Pub Date : 2024-10-30eCollection Date: 2024-01-01DOI: 10.3389/fninf.2024.1495571
Hadeel Alharbi, Roben A Juanatas, Abdullah Al Hejaili, Se-Jung Lim
Alzheimer's disease (AD) is a progressive neurological disorder characterized by the gradual deterioration of cognitive functions, leading to dementia and significantly impacting the quality of life for millions of people worldwide. Early and accurate diagnosis is crucial for the effective management and treatment of this debilitating condition. This study introduces a novel framework based on Spectral Graph Convolutional Neural Networks (SGCNN) for diagnosing AD and categorizing multiple diseases through the analysis of functional changes in brain structures captured via magnetic resonance imaging (MRI). To assess the effectiveness of our approach, we systematically analyze structural modifications to the SGCNN model through comprehensive ablation studies. The performance of various Convolutional Neural Networks (CNNs) is also evaluated, including SGCNN variants, Base CNN, Lean CNN, and Deep CNN. We begin with the original SGCNN model, which serves as our baseline and achieves a commendable classification accuracy of 93%. In our investigation, we perform two distinct ablation studies on the SGCNN model to examine how specific structural changes impact its performance. The results reveal that Ablation Model 1 significantly enhances accuracy, achieving an impressive 95%, while Ablation Model 2 maintains the baseline accuracy of 93%. Additionally, the Base CNN model demonstrates strong performance with a classification accuracy of 93%, whereas both the Lean CNN and Deep CNN models achieve 94% accuracy, indicating their competitive capabilities. To validate the models' effectiveness, we utilize multiple evaluation metrics, including accuracy, precision, recall, and F1-score, ensuring a thorough assessment of their performance. Our findings underscore that Ablation Model 1 (SGCNN Model 1) delivers the highest predictive accuracy among the tested models, highlighting its potential as a robust approach for Alzheimer's image classification. Ultimately, this research aims to facilitate early diagnosis and treatment of AD, contributing to improved patient outcomes and advancing the field of neurodegenerative disease diagnosis.
{"title":"Spectral graph convolutional neural network for Alzheimer's disease diagnosis and multi-disease categorization from functional brain changes in magnetic resonance images.","authors":"Hadeel Alharbi, Roben A Juanatas, Abdullah Al Hejaili, Se-Jung Lim","doi":"10.3389/fninf.2024.1495571","DOIUrl":"10.3389/fninf.2024.1495571","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurological disorder characterized by the gradual deterioration of cognitive functions, leading to dementia and significantly impacting the quality of life for millions of people worldwide. Early and accurate diagnosis is crucial for the effective management and treatment of this debilitating condition. This study introduces a novel framework based on Spectral Graph Convolutional Neural Networks (SGCNN) for diagnosing AD and categorizing multiple diseases through the analysis of functional changes in brain structures captured via magnetic resonance imaging (MRI). To assess the effectiveness of our approach, we systematically analyze structural modifications to the SGCNN model through comprehensive ablation studies. The performance of various Convolutional Neural Networks (CNNs) is also evaluated, including SGCNN variants, Base CNN, Lean CNN, and Deep CNN. We begin with the original SGCNN model, which serves as our baseline and achieves a commendable classification accuracy of 93%. In our investigation, we perform two distinct ablation studies on the SGCNN model to examine how specific structural changes impact its performance. The results reveal that Ablation Model 1 significantly enhances accuracy, achieving an impressive 95%, while Ablation Model 2 maintains the baseline accuracy of 93%. Additionally, the Base CNN model demonstrates strong performance with a classification accuracy of 93%, whereas both the Lean CNN and Deep CNN models achieve 94% accuracy, indicating their competitive capabilities. To validate the models' effectiveness, we utilize multiple evaluation metrics, including accuracy, precision, recall, and F1-score, ensuring a thorough assessment of their performance. Our findings underscore that Ablation Model 1 (SGCNN Model 1) delivers the highest predictive accuracy among the tested models, highlighting its potential as a robust approach for Alzheimer's image classification. Ultimately, this research aims to facilitate early diagnosis and treatment of AD, contributing to improved patient outcomes and advancing the field of neurodegenerative disease diagnosis.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1495571"},"PeriodicalIF":2.5,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23eCollection Date: 2024-01-01DOI: 10.3389/fninf.2024.1440304
