生物群富集方面,顺序接种的苹果酒最有希望用于干苹果酒加工。
{"title":"Impact of Pure, Co-, and Sequential Fermentations with Hanseniaspora sp. and Saccharomyces cerevisiae on the Volatile Compounds of Ciders","authors":"Isabela Maria Macedo Simon Sola, Larissa Deckij Evers, José Pedro Wojeicchowski, Tatiane Martins de Assis, Marina Tolentino Marinho, I. Demiate, A. Alberti, Alessandro Nogueira","doi":"10.3390/fermentation10040177","DOIUrl":"https://doi.org/10.3390/fermentation10040177","url":null,"abstract":"Pure, co-, and sequential fermentations of Hanseniaspora uvarum, H. guilliermondii, and Saccharomyces cerevisiae strains were evaluated to improve the aromatic quality of ciders. In sequential fermentations, Hanseniaspora strains were used as starter, followed by S. cerevisiae inoculation succeeding one, two, and three days of fermentation. Kinetics, physicochemical parameters, and volatile compounds were assessed during 10 days of fermentation. The headspace technique was used to capture the volatile compounds from the ciders obtained in each experiment and analyzed by gas chromatography. Fermentations with pure strains of Hansenisaspora sp. showed a high population (>1010 CFU/mL) but had a low fermentation rate (2.3–3.8 CO2 g/L/d), low consumption of amino acids (20–40 mg/L) with a high residual content, high sugar consumption (80–90 g/L), and low alcohol content (<2.0% v/v). The H. uvarum strain produced a notably high ester content (245 mg/L). In the co-fermentations, H. guilliermondii with S. cerevisiae highlighted a significant production of higher alcohols, similar to that produced by S. cerevisiae alone (152–165 mg/L). In general, the maximum fermentation rate of the sequential inoculations was lower than co-fermentations but showed low residual nitrogen content (<69 mg/L) and good conversion of sugars into ethanol (4.3–5.7% v/v). The highest concentrations of volatile compounds were observed in treatments involving the two non-conventional strains: H. uvarum with S. cerevisiae inoculation after three days (564 mg/L) and H. guilliermondii after just one day (531 mg/L) of fermentation. These differences stemmed from the metabolic activity of the strains. H. uvarum was influenced by the presence of Saccharomyces, whereas H. guilliermondii did not exhibit this effect. Thus, a pure H. uvarum inoculum has the potential to produce a demi-sec cider with low alcohol content and high content of esters, contributing to a fruity aroma. In addition, ciders with sequential inoculation were the most promising for dry cider processing concerning fermentation parameters and bioaroma enrichment.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"141 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140386782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-23DOI: 10.3390/fermentation10040178
D. D. Maza, Julio Maximiliano Barros, J. Guillamón, Manuel J. Aybar, S. C. Viñarta
Single-cell oils (SCOs) offer a promising alternative to conventional biodiesel feedstocks. The main objective of this work was to obtain SCOs suitable for biodiesel production from the oleaginous yeast Rhodotorula glutinis R4 using sugarcane vinasse from a local sugar-derived alcohol industry as the substrate. Additionally, crude glycerol from the local biodiesel industry was evaluated as a low-cost carbon source to replace expensive glucose and as a strategy for integrating the bioethanol and biodiesel industries for the valorization of both agro-industrial wastes. R4 achieved a high lipid accumulation of 88% and 60% (w/w) in vinasse-based culture media, containing 10% and 25% vinasse with glucose (40 g L−1), respectively. When glucose was replaced with crude glycerol, R4 showed remarkable lipid accumulation (40%) and growth (12.58 g L−1). The fatty acids profile of SCOs showed a prevalence of oleic acid (C18:1), making them suitable for biodiesel synthesis. Biodiesel derived from R4 oils exhibits favorable characteristics, including a high cetane number (CN = 55) and high oxidative stability (OS = 13 h), meeting international biodiesel standards (ASTMD6751 and EN14214) and ensuring its compatibility with diesel engines. R. glutinis R4 produces SCOs from vinasse and crude glycerol, contributing to the circular economy for sustainable biodiesel production.
