{"title":"Long-acting lenacapavir is a breakthrough for preventing HIV infection, but HIV vaccine research must continue.","authors":"Caijun Sun, Linghua Li, Pingchao Li, Weiping Cai, Xiaoping Tang, Yiming Shao, Ling Chen","doi":"10.1007/s11684-025-1137-3","DOIUrl":"https://doi.org/10.1007/s11684-025-1137-3","url":null,"abstract":"","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":"19 3","pages":"543-547"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144266037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-11DOI: 10.1007/s11684-024-1119-x
Jian Zhang, Ying Ju Li, Bo Peng, Xuna Yang, Miao Chen, Yongxing Li, Hengbin Gao, Haitao Li, Ji Zheng
The transcription factor HOXB13 plays crucial roles in cancer development. HOXB13 is abnormally expressed in most cancers, which makes it a valuable therapeutic target for cancer therapy. The level of HOXB13 differs significantly between healthy and cancer tissues, which indicates that the level of HOXB13 is closely related to carcinogenesis. The regulatory network mediated by HOXB13 in cancer proliferation, metastasis, and invasion has been systematically investigated. Moreover, HOXB13 variants play distinct roles in different cancers and populations. By understanding the molecular mechanisms and mutation features of HOXB13, we provide a comprehensive overview of carcinogenesis networks dependent on HOXB13. Finally, we discuss advancements in anticancer therapy targeting HOXB13 and the roles of HOXB13 in drug resistance to molecular-targeted therapies, which serves as a foundation for developing HOXB13-targeted drugs for clinical diagnosis and cancer therapies.
{"title":"HOXB13 in cancer development: molecular mechanisms and clinical implications.","authors":"Jian Zhang, Ying Ju Li, Bo Peng, Xuna Yang, Miao Chen, Yongxing Li, Hengbin Gao, Haitao Li, Ji Zheng","doi":"10.1007/s11684-024-1119-x","DOIUrl":"10.1007/s11684-024-1119-x","url":null,"abstract":"<p><p>The transcription factor HOXB13 plays crucial roles in cancer development. HOXB13 is abnormally expressed in most cancers, which makes it a valuable therapeutic target for cancer therapy. The level of HOXB13 differs significantly between healthy and cancer tissues, which indicates that the level of HOXB13 is closely related to carcinogenesis. The regulatory network mediated by HOXB13 in cancer proliferation, metastasis, and invasion has been systematically investigated. Moreover, HOXB13 variants play distinct roles in different cancers and populations. By understanding the molecular mechanisms and mutation features of HOXB13, we provide a comprehensive overview of carcinogenesis networks dependent on HOXB13. Finally, we discuss advancements in anticancer therapy targeting HOXB13 and the roles of HOXB13 in drug resistance to molecular-targeted therapies, which serves as a foundation for developing HOXB13-targeted drugs for clinical diagnosis and cancer therapies.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"439-455"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143604604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-05-03DOI: 10.1007/s11684-025-1133-7
Chen Chen, Lin Wang
In recent years, aging and cellular senescence have triggered an increased interest in corresponding research fields. Evidence shows that the complex aging process is involved in the development of many chronic liver diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In fact, aging has a tremendous effect on the liver, leading to a gradual decline in the metabolism, detoxification and immune functions of the liver, which in turn increases the risk of liver disease. These changes can be based on the aging of liver cells (hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells). Similarly, patients with liver diseases exhibit increases in the aging phenotype and aging cells, often manifesting as faster physical functional decline, which is closely related to the promoting effect of liver disease on aging. This review summarizes the interplay between MASLD/MASH development and aging, aiming to reveal the complex relationships that exacerbate one another. Moreover, the corresponding schemes for delaying aging or treating diseases are discussed to provide a basis for the development of effective prevention and treatment strategies in the future.