Lintao Zhang, Dewen Song, Huiying Qiu, Lin Ye, Zengliang Xu
In recent years, intracerebral hemorrhage (ICH) has garnered significant attention as a severe cerebrovascular disorder. To enhance the accuracy of ICH detection and segmentation, this study proposed an improved fuzzy C-means (FCM) algorithm and performed a comparative analysis with both traditional FCM and advanced convolutional neural network (CNN) algorithms. Experiments conducted on the publicly available CT-ICH dataset evaluated the performance of these three algorithms in predicting ICH volume. The results demonstrated that the improved FCM algorithm offered notable improvements in computational time and resource consumption compared to the traditional FCM algorithm, while also showing enhanced accuracy. However, it still lagged behind the CNN algorithm in areas such as feature extraction, model generalization, and the ability to handle complex image structures. The study concluded with a discussion of potential directions for further optimizing the FCM algorithm, aiming to bridge the performance gap with CNN algorithms and provide a reference for future research in medical image processing.
{"title":"Fuzzy C-means clustering algorithm applied in computed tomography images of patients with intracranial hemorrhage.","authors":"Lintao Zhang, Dewen Song, Huiying Qiu, Lin Ye, Zengliang Xu","doi":"10.3389/fninf.2024.1440304","DOIUrl":"10.3389/fninf.2024.1440304","url":null,"abstract":"<p><p>In recent years, intracerebral hemorrhage (ICH) has garnered significant attention as a severe cerebrovascular disorder. To enhance the accuracy of ICH detection and segmentation, this study proposed an improved fuzzy C-means (FCM) algorithm and performed a comparative analysis with both traditional FCM and advanced convolutional neural network (CNN) algorithms. Experiments conducted on the publicly available CT-ICH dataset evaluated the performance of these three algorithms in predicting ICH volume. The results demonstrated that the improved FCM algorithm offered notable improvements in computational time and resource consumption compared to the traditional FCM algorithm, while also showing enhanced accuracy. However, it still lagged behind the CNN algorithm in areas such as feature extraction, model generalization, and the ability to handle complex image structures. The study concluded with a discussion of potential directions for further optimizing the FCM algorithm, aiming to bridge the performance gap with CNN algorithms and provide a reference for future research in medical image processing.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1440304"},"PeriodicalIF":2.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16eCollection Date: 2024-01-01DOI: 10.3389/fninf.2024.1378281
Alba Gómez-Valadés, Rafael Martínez-Tomás, Sara García-Herranz, Atle Bjørnerud, Mariano Rincón
Machine learning (ML) methodologies for detecting Mild Cognitive Impairment (MCI) are progressively gaining prevalence to manage the vast volume of processed information. Nevertheless, the black-box nature of ML algorithms and the heterogeneity within the data may result in varied interpretations across distinct studies. To avoid this, in this proposal, we present the design of a decision support system that integrates a machine learning model represented using the Semantic Web Rule Language (SWRL) in an ontology with specialized knowledge in neuropsychological tests, the NIO ontology. The system's ability to detect MCI subjects was evaluated on a database of 520 neuropsychological assessments conducted in Spanish and compared with other well-established ML methods. Using the F2 coefficient to minimize false negatives, results indicate that the system performs similarly to other well-established ML methods (F2TE2 = 0.830, only below bagging, F2BAG = 0.832) while exhibiting other significant attributes such as explanation capability and data standardization to a common framework thanks to the ontological part. On the other hand, the system's versatility and ease of use were demonstrated with three additional use cases: evaluation of new cases even if the acquisition stage is incomplete (the case records have missing values), incorporation of a new database into the integrated system, and use of the ontology capabilities to relate different domains. This makes it a useful tool to support physicians and neuropsychologists in population-based screenings for early detection of MCI.