{"title":"Valorization of Sugarcane Vinasse and Crude Glycerol for Single-Cell Oils Production by Rhodotorula glutinis R4: A Preliminary Approach to the Integration of Biofuels Industries for Sustainable Biodiesel Feedstock","authors":"D. D. Maza, Julio Maximiliano Barros, J. Guillamón, Manuel J. Aybar, S. C. Viñarta","doi":"10.3390/fermentation10040178","DOIUrl":"https://doi.org/10.3390/fermentation10040178","url":null,"abstract":"Single-cell oils (SCOs) offer a promising alternative to conventional biodiesel feedstocks. The main objective of this work was to obtain SCOs suitable for biodiesel production from the oleaginous yeast Rhodotorula glutinis R4 using sugarcane vinasse from a local sugar-derived alcohol industry as the substrate. Additionally, crude glycerol from the local biodiesel industry was evaluated as a low-cost carbon source to replace expensive glucose and as a strategy for integrating the bioethanol and biodiesel industries for the valorization of both agro-industrial wastes. R4 achieved a high lipid accumulation of 88% and 60% (w/w) in vinasse-based culture media, containing 10% and 25% vinasse with glucose (40 g L−1), respectively. When glucose was replaced with crude glycerol, R4 showed remarkable lipid accumulation (40%) and growth (12.58 g L−1). The fatty acids profile of SCOs showed a prevalence of oleic acid (C18:1), making them suitable for biodiesel synthesis. Biodiesel derived from R4 oils exhibits favorable characteristics, including a high cetane number (CN = 55) and high oxidative stability (OS = 13 h), meeting international biodiesel standards (ASTMD6751 and EN14214) and ensuring its compatibility with diesel engines. R. glutinis R4 produces SCOs from vinasse and crude glycerol, contributing to the circular economy for sustainable biodiesel production.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":" 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140386338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-15DOI: 10.3390/fermentation10030168
Yulma Lizbeth Aguirre-Garcia, S. D. Nery‐Flores, Lizeth Guadalupe Campos-Muzquiz, A. C. Flores‐Gallegos, Lissethe Palomo-Ligas, J. Ascacio-Valdés, Leonardo Sepúlveda-Torres, Raúl Rodríguez-Herrera
Studies on fermentation by acid lactic bacteria (LAB) have confirmed the presence of strains with attributes of considerable relevance for food processing. These strains, in addition to their ability to modify the texture and flavor of foods, possess beneficial properties for human health. They enhance food quality by making it more nutrient-rich and contribute to food preservation. The production of lactic acid, vitamins, exopolysaccharides, and bacteriocins, among other compounds, confers these properties to LAB. In the realm of preservation, bacteriocins play a crucial role. This is because bacteriocins act by inhibiting the growth and reproduction of unwanted microorganisms by interacting with the cell membrane, causing its rupture. This preservative effect has led LAB to have widespread use during food processing. This preservative effect has led to widespread use of LAB during food processing. This review highlights the importance of fermentation carried out by LAB in the food industry and in the bio-preservation of foods. These findings emphasize the relevance of continuing investigations and harness the properties of LAB in food production.