{"title":"Aging and metabolic dysfunction-associated steatotic liver disease: a bidirectional relationship.","authors":"Chen Chen, Lin Wang","doi":"10.1007/s11684-025-1133-7","DOIUrl":"10.1007/s11684-025-1133-7","url":null,"abstract":"<p><p>In recent years, aging and cellular senescence have triggered an increased interest in corresponding research fields. Evidence shows that the complex aging process is involved in the development of many chronic liver diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH). In fact, aging has a tremendous effect on the liver, leading to a gradual decline in the metabolism, detoxification and immune functions of the liver, which in turn increases the risk of liver disease. These changes can be based on the aging of liver cells (hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells, and Kupffer cells). Similarly, patients with liver diseases exhibit increases in the aging phenotype and aging cells, often manifesting as faster physical functional decline, which is closely related to the promoting effect of liver disease on aging. This review summarizes the interplay between MASLD/MASH development and aging, aiming to reveal the complex relationships that exacerbate one another. Moreover, the corresponding schemes for delaying aging or treating diseases are discussed to provide a basis for the development of effective prevention and treatment strategies in the future.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"427-438"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144005638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-05-03DOI: 10.1007/s11684-025-1132-8
Chunying Liu, Chengfei Peng, Xiaodong Jia, Chenghui Yan, Dan Liu, Xiaolin Zhang, Haixu Song, Yaling Han
Ankylosing spondylitis (AS) is linked to an increased prevalence of myocardial infarction (MI). However, research dedicated to elucidating the pathogenesis of AS-MI is lacking. In this study, we explored the biomarkers for enhancing the diagnostic and therapeutic efficiency of AS-MI. Datasets were obtained from the Gene Expression Omnibus database. We employed weighted gene co-expression network analysis and machine learning models to screen hub genes. A receiver operating characteristic curve and a nomogram were designed to assess diagnostic accuracy. Gene set enrichment analysis was conducted to reveal the potential function of hub genes. Immune infiltration analysis indicated the correlation between hub genes and the immune landscape. Subsequently, we performed single-cell analysis to identify the expression and subcellular localization of hub genes. We further constructed a transcription factor (TF)-microRNA (miRNA) regulatory network. Finally, drug prediction and molecular docking were performed. S100A12 and MCEMP1 were identified as hub genes, which were correlated with immune-related biological processes. They exhibited high diagnostic value and were predominantly expressed in myeloid cells. Furthermore, 24 TFs and 9 miRNA were associated with these hub genes. Enzastaurin, meglitinide, and nifedipine were predicted as potential therapeutic agents. Our study indicates that S100A12 and MCEMP1 exhibit significant potential as biomarkers and therapeutic targets for AS-MI, offering novel insights into the underlying etiology of this condition.
{"title":"Determining the biomarkers and pathogenesis of myocardial infarction combined with ankylosing spondylitis via a systems biology approach.","authors":"Chunying Liu, Chengfei Peng, Xiaodong Jia, Chenghui Yan, Dan Liu, Xiaolin Zhang, Haixu Song, Yaling Han","doi":"10.1007/s11684-025-1132-8","DOIUrl":"10.1007/s11684-025-1132-8","url":null,"abstract":"<p><p>Ankylosing spondylitis (AS) is linked to an increased prevalence of myocardial infarction (MI). However, research dedicated to elucidating the pathogenesis of AS-MI is lacking. In this study, we explored the biomarkers for enhancing the diagnostic and therapeutic efficiency of AS-MI. Datasets were obtained from the Gene Expression Omnibus database. We employed weighted gene co-expression network analysis and machine learning models to screen hub genes. A receiver operating characteristic curve and a nomogram were designed to assess diagnostic accuracy. Gene set enrichment analysis was conducted to reveal the potential function of hub genes. Immune infiltration analysis indicated the correlation between hub genes and the immune landscape. Subsequently, we performed single-cell analysis to identify the expression and subcellular localization of hub genes. We further constructed a transcription factor (TF)-microRNA (miRNA) regulatory network. Finally, drug prediction and molecular docking were performed. S100A12 and MCEMP1 were identified as hub genes, which were correlated with immune-related biological processes. They exhibited high diagnostic value and were predominantly expressed in myeloid cells. Furthermore, 24 TFs and 9 miRNA were associated with these hub genes. Enzastaurin, meglitinide, and nifedipine were predicted as potential therapeutic agents. Our study indicates that S100A12 and MCEMP1 exhibit significant potential as biomarkers and therapeutic targets for AS-MI, offering novel insights into the underlying etiology of this condition.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"507-522"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-22DOI: 10.1007/s11684-025-1126-6
Jingwei Ma, Liang Tang, Jingxuan Xiao, Ke Tang, Huafeng Zhang, Bo Huang
Lactic acid (LA) accumulation in tumor microenvironments (TME) has been implicated in immune suppression and tumor progress. Diverse roles of LA have been elucidated, including microenvironmental pH regulation, signal transduction, post-translational modification, and metabolic remodeling. This review summarizes LA functions within TME, focusing on the effects on tumor cells, immune cells, and stromal cells. Reducing LA levels is a potential strategy to attack cancer, which inevitably affects the physiological functions of normal tissues. Alternatively, transporting LA into the mitochondria as an energy source for immune cells is intriguing. We underscore the significance of LA in both tumor biology and immunology, proposing the burning of LA as a potential therapeutic approach to enhance antitumor immune responses.