用于检测轻度认知障碍(MCI)的机器学习(ML)方法正在逐渐普及,以管理大量处理过的信息。然而,ML 算法的黑箱性质和数据的异质性可能会导致不同研究的解释各不相同。为了避免这种情况,在本提案中,我们提出了一个决策支持系统的设计方案,该系统将使用语义网络规则语言(SWRL)表示的机器学习模型集成到一个具有神经心理测试专业知识的本体(NIO 本体)中。该系统检测 MCI 受试者的能力在一个包含 520 项西班牙语神经心理学评估的数据库中进行了评估,并与其他成熟的 ML 方法进行了比较。使用 F2 系数来最小化假阴性,结果表明该系统的性能与其他成熟的 ML 方法类似(F2TE2 = 0.830,仅低于袋式方法,F2BAG = 0.832),同时还表现出其他重要属性,如解释能力和数据标准化,由于本体论部分的存在,该系统可实现通用框架。另一方面,该系统的多功能性和易用性也通过三个附加用例得到了体现:即使采集阶段不完整(病例记录有缺失值),也能对新病例进行评估;将新数据库纳入集成系统;利用本体功能将不同领域联系起来。这使得该系统成为支持医生和神经心理学家进行基于人群的筛查以早期发现 MCI 的有用工具。
{"title":"Early detection of mild cognitive impairment through neuropsychological tests in population screenings: a decision support system integrating ontologies and machine learning.","authors":"Alba Gómez-Valadés, Rafael Martínez-Tomás, Sara García-Herranz, Atle Bjørnerud, Mariano Rincón","doi":"10.3389/fninf.2024.1378281","DOIUrl":"10.3389/fninf.2024.1378281","url":null,"abstract":"<p><p>Machine learning (ML) methodologies for detecting Mild Cognitive Impairment (MCI) are progressively gaining prevalence to manage the vast volume of processed information. Nevertheless, the black-box nature of ML algorithms and the heterogeneity within the data may result in varied interpretations across distinct studies. To avoid this, in this proposal, we present the design of a decision support system that integrates a machine learning model represented using the Semantic Web Rule Language (SWRL) in an ontology with specialized knowledge in neuropsychological tests, the NIO ontology. The system's ability to detect MCI subjects was evaluated on a database of 520 neuropsychological assessments conducted in Spanish and compared with other well-established ML methods. Using the <i>F2</i> coefficient to minimize false negatives, results indicate that the system performs similarly to other well-established ML methods (<i>F2<sub>TE2</sub></i> = 0.830, only below bagging, <i>F2<sub>BAG</sub></i> = 0.832) while exhibiting other significant attributes such as explanation capability and data standardization to a common framework thanks to the ontological part. On the other hand, the system's versatility and ease of use were demonstrated with three additional use cases: evaluation of new cases even if the acquisition stage is incomplete (the case records have missing values), incorporation of a new database into the integrated system, and use of the ontology capabilities to relate different domains. This makes it a useful tool to support physicians and neuropsychologists in population-based screenings for early detection of MCI.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1378281"},"PeriodicalIF":2.5,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08eCollection Date: 2024-01-01DOI: 10.3389/fninf.2024.1454244
Bing Zhang, Xishun Zhu, Fadia Ali Khan, Sajjad Shaukat Jamal, Alanoud Al Mazroa, Rab Nawaz
In order to improve the energy efficiency of wearable devices, it is necessary to compress and reconstruct the collected electrocardiogram data. The compressed data may be mixed with noise during the transmission process. The denoising-based approximate message passing (AMP) algorithm performs well in reconstructing noisy signals, so the denoising-based AMP algorithm is introduced into electrocardiogram signal reconstruction. The weighted nuclear norm minimization algorithm (WNNM) uses the low-rank characteristics of similar signal blocks for denoising, and averages the signal blocks after low-rank decomposition to obtain the final denoised signal. However, under the influence of noise, there may be errors in searching for similar blocks, resulting in dissimilar signal blocks being grouped together, affecting the denoising effect. Based on this, this paper improves the WNNM algorithm and proposes to use weighted averaging instead of direct averaging for the signal blocks after low-rank decomposition in the denoising process, and validating its effectiveness on electrocardiogram signals. Experimental results demonstrate that the IWNNM-AMP algorithm achieves the best reconstruction performance under different compression ratios and noise conditions, obtaining the lowest PRD and RMSE values. Compared with the WNNM-AMP algorithm, the PRD value is reduced by 0.17∼4.56, the P-SNR value is improved by 0.12∼2.70.