{"title":"Lactic Acid Fermentation in the Food Industry and Bio-Preservation of Food","authors":"Yulma Lizbeth Aguirre-Garcia, S. D. Nery‐Flores, Lizeth Guadalupe Campos-Muzquiz, A. C. Flores‐Gallegos, Lissethe Palomo-Ligas, J. Ascacio-Valdés, Leonardo Sepúlveda-Torres, Raúl Rodríguez-Herrera","doi":"10.3390/fermentation10030168","DOIUrl":"https://doi.org/10.3390/fermentation10030168","url":null,"abstract":"Studies on fermentation by acid lactic bacteria (LAB) have confirmed the presence of strains with attributes of considerable relevance for food processing. These strains, in addition to their ability to modify the texture and flavor of foods, possess beneficial properties for human health. They enhance food quality by making it more nutrient-rich and contribute to food preservation. The production of lactic acid, vitamins, exopolysaccharides, and bacteriocins, among other compounds, confers these properties to LAB. In the realm of preservation, bacteriocins play a crucial role. This is because bacteriocins act by inhibiting the growth and reproduction of unwanted microorganisms by interacting with the cell membrane, causing its rupture. This preservative effect has led LAB to have widespread use during food processing. This preservative effect has led to widespread use of LAB during food processing. This review highlights the importance of fermentation carried out by LAB in the food industry and in the bio-preservation of foods. These findings emphasize the relevance of continuing investigations and harness the properties of LAB in food production.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":" 30","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140391302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Each year, near 40 million tons of banana peels are discarded around the world. This plant biomass could potentially be utilized for energy production. Simultaneous saccharification and fermentation (SSF) is an effective method for producing biofuels from plant biomasses. Since SSF with enzymatic hydrolysis and fermentation are performed simultaneously in the same reactor, the production process is simpler than most existing methods. Here, we describe isobutanol production using SSF with hydrothermally treated banana peel samples and an Escherichia coli strain able to utilize glucose and xylose to produce isobutanol. To enhance the glucose and xylose concentrations, the reaction conditions for the enzymatic hydrolysis of plant biomass using two kinds of saccharification enzymes were optimized, including the enzyme unit ratio, reaction temperature and sample gram. When the optimized conditions for enzymatic hydrolysis were applied to SSF, the glucose and xylose produced from the hydrothermally treated samples were consumed, producing isobutanol. Moreover, the isobutanol concentration increased with an increasing initial culture pH, reaching 1.27 g/L at pH 6.5, which was consistent with the optimal initial culture pH for isobutanol production by this E. coli strain. Taken together, these results indicate that the established method is potentially useful for industrial isobutanol production.
{"title":"Simultaneous Saccharification and Fermentation for Isobutanol Production from Banana Peel","authors":"Hironaga Akita, Shodai Shibata, T. Komoriya, Shinnosuke Kamei, Hiromichi Asamoto, Masakazu Matsumoto","doi":"10.3390/fermentation10030161","DOIUrl":"https://doi.org/10.3390/fermentation10030161","url":null,"abstract":"Each year, near 40 million tons of banana peels are discarded around the world. This plant biomass could potentially be utilized for energy production. Simultaneous saccharification and fermentation (SSF) is an effective method for producing biofuels from plant biomasses. Since SSF with enzymatic hydrolysis and fermentation are performed simultaneously in the same reactor, the production process is simpler than most existing methods. Here, we describe isobutanol production using SSF with hydrothermally treated banana peel samples and an Escherichia coli strain able to utilize glucose and xylose to produce isobutanol. To enhance the glucose and xylose concentrations, the reaction conditions for the enzymatic hydrolysis of plant biomass using two kinds of saccharification enzymes were optimized, including the enzyme unit ratio, reaction temperature and sample gram. When the optimized conditions for enzymatic hydrolysis were applied to SSF, the glucose and xylose produced from the hydrothermally treated samples were consumed, producing isobutanol. Moreover, the isobutanol concentration increased with an increasing initial culture pH, reaching 1.27 g/L at pH 6.5, which was consistent with the optimal initial culture pH for isobutanol production by this E. coli strain. Taken together, these results indicate that the established method is potentially useful for industrial isobutanol production.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"49 S246","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140395032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.3390/fermentation10030150
Iulia-Roxana Angelescu, M. Zamfir, Emanuela-Cătălina Ionetic, S. Grosu-Tudor
Lactobacillus helveticus 34.9 was isolated from a sample of Romanian home-made fermented milk, producing both surface layer proteins and a class III bacteriocin. The present study aimed to investigate the biological and functional role of the S-layer in correlation with its probiotic properties. The presence of S-layer proteins resulted in various degrees of co-aggregation of L. helveticus 34.9 with pathogens and with other lactic acid bacteria, but the removal of these proteins reduced the co-aggregation with all the tested strains. Moreover, the S-layer proved to be involved in cell wall hydrophobicity and cellular protection during freeze-drying. In the simulated passage through the gastrointestinal tract, S-layer depleted cells exhibited increased vulnerability, with greater viability loss in low pH and pepsin treatment compared to control cells. Subsequently, in the small intestine simulation, these cells lost all viability, underscoring the vital role of extracellular proteins for cell protection. The morphological effects of these treatments were observed by scanning electron microscopy. Severe structural damage was noticed when the S-layer was absent, including loss of cell shape and integrity as well as many ghost cells emptied of their content. Finally, the elimination of surface proteins reduced the interaction between L. helveticus 34.9 and mammalian cells.
