It is known that animal-origin medicine could be one of effective treatment to remedy atopic dermatitis (AD) by controlling the cytokines. Cicadidae Periostracum (CP), the slough of Cryptotympana pustulata, has been frequently used for treating AD and skin affliction in traditional Korean Medicine. This study is aimed at investigating the ameliorating effects of CP on AD and its potential mechanism. The dinitrochlorobenzene sensitized mice were treated with CP for 2 weeks. The various biomarkers and the dermatitis scores presented that CP treatment can induce the visual and biological improvements of AD model. Pruritus, the most serious symptom of AD, which can cause repeated scratching behaviors and finally lead to lichenification, was reduced with CP treatment by regulating the inflammatory reactions. In addition, CP treatment diminished the number of mast cells that are known for causing inflammatory reactions. Moreover, it is proven that CP can decline secretion of interleukin-22, which means CP treatment has anti-inflammatory effects. CP treatment can correct the imbalance of helper T (Th)1 and Th2, downregulating thymic stromal lymphopoietin that leads to decrease of mRNA level of inflammatory cytokines. The crucial role of CP treatment is controlling of the Janus kinase 1/signal transducer and activator of transcription 3 pathway. In addition, CP treatment has the inhibitory effects on kallikrein related peptidase (KLK) 5 and KLK7. Taken together, CP treatment can ameliorate most symptoms and problems caused by AD disease, improving the AD patients' life quality.
In the present study, we aimed to examine the inhibition of genomic DNA from Lactiplantibacillus plantarum (LpDNA) on Porphyromonas gingivalis lipopolysaccharide (PgLPS)-induced inflammatory responses in RAW264.7 cells. Pretreatment with LpDNA for 15 h significantly inhibited PgLPS-induced mRNA expression and protein secretion of interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein-1. LpDNA pretreatment also reduced the mRNA expression of Toll-like receptor (TLR)2 and TLR4. Furthermore, LpDNA inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and the activation of nuclear factor-κB (NF-κB) induced by PgLPS. Taken together, these findings demonstrate that LpDNA attenuates PgLPS-induced inflammatory responses by regulating MAPKs and NF-κB signaling pathways through the suppression of TLR2 and TLR4 expression.
We studied the proteolysis and conducted a sensory evaluation of fermented sausages using strains derived from Kimchi [Pediococcus pentosaceus-SMFM2021-GK1 (GK1); P. pentosaceus-SMFM2021-NK3 (NK3)], Doenjang [Debaryomyces hansenii-SMFM2021-D1 (D1)], and spontaneous fermented sausage [Penicillium nalgiovense-SMFM2021-S6 (S6)]. Fermented sausages were classified as commercial starter culture (CST), mixed with GK1, D1, and S6 (GKDS), and mixed with NK3, D1, and S6 (NKDS). The protein content and pH of GKDS and NKDS were significantly higher than those of CST on days 3 and 31, respectively (p<0.05). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the NKDS had higher molecular weight proteins than the GKDS and CST. The myofibrillar protein solubility of the GKDS and NKDS was significantly higher than that of the CST on day 31 (p<0.05). The GKDS displayed significantly higher pepsin and trypsin digestion than the NKDS on day 31 (p<0.05). The hardness, chewiness, gumminess, and cohesiveness of the GKDS were not significantly different from those of the CST. The GKDS exhibited the highest values for flavor, tenderness, texture, and overall acceptability. According to this study, sausages fermented using lactic acid bacteria (GK1), yeast (D1), and mold (S6) derived from Korean fermented foods displayed high proteolysis and excellent sensory evaluation results.
The gut microbiome is critical in human health, and various dietary factors influence its composition and function. Among these factors, animal products, such as meat, dairy, and eggs, represent crucial sources of essential nutrients for the gut microbiome. However, the correlation and characteristics of livestock consumption with the gut microbiome remain poorly understood. This review aimed to delineate the distinct effects of meat, dairy, and egg products on gut microbiome composition and function. Based on the previous reports, the impact of red meat, white meat, and processed meat consumption on the gut microbiome differs from that of milk, yogurt, cheese, or egg products. In particular, we have focused on animal-originated proteins, a significant nutrient in each livestock product, and revealed that the major proteins in each food elicit diverse effects on the gut microbiome. Collectively, this review highlights the need for further insights into the interactions and mechanisms underlying the impact of animal products on the gut microbiome. A deeper understanding of these interactions would be beneficial in elucidating the development of dietary interventions to prevent and treat diseases linked to the gut microbiome.