{"title":"Research on ECG signal reconstruction based on improved weighted nuclear norm minimization and approximate message passing algorithm.","authors":"Bing Zhang, Xishun Zhu, Fadia Ali Khan, Sajjad Shaukat Jamal, Alanoud Al Mazroa, Rab Nawaz","doi":"10.3389/fninf.2024.1454244","DOIUrl":"https://doi.org/10.3389/fninf.2024.1454244","url":null,"abstract":"<p><p>In order to improve the energy efficiency of wearable devices, it is necessary to compress and reconstruct the collected electrocardiogram data. The compressed data may be mixed with noise during the transmission process. The denoising-based approximate message passing (AMP) algorithm performs well in reconstructing noisy signals, so the denoising-based AMP algorithm is introduced into electrocardiogram signal reconstruction. The weighted nuclear norm minimization algorithm (WNNM) uses the low-rank characteristics of similar signal blocks for denoising, and averages the signal blocks after low-rank decomposition to obtain the final denoised signal. However, under the influence of noise, there may be errors in searching for similar blocks, resulting in dissimilar signal blocks being grouped together, affecting the denoising effect. Based on this, this paper improves the WNNM algorithm and proposes to use weighted averaging instead of direct averaging for the signal blocks after low-rank decomposition in the denoising process, and validating its effectiveness on electrocardiogram signals. Experimental results demonstrate that the IWNNM-AMP algorithm achieves the best reconstruction performance under different compression ratios and noise conditions, obtaining the lowest PRD and RMSE values. Compared with the WNNM-AMP algorithm, the PRD value is reduced by 0.17∼4.56, the P-SNR value is improved by 0.12∼2.70.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1454244"},"PeriodicalIF":2.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142498155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03eCollection Date: 2024-01-01DOI: 10.3389/fninf.2024.1435091
Mindi Ruan, Na Zhang, Xiangxu Yu, Wenqi Li, Chuanbo Hu, Paula J Webster, Lynn K Paul, Shuo Wang, Xin Li
Introduction: Early and accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective intervention, yet it remains a significant challenge due to its complexity and variability. Micro-expressions are rapid, involuntary facial movements indicative of underlying emotional states. It is unknown whether micro-expression can serve as a valid bio-marker for ASD diagnosis.
Methods: This study introduces a novel machine-learning (ML) framework that advances ASD diagnostics by focusing on facial micro-expressions. We applied cutting-edge algorithms to detect and analyze these micro-expressions from video data, aiming to identify distinctive patterns that could differentiate individuals with ASD from typically developing peers. Our computational approach included three key components: (1) micro-expression spotting using Shallow Optical Flow Three-stream CNN (SOFTNet), (2) feature extraction via Micron-BERT, and (3) classification with majority voting of three competing models (MLP, SVM, and ResNet).