{"title":"Burning lactic acid: a road to revitalizing antitumor immunity.","authors":"Jingwei Ma, Liang Tang, Jingxuan Xiao, Ke Tang, Huafeng Zhang, Bo Huang","doi":"10.1007/s11684-025-1126-6","DOIUrl":"10.1007/s11684-025-1126-6","url":null,"abstract":"<p><p>Lactic acid (LA) accumulation in tumor microenvironments (TME) has been implicated in immune suppression and tumor progress. Diverse roles of LA have been elucidated, including microenvironmental pH regulation, signal transduction, post-translational modification, and metabolic remodeling. This review summarizes LA functions within TME, focusing on the effects on tumor cells, immune cells, and stromal cells. Reducing LA levels is a potential strategy to attack cancer, which inevitably affects the physiological functions of normal tissues. Alternatively, transporting LA into the mitochondria as an energy source for immune cells is intriguing. We underscore the significance of LA in both tumor biology and immunology, proposing the burning of LA as a potential therapeutic approach to enhance antitumor immune responses.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"456-473"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143676872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-04-21DOI: 10.1007/s11684-025-1135-5
Ming Zheng
{"title":"An expanded view of disease continuum centered on rheumatoid arthritis: from single to systemic perspectives.","authors":"Ming Zheng","doi":"10.1007/s11684-025-1135-5","DOIUrl":"10.1007/s11684-025-1135-5","url":null,"abstract":"","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"538-542"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143983193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neutralizing antibodies have been designed to specifically target and bind to the receptor binding domain (RBD) of spike (S) protein to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus from attaching to angiotensin converting enzyme 2 (ACE2). This study reports a distinctive nanobody, designated as VHH21, that directly catalyzes the S-trimer into an irreversible transition state through postfusion conformational changes. Derived from camels immunized with multiple antigens, a set of nanobodies with high affinity for the S1 protein displays abilities to neutralize pseudovirion infections with a broad resistance to variants of concern of SARS-CoV-2, including SARS-CoV and BatRaTG13. Importantly, a super-resolution screening and analysis platform based on visual fluorescence probes was designed and applied to monitor single proteins and protein subunits. A spontaneously occurring dimeric form of VHH21 was obtained to rapidly destroy the S-trimer. Structural analysis via cryogenic electron microscopy revealed that VHH21 targets specific conserved epitopes on the S protein, distinct from the ACE2 binding site on the RBD, which destabilizes the fusion process. This research highlights the potential of VHH21 as an abzyme-like nanobody (nanoabzyme) possessing broad-spectrum binding capabilities and highly effective anti-viral properties and offers a promising strategy for combating coronavirus outbreaks.