从罗马尼亚自制的发酵牛奶样本中分离出了螺旋乳杆菌 34.9,它能产生表层蛋白和一种 III 级细菌素。本研究旨在调查 S 层的生物和功能作用与其益生特性的相关性。S 层蛋白的存在导致氦溶乳杆菌 34.9 与病原体和其他乳酸菌发生不同程度的共聚集,但去除这些蛋白后,与所有受试菌株的共聚集程度都有所降低。此外,在冷冻干燥过程中,S 层被证明参与了细胞壁的疏水性和细胞保护。在模拟通过胃肠道的过程中,缺失S层的细胞表现出更大的脆弱性,与对照细胞相比,在低pH值和胃蛋白酶处理中活力损失更大。随后,在小肠模拟中,这些细胞丧失了所有活力,这突出表明了细胞外蛋白质对细胞保护的重要作用。扫描电子显微镜观察了这些处理的形态学影响。当 S 层缺失时,细胞结构受到严重破坏,包括细胞形状和完整性的丧失,以及许多被掏空的幽灵细胞。最后,表面蛋白的消除降低了螺旋藻毒素 34.9 与哺乳动物细胞之间的相互作用。
{"title":"The Biological Role of the S-Layer Produced by Lactobacillus helveticus 34.9 in Cell Protection and Its Probiotic Properties","authors":"Iulia-Roxana Angelescu, M. Zamfir, Emanuela-Cătălina Ionetic, S. Grosu-Tudor","doi":"10.3390/fermentation10030150","DOIUrl":"https://doi.org/10.3390/fermentation10030150","url":null,"abstract":"Lactobacillus helveticus 34.9 was isolated from a sample of Romanian home-made fermented milk, producing both surface layer proteins and a class III bacteriocin. The present study aimed to investigate the biological and functional role of the S-layer in correlation with its probiotic properties. The presence of S-layer proteins resulted in various degrees of co-aggregation of L. helveticus 34.9 with pathogens and with other lactic acid bacteria, but the removal of these proteins reduced the co-aggregation with all the tested strains. Moreover, the S-layer proved to be involved in cell wall hydrophobicity and cellular protection during freeze-drying. In the simulated passage through the gastrointestinal tract, S-layer depleted cells exhibited increased vulnerability, with greater viability loss in low pH and pepsin treatment compared to control cells. Subsequently, in the small intestine simulation, these cells lost all viability, underscoring the vital role of extracellular proteins for cell protection. The morphological effects of these treatments were observed by scanning electron microscopy. Severe structural damage was noticed when the S-layer was absent, including loss of cell shape and integrity as well as many ghost cells emptied of their content. Finally, the elimination of surface proteins reduced the interaction between L. helveticus 34.9 and mammalian cells.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"141 42","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140078301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-06DOI: 10.3390/fermentation10030151
Jingran Ding, Feng Zhen, Xiaoying Kong, Yunzi Hu, Yi Zhang, Lang Gong
Biochar has attracted increasing attention as an additive for enhancing the performance of anaerobic digestion (AD), but the effect of biochar on microbial regulatory mechanisms in enhancing AD performance is unclear. To investigate how biochar modulates the process of AD, different inoculum sources including cellulose–peptone–swine inoculum (CPI) and swine manure inoculum (SMI) were designed to determine the effect of biochar on the performance and microbial communities of anaerobic digestion of the feedstock concentration from 1 to 6%. The results showed that the methane yields of CPI seeds were higher 20.3–38.7% than those of SMI seeds without a biochar addition, whereas the biochar addition reduced 5.3 and 23.1% of the corresponding methane yield of CPI and SMI, respectively. The biochar enhances the accumulation of volatile fatty acids (VFAs) and weakens the potential ammonia inhibition by adsorption, and it can improve the degradation rate of organic content of soluble COD for different inoculum sources. Microbial community analyses showed that the biochar addition could facilitate the growth of Bacteroidetes and Clostridiales, and it enriched the relative abundance of hydrogenotrophic methanogens Methanobrevibacter and Methanobacterium. Overall, although the modulation of biochar possessed different effects on the anaerobic digestion performance, it contributed to the stability and degradation efficiency of the digestion system. The recycling implication of biochar is critical to realizing a low-carbon and renewable treatment system for organic wastes.