Results: Despite the sophisticated methodology, the ML framework's ability to reliably identify ASD-specific patterns was limited by the quality of video data. This limitation raised concerns about the efficacy of using micro-expressions for ASD diagnostics and pointed to the necessity for enhanced video data quality.
Discussion: Our research has provided a cautious evaluation of micro-expression diagnostic value, underscoring the need for advancements in behavioral imaging and multimodal AI technology to leverage the full capabilities of ML in an ASD-specific clinical context.
{"title":"Can micro-expressions be used as a biomarker for autism spectrum disorder?","authors":"Mindi Ruan, Na Zhang, Xiangxu Yu, Wenqi Li, Chuanbo Hu, Paula J Webster, Lynn K Paul, Shuo Wang, Xin Li","doi":"10.3389/fninf.2024.1435091","DOIUrl":"10.3389/fninf.2024.1435091","url":null,"abstract":"<p><strong>Introduction: </strong>Early and accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective intervention, yet it remains a significant challenge due to its complexity and variability. Micro-expressions are rapid, involuntary facial movements indicative of underlying emotional states. It is unknown whether micro-expression can serve as a valid bio-marker for ASD diagnosis.</p><p><strong>Methods: </strong>This study introduces a novel machine-learning (ML) framework that advances ASD diagnostics by focusing on facial micro-expressions. We applied cutting-edge algorithms to detect and analyze these micro-expressions from video data, aiming to identify distinctive patterns that could differentiate individuals with ASD from typically developing peers. Our computational approach included three key components: (1) micro-expression spotting using Shallow Optical Flow Three-stream CNN (SOFTNet), (2) feature extraction via Micron-BERT, and (3) classification with majority voting of three competing models (MLP, SVM, and ResNet).</p><p><strong>Results: </strong>Despite the sophisticated methodology, the ML framework's ability to reliably identify ASD-specific patterns was limited by the quality of video data. This limitation raised concerns about the efficacy of using micro-expressions for ASD diagnostics and pointed to the necessity for enhanced video data quality.</p><p><strong>Discussion: </strong>Our research has provided a cautious evaluation of micro-expression diagnostic value, underscoring the need for advancements in behavioral imaging and multimodal AI technology to leverage the full capabilities of ML in an ASD-specific clinical context.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1435091"},"PeriodicalIF":2.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483886/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30eCollection Date: 2024-01-01DOI: 10.3389/fninf.2024.1420315
Maryam Naseri, Sreekrishna Ramakrishnapillai, Owen T Carmichael
While a great deal of recent effort has focused on addressing a perceived reproducibility crisis within brain structural magnetic resonance imaging (MRI) and functional MRI research communities, this article argues that brain positron emission tomography (PET) research stands on even more fragile ground, lagging behind efforts to address MRI reproducibility. We begin by examining the current landscape of factors that contribute to reproducible neuroimaging data analysis, including scientific standards, analytic plan pre-registration, data and code sharing, containerized workflows, and standardized processing pipelines. We then focus on disparities in the current status of these factors between brain MRI and brain PET. To demonstrate the positive impact that further developing such reproducibility factors would have on brain PET research, we present a case study that illustrates the many challenges faced by one laboratory that attempted to reproduce a community-standard brain PET processing pipeline. We identified key areas in which the brain PET community could enhance reproducibility, including stricter reporting policies among PET dedicated journals, data repositories, containerized analysis tools, and standardized processing pipelines. Other solutions such as mandatory pre-registration, data sharing, code availability as a condition of grant funding, and online forums and standardized reporting templates, are also discussed. Bolstering these reproducibility factors within the brain PET research community has the potential to unlock the full potential of brain PET research, propelling it toward a higher-impact future.