To evaluate the effect of different cooking methods on the physicochemical quality and volatile organic compounds (VOC) of dairy beef round, twelve beef round pieces were divided into four groups: raw, boiling, microwave, and sous-vide. The sous-vide group had a higher pH than the boiling or microwave groups. The boiling group exhibited the highest shear force and CIE L*, followed by the microwave and sous-vide groups (p<0.05). The sous-vide group received higher taste and tenderness scores from panelists (p<0.05) and showed significantly higher levels of aspartic and glutamic acids than the other groups. The sous-vide and microwave groups had the highest oleic acid and polyunsaturated fatty acid levels, respectively. The sous-vide group had significantly higher hypoxanthine and inosine levels than the other groups. However, the microwave group had higher inosine monophosphate levels than the other groups. The sous-vide group had a higher alcohol content, including 1-octen-3-ol, than the other groups. Octanal and nonanal were the most abundant aldehydes in all groups. (R)-(-)-14-methyl-8-hexadecyn-1-ol, p-cresol, and 1-tridecyne were used to distinguish the VOC for each group in the multivariate analysis. Sous-vide could be effective in increasing meat tenderness as well as taste-related free amino acid (aspartic acid and glutamic acid) and fatty acid (oleic acid) levels. Furthermore, specific VOC, including 1-octen-3-ol, 2-ethylhexanal ethylene glycol acetal, and 2-octen-1-ol, (E)-, could be potential markers for distinguishing sous-vide from other cooking methods. Further studies are required to understand the mechanisms underlying the predominant association of these VOC with the sous-vide cooking method.
The objective of this study was to establish a multi-residue quantitative method for the analysis of anthelmintic and antiprotozoal drugs in various livestock products (beef, pork, and chicken) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Each compound performed validation at three different levels i.e., 0.5, 1, and 2× the maximum residue limit according to the CODEX guidelines (CAC/GL 71-2009). This study was conducted according to the modified quick, easy, cheap, effective, rugged, and safe procedure. The matrix-matched calibrations gave correlation coefficients >0.98, and the obtained recoveries were in the range of 60.2%-119.9%, with coefficients of variation ≤32.0%. Furthermore, the detection and quantification limits of the method were in the ranges of 0.03-3.2 and 0.1-9.7 μg/kg, respectively. Moreover, a survey of residual anthelmintic and antiprotozoal drugs was also carried out in 30 samples of beef, pork, and chicken collected in Korea. Toltrazuril sulfone was detected in all three samples. Thus, our results indicated that the developed method is suitable for determining the anthelmintic and antiprotozoal drug contents in livestock products.
This study investigated the effects of different charcoals on the occurrence of 16 polycyclic aromatic hydrocarbons (PAHs) in grilled beef steaks and beef patties. Seven different charcoals were used as follows: from oak wood (C1), from orange wood (C2), from Valonia oak wood (C3), from Marabu wood (C4), extruded charcoal from beech wood (C5), from coconut shells (C6), and from hazelnut shells (C7). The grilling times for each charcoal type were 6 min for the beef patties and 7 min for the beef steaks, until the internal temperature reached at least 74°C. The total concentration of 16 PAHs (PAH16) in beef steaks grilled with C1 (35.75 μg/kg) and C7 (36.39 μg/kg) was higher than that of C3 (23.80 μg/kg) and C6 (24.48 μg/kg; p<0.05). The highest amounts of PAH16 (216.40 μg/kg) were determined in the beef patty samples grilled using C5 (p<0.05). The summation of benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene, referred to as PAH4, was not detected in any of the beef steaks, whereas it was determined in the beef patties grilled with C2 (7.72 μg/kg) and C5 (22.95 μg/kg; p<0.05). The PAH16 concentrations of the beef patty samples in each charcoal group were significantly higher compared to the beef steaks (p<0.05). To avoid the formation of high PAH levels, the use of extruded charcoal and hazelnut shell charcoal should therefore be avoided when charcoal grilling beef steaks and beef patties, and low-fat meat products should be preferred.
Helicobacter pylori is a bacterium that naturally thrives in acidic environments and has the potential to induce various gastrointestinal disorders in humans. The antibiotic therapy utilized for treating H. pylori can lead to undesired side effects, such as dysbiosis in the gut microbiota. The objective of our study was to explore the potential antibacterial effects of nisin and lactic acid (LA) in yogurt against H. pylori. Additionally, we investigated the anti-inflammatory effects of nisin and LA in human gastric (AGS) cells infected with H. pylori. Nisin and LA combination showed the strongest inhibitory activity, with confirmed synergy at 0.375 fractional inhibitory concentration index. Also, post-fermented yogurt with incorporation of nisin exhibited antibacterial effect against H. pylori. The combination of nisin and LA resulted in a significant reduction of mRNA levels of bacterial toxins of H. pylori and pro-inflammatory cytokines in AGS cells infected with H. pylori. Furthermore, this also increased bacterial membrane damage, which led to DNA and protein leakage in H. pylori. Overall, the combination of nisin and LA shows promise as an alternative therapy for H. pylori infection. Additionally, the incorporation of nisin into foods containing LA presents a potential application. Further studies, including animal research, are needed to validate these findings and explore clinical applications.
In this study, concentration levels of beet powder (BP) and caramel color (CC) were optimized to simulate beef color in meat analogs before and after cooking. The central composite design of response surface methodology (RSM) was used to set the levels of BP and CC, and the CIE L*, CIE a*, and CIE b* were selected as the responses for RSM. After optimization, myoglobin-free beef patties were prepared with three optimized levels of BP and CC. When raw, all the patties had the same color as natural beef; however, CIE L*, CIE a*, and CIE b* were statistically different from those of beef after cooking (p<0.05). Moreover, the use of BP and CC induced "browning" after the cooking process, with no excessive yellow color. Therefore, based on the overall desirability in the color optimization using RSM, the combination of BP (1.32%) and CC (1.08%) with the highest overall desirability can be used to simulate the color change of beef in meat analogs.