{"title":"Effect of Biochar in Modulating Anaerobic Digestion Performance and Microbial Structure Community of Different Inoculum Sources","authors":"Jingran Ding, Feng Zhen, Xiaoying Kong, Yunzi Hu, Yi Zhang, Lang Gong","doi":"10.3390/fermentation10030151","DOIUrl":"https://doi.org/10.3390/fermentation10030151","url":null,"abstract":"Biochar has attracted increasing attention as an additive for enhancing the performance of anaerobic digestion (AD), but the effect of biochar on microbial regulatory mechanisms in enhancing AD performance is unclear. To investigate how biochar modulates the process of AD, different inoculum sources including cellulose–peptone–swine inoculum (CPI) and swine manure inoculum (SMI) were designed to determine the effect of biochar on the performance and microbial communities of anaerobic digestion of the feedstock concentration from 1 to 6%. The results showed that the methane yields of CPI seeds were higher 20.3–38.7% than those of SMI seeds without a biochar addition, whereas the biochar addition reduced 5.3 and 23.1% of the corresponding methane yield of CPI and SMI, respectively. The biochar enhances the accumulation of volatile fatty acids (VFAs) and weakens the potential ammonia inhibition by adsorption, and it can improve the degradation rate of organic content of soluble COD for different inoculum sources. Microbial community analyses showed that the biochar addition could facilitate the growth of Bacteroidetes and Clostridiales, and it enriched the relative abundance of hydrogenotrophic methanogens Methanobrevibacter and Methanobacterium. Overall, although the modulation of biochar possessed different effects on the anaerobic digestion performance, it contributed to the stability and degradation efficiency of the digestion system. The recycling implication of biochar is critical to realizing a low-carbon and renewable treatment system for organic wastes.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"140 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140078445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.3390/fermentation10030142
Nasib Qureshi, Richard D. Ashby, N. Nichols, Ronald Hector
Butyric acid, a four-carbon fatty acid, is an important industrial chemical and feedstock. To produce this chemical, a control fermentation was run with a 126.5 g.L−1 glucose concentration in the feed medium. In this medium, the strain produced 44.8 g.L−1 total acid with a productivity of 0.23 g.L−1h−1 and a yield of 0.41 g.g−1. The strain (Clostridium tyrobutyricum ATCC 25755) was also able to utilize glucose and xylose simultaneously with similar fermentation performance. The culture was also used to produce butyric acid from wheat straw hydrolysate (WSH) employing a hot water pretreatment. In a batch system, the strain resulted in a productivity and yield of 0.27 g.L−1h−1 and 0.44 g.g−1, respectively, which was an improvement over the use of glucose or xylose alone or mixtures of both. To improve reactor productivity, a membrane cell recycle bioreactor was used which resulted in a productivity of 1.89 g.L−1h−1. This productivity was 822% of that achieved in the glucose or xylose batch fermentation. Furthermore, a butyric acid recovery method was developed using XAD-4 adsorbent resin. In this system, up to 206.1 g.L−1 of butyric acid was used in the feed and, as a result of the quick adsorption, the residual butyric acid concentration was 29.5 g.L−1. In this experiment, the rate of acid removal of 1059.4 g.L−1h−1 was achieved.