最近,脑结构磁共振成像(MRI)和功能磁共振成像(MRI)研究界将大量精力集中在解决可重复性危机上,而本文认为脑正电子发射断层扫描(PET)研究的基础更加脆弱,落后于解决 MRI 可重复性问题的努力。我们首先考察了当前有助于神经成像数据分析可重复性的各种因素,包括科学标准、分析计划预注册、数据和代码共享、容器化工作流程和标准化处理管道。然后,我们将重点关注这些因素在脑 MRI 和脑 PET 之间的现状差异。为了证明进一步开发这些可重复性因素将对脑 PET 研究产生的积极影响,我们介绍了一个案例研究,该案例说明了一家实验室在试图复制社区标准脑 PET 处理管道时所面临的诸多挑战。我们确定了脑 PET 社区可以提高可重复性的关键领域,包括 PET 专用期刊之间更严格的报告政策、数据存储库、容器化分析工具和标准化处理管道。此外,还讨论了其他解决方案,如强制预注册、数据共享、将代码可用性作为资助条件、在线论坛和标准化报告模板等。在脑 PET 研究界加强这些可重复性因素有可能释放脑 PET 研究的全部潜力,推动其走向更有影响力的未来。
{"title":"Reproducible brain PET data analysis: easier said than done.","authors":"Maryam Naseri, Sreekrishna Ramakrishnapillai, Owen T Carmichael","doi":"10.3389/fninf.2024.1420315","DOIUrl":"https://doi.org/10.3389/fninf.2024.1420315","url":null,"abstract":"<p><p>While a great deal of recent effort has focused on addressing a perceived reproducibility crisis within brain structural magnetic resonance imaging (MRI) and functional MRI research communities, this article argues that brain positron emission tomography (PET) research stands on even more fragile ground, lagging behind efforts to address MRI reproducibility. We begin by examining the current landscape of factors that contribute to reproducible neuroimaging data analysis, including scientific standards, analytic plan pre-registration, data and code sharing, containerized workflows, and standardized processing pipelines. We then focus on disparities in the current status of these factors between brain MRI and brain PET. To demonstrate the positive impact that further developing such reproducibility factors would have on brain PET research, we present a case study that illustrates the many challenges faced by one laboratory that attempted to reproduce a community-standard brain PET processing pipeline. We identified key areas in which the brain PET community could enhance reproducibility, including stricter reporting policies among PET dedicated journals, data repositories, containerized analysis tools, and standardized processing pipelines. Other solutions such as mandatory pre-registration, data sharing, code availability as a condition of grant funding, and online forums and standardized reporting templates, are also discussed. Bolstering these reproducibility factors within the brain PET research community has the potential to unlock the full potential of brain PET research, propelling it toward a higher-impact future.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1420315"},"PeriodicalIF":2.5,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472777/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142462116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurons are interactive cells that connect via ions to develop electromagnetic fields in the brain. This structure functions directly in the brain. Connectome is the data obtained from neuronal connections. Since neural circuits change in the brain in various diseases, studying connectome sheds light on the clinical changes in special diseases. The ability to explore this data and its relation to the disorders leads us to find new therapeutic methods. Artificial intelligence (AI) is a collection of powerful algorithms used for finding the relationship between input data and the outcome. AI is used for extraction of valuable features from connectome data and in turn uses them for development of prognostic and diagnostic models in neurological diseases. Studying the changes of brain circuits in neurodegenerative diseases and behavioral disorders makes it possible to provide early diagnosis and development of efficient treatment strategies. Considering the difficulties in studying brain diseases, the use of connectome data is one of the beneficial methods for improvement of knowledge of this organ. In the present study, we provide a systematic review on the studies published using connectome data and AI for studying various diseases and we focus on the strength and weaknesses of studies aiming to provide a viewpoint for the future studies. Throughout, AI is very useful for development of diagnostic and prognostic tools using neuroimaging data, while bias in data collection and decay in addition to using small datasets restricts applications of AI-based tools using connectome data which should be covered in the future studies.
{"title":"Artificial intelligence role in advancement of human brain connectome studies.","authors":"Dorsa Shekouh, Helia Sadat Kaboli, Mohammadreza Ghaffarzadeh-Esfahani, Mohammadmahdi Khayamdar, Zeinab Hamedani, Saeed Oraee-Yazdani, Alireza Zali, Elnaz Amanzadeh","doi":"10.3389/fninf.2024.1399931","DOIUrl":"10.3389/fninf.2024.1399931","url":null,"abstract":"<p><p>Neurons are interactive cells that connect via ions to develop electromagnetic fields in the brain. This structure functions directly in the brain. Connectome is the data obtained from neuronal connections. Since neural circuits change in the brain in various diseases, studying connectome sheds light on the clinical changes in special diseases. The ability to explore this data and its relation to the disorders leads us to find new therapeutic methods. Artificial intelligence (AI) is a collection of powerful algorithms used for finding the relationship between input data and the outcome. AI is used for extraction of valuable features from connectome data and in turn uses them for development of prognostic and diagnostic models in neurological diseases. Studying the changes of brain circuits in neurodegenerative diseases and behavioral disorders makes it possible to provide early diagnosis and development of efficient treatment strategies. Considering the difficulties in studying brain diseases, the use of connectome data is one of the beneficial methods for improvement of knowledge of this organ. In the present study, we provide a systematic review on the studies published using connectome data and AI for studying various diseases and we focus on the strength and weaknesses of studies aiming to provide a viewpoint for the future studies. Throughout, AI is very useful for development of diagnostic and prognostic tools using neuroimaging data, while bias in data collection and decay in addition to using small datasets restricts applications of AI-based tools using connectome data which should be covered in the future studies.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1399931"},"PeriodicalIF":2.5,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450642/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18DOI: 10.3389/fninf.2024.1409322
Rossella Capotorto, Vincenzo Ronca, Nicolina Sciaraffa, Gianluca Borghini, Gianluca Di Flumeri, Lorenzo Mezzadri, Alessia Vozzi, Andrea Giorgi, Daniele Germano, Fabio Babiloni, Pietro Aricò
IntroductionIn operational environments, human interaction and cooperation between individuals are critical to efficiency and safety. These states are influenced by individuals' cognitive and emotional states. Human factor research aims to objectively quantify these states to prevent human error and maintain constant performances, particularly in high-risk settings such as aviation, where human error and performance account for a significant portion of accidents.MethodsThus, this study aimed to evaluate and validate two novel methods for assessing the degree of cooperation among professional pilots engaged in real-flight simulation tasks. In addition, the study aimed to assess the ability of the proposed metrics to differentiate between the expertise levels of operating crews based on their levels of cooperation. Eight crews were involved in the experiments, consisting of four crews of Unexperienced pilots and four crews of Experienced pilots. An expert trainer, simulating air traffic management communication on one side and acting as a subject matter expert on the other, provided external evaluations of the pilots' mental states during the simulation. The two novel approaches introduced in this study were formulated based on circular correlation and mutual information techniques.Results and discussionThe findings demonstrated the possibility of quantifying cooperation levels among pilots during realistic flight simulations. In addition, cooperation time is found to be significantly higher (p < 0.05) among Experienced pilots compared to Unexperienced ones. Furthermore, these preliminary results exhibited significant correlations (p < 0.05) with subjective and behavioral measures collected every 30 s during the task, confirming their reliability.