{"title":"Novel Technologies for Butyric Acid Fermentation: Use of Cellulosic Biomass, Rapid Bioreactor, and Efficient Product Recovery","authors":"Nasib Qureshi, Richard D. Ashby, N. Nichols, Ronald Hector","doi":"10.3390/fermentation10030142","DOIUrl":"https://doi.org/10.3390/fermentation10030142","url":null,"abstract":"Butyric acid, a four-carbon fatty acid, is an important industrial chemical and feedstock. To produce this chemical, a control fermentation was run with a 126.5 g.L−1 glucose concentration in the feed medium. In this medium, the strain produced 44.8 g.L−1 total acid with a productivity of 0.23 g.L−1h−1 and a yield of 0.41 g.g−1. The strain (Clostridium tyrobutyricum ATCC 25755) was also able to utilize glucose and xylose simultaneously with similar fermentation performance. The culture was also used to produce butyric acid from wheat straw hydrolysate (WSH) employing a hot water pretreatment. In a batch system, the strain resulted in a productivity and yield of 0.27 g.L−1h−1 and 0.44 g.g−1, respectively, which was an improvement over the use of glucose or xylose alone or mixtures of both. To improve reactor productivity, a membrane cell recycle bioreactor was used which resulted in a productivity of 1.89 g.L−1h−1. This productivity was 822% of that achieved in the glucose or xylose batch fermentation. Furthermore, a butyric acid recovery method was developed using XAD-4 adsorbent resin. In this system, up to 206.1 g.L−1 of butyric acid was used in the feed and, as a result of the quick adsorption, the residual butyric acid concentration was 29.5 g.L−1. In this experiment, the rate of acid removal of 1059.4 g.L−1h−1 was achieved.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":" 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140091581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.3390/fermentation10030140
Yilan Shao, Yifan Bai, Zhehui Cai, Nan Pu, Huawei Zhang
To improve the yield of the therapeutic agent N-methylsansalvamide (SA), optimization of stationary liquid fermentation conditions was conducted on an endophytic strain, Fusarium sp. R1, at flask level. Using a One-Factor-At-a-Time approach, the fermentation conditions for SA production were determined as follows: fermentation time of 13 d, 24 °C, initial pH of 6.5, seed age of 24 h, inoculum size of 5.0% (v/v), loading volume of 50% (v/v), and 20.0 g/L salinity. Sucrose, tryptone, and yeast extract were found to be the best sources of carbon and nitrogen. Using response surface methodology, the optimal medium compositions consisted of 22.5 g/L sucrose, 16.5 g/L tryptone, and 0.024 g/L yeast extract. Verification tests suggested that the SA yield under these optimal conditions reached up to 536.77 ± 2.67 mg/L, which was increased by almost ten times the initial yield (54.05 ± 3.45 mg/L). The findings indicate that a high SA production yield can be achieved by stationary culture of strain R1 under proper fermentation conditions using a low-cost medium. This study paves the way toward industrial-scale SA production by strain R1 for new drug development.
{"title":"Optimization of Stationary Liquid Fermentation Conditions for N-Methylsansalvamide Production by the Endophytic Strain Fusarium sp. R1","authors":"Yilan Shao, Yifan Bai, Zhehui Cai, Nan Pu, Huawei Zhang","doi":"10.3390/fermentation10030140","DOIUrl":"https://doi.org/10.3390/fermentation10030140","url":null,"abstract":"To improve the yield of the therapeutic agent N-methylsansalvamide (SA), optimization of stationary liquid fermentation conditions was conducted on an endophytic strain, Fusarium sp. R1, at flask level. Using a One-Factor-At-a-Time approach, the fermentation conditions for SA production were determined as follows: fermentation time of 13 d, 24 °C, initial pH of 6.5, seed age of 24 h, inoculum size of 5.0% (v/v), loading volume of 50% (v/v), and 20.0 g/L salinity. Sucrose, tryptone, and yeast extract were found to be the best sources of carbon and nitrogen. Using response surface methodology, the optimal medium compositions consisted of 22.5 g/L sucrose, 16.5 g/L tryptone, and 0.024 g/L yeast extract. Verification tests suggested that the SA yield under these optimal conditions reached up to 536.77 ± 2.67 mg/L, which was increased by almost ten times the initial yield (54.05 ± 3.45 mg/L). The findings indicate that a high SA production yield can be achieved by stationary culture of strain R1 under proper fermentation conditions using a low-cost medium. This study paves the way toward industrial-scale SA production by strain R1 for new drug development.","PeriodicalId":12379,"journal":{"name":"Fermentation","volume":"110 41","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140088775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}