{"title":"Cooperation objective evaluation in aviation: validation and comparison of two novel approaches in simulated environment","authors":"Rossella Capotorto, Vincenzo Ronca, Nicolina Sciaraffa, Gianluca Borghini, Gianluca Di Flumeri, Lorenzo Mezzadri, Alessia Vozzi, Andrea Giorgi, Daniele Germano, Fabio Babiloni, Pietro Aricò","doi":"10.3389/fninf.2024.1409322","DOIUrl":"https://doi.org/10.3389/fninf.2024.1409322","url":null,"abstract":"IntroductionIn operational environments, human interaction and cooperation between individuals are critical to efficiency and safety. These states are influenced by individuals' cognitive and emotional states. Human factor research aims to objectively quantify these states to prevent human error and maintain constant performances, particularly in high-risk settings such as aviation, where human error and performance account for a significant portion of accidents.MethodsThus, this study aimed to evaluate and validate two novel methods for assessing the degree of cooperation among professional pilots engaged in real-flight simulation tasks. In addition, the study aimed to assess the ability of the proposed metrics to differentiate between the expertise levels of operating crews based on their levels of cooperation. Eight crews were involved in the experiments, consisting of four crews of Unexperienced pilots and four crews of Experienced pilots. An expert trainer, simulating air traffic management communication on one side and acting as a subject matter expert on the other, provided external evaluations of the pilots' mental states during the simulation. The two novel approaches introduced in this study were formulated based on circular correlation and mutual information techniques.Results and discussionThe findings demonstrated the possibility of quantifying cooperation levels among pilots during realistic flight simulations. In addition, cooperation time is found to be significantly higher (<jats:italic>p</jats:italic> &lt; 0.05) among Experienced pilots compared to Unexperienced ones. Furthermore, these preliminary results exhibited significant correlations (<jats:italic>p</jats:italic> &lt; 0.05) with subjective and behavioral measures collected every 30 s during the task, confirming their reliability.","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142249550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-16eCollection Date: 2024-01-01DOI: 10.3389/fninf.2024.1443865
Alejandra P Pérez-González, Aidee Lashmi García-Kroepfly, Keila Adonai Pérez-Fuentes, Roberto Isaac García-Reyes, Fryda Fernanda Solis-Roldan, Jennifer Alejandra Alba-González, Enrique Hernández-Lemus, Guillermo de Anda-Jáuregui
The Religious Order Study and Memory and Aging Project (ROSMAP) is an initiative that integrates two longitudinal cohort studies, which have been collecting clinicopathological and molecular data since the early 1990s. This extensive dataset includes a wide array of omic data, revealing the complex interactions between molecular levels in neurodegenerative diseases (ND) and aging. Neurodegenerative diseases (ND) are frequently associated with morbidity and cognitive decline in older adults. Omics research, in conjunction with clinical variables, is crucial for advancing our understanding of the diagnosis and treatment of neurodegenerative diseases. This summary reviews the extensive omics research-encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and multiomics-conducted through the ROSMAP study. It highlights the significant advancements in understanding the mechanisms underlying neurodegenerative diseases, with a particular focus on Alzheimer's disease.
{"title":"The ROSMAP project: aging and neurodegenerative diseases through omic sciences.","authors":"Alejandra P Pérez-González, Aidee Lashmi García-Kroepfly, Keila Adonai Pérez-Fuentes, Roberto Isaac García-Reyes, Fryda Fernanda Solis-Roldan, Jennifer Alejandra Alba-González, Enrique Hernández-Lemus, Guillermo de Anda-Jáuregui","doi":"10.3389/fninf.2024.1443865","DOIUrl":"10.3389/fninf.2024.1443865","url":null,"abstract":"<p><p>The Religious Order Study and Memory and Aging Project (ROSMAP) is an initiative that integrates two longitudinal cohort studies, which have been collecting clinicopathological and molecular data since the early 1990s. This extensive dataset includes a wide array of omic data, revealing the complex interactions between molecular levels in neurodegenerative diseases (ND) and aging. Neurodegenerative diseases (ND) are frequently associated with morbidity and cognitive decline in older adults. Omics research, in conjunction with clinical variables, is crucial for advancing our understanding of the diagnosis and treatment of neurodegenerative diseases. This summary reviews the extensive omics research-encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and multiomics-conducted through the ROSMAP study. It highlights the significant advancements in understanding the mechanisms underlying neurodegenerative diseases, with a particular focus on Alzheimer's disease.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1443865"},"PeriodicalIF":2.5,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142344653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}