{"title":"Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2.","authors":"Kai Wang, Duanfang Cao, Lanlan Liu, Xiaoyi Fan, Yihuan Lin, Wenting He, Yunze Zhai, Pingyong Xu, Xiyun Yan, Haikun Wang, Xinzheng Zhang, Pengyuan Yang","doi":"10.1007/s11684-025-1128-4","DOIUrl":"10.1007/s11684-025-1128-4","url":null,"abstract":"<p><p>Neutralizing antibodies have been designed to specifically target and bind to the receptor binding domain (RBD) of spike (S) protein to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus from attaching to angiotensin converting enzyme 2 (ACE2). This study reports a distinctive nanobody, designated as VHH21, that directly catalyzes the S-trimer into an irreversible transition state through postfusion conformational changes. Derived from camels immunized with multiple antigens, a set of nanobodies with high affinity for the S1 protein displays abilities to neutralize pseudovirion infections with a broad resistance to variants of concern of SARS-CoV-2, including SARS-CoV and BatRaTG13. Importantly, a super-resolution screening and analysis platform based on visual fluorescence probes was designed and applied to monitor single proteins and protein subunits. A spontaneously occurring dimeric form of VHH21 was obtained to rapidly destroy the S-trimer. Structural analysis via cryogenic electron microscopy revealed that VHH21 targets specific conserved epitopes on the S protein, distinct from the ACE2 binding site on the RBD, which destabilizes the fusion process. This research highlights the potential of VHH21 as an abzyme-like nanobody (nanoabzyme) possessing broad-spectrum binding capabilities and highly effective anti-viral properties and offers a promising strategy for combating coronavirus outbreaks.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"493-506"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144012058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-06-01Epub Date: 2025-03-21DOI: 10.1007/s11684-025-1130-x
Yuwei Huang, Haopeng Wang
Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable efficacy in treating hematological malignancies and is expanding into other indications such as autoimmune diseases, fibrosis, aging and viral infection. However, clinical challenges persist in treating solid tumors, including physical barriers, tumor heterogeneity, poor in vivo persistence, and T-cell exhaustion, all of which hinder therapeutic efficacy. This review focuses on the critical role of tonic signaling in CAR-T therapy. Tonic signaling is a low-level constitutive signaling occurring in both natural and engineered antigen receptors without antigen stimulation. It plays a pivotal role in regulating immune cell homeostasis, exhaustion, persistence, and effector functions. The "Peak Theory" suggests an optimal level of tonic signaling for CAR-T function: while weak tonic signaling may result in poor proliferation and persistence, excessively strong signaling can cause T cell exhaustion. This review also summarizes the recent progress in mechanisms underlying the tonic signaling and strategies to fine-tune the CAR tonic signaling. By understanding and precisely modulating tonic signaling, the efficacy of CAR-T therapies can be further optimized, offering new avenues for treatment across a broader spectrum of diseases. These findings have implications beyond CAR-T cells, potentially impacting other engineered immune cell therapies such as CAR-NK and CAR-M.
{"title":"Tonic signaling in CAR-T therapy: the lever long enough to move the planet.","authors":"Yuwei Huang, Haopeng Wang","doi":"10.1007/s11684-025-1130-x","DOIUrl":"10.1007/s11684-025-1130-x","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable efficacy in treating hematological malignancies and is expanding into other indications such as autoimmune diseases, fibrosis, aging and viral infection. However, clinical challenges persist in treating solid tumors, including physical barriers, tumor heterogeneity, poor in vivo persistence, and T-cell exhaustion, all of which hinder therapeutic efficacy. This review focuses on the critical role of tonic signaling in CAR-T therapy. Tonic signaling is a low-level constitutive signaling occurring in both natural and engineered antigen receptors without antigen stimulation. It plays a pivotal role in regulating immune cell homeostasis, exhaustion, persistence, and effector functions. The \"Peak Theory\" suggests an optimal level of tonic signaling for CAR-T function: while weak tonic signaling may result in poor proliferation and persistence, excessively strong signaling can cause T cell exhaustion. This review also summarizes the recent progress in mechanisms underlying the tonic signaling and strategies to fine-tune the CAR tonic signaling. By understanding and precisely modulating tonic signaling, the efficacy of CAR-T therapies can be further optimized, offering new avenues for treatment across a broader spectrum of diseases. These findings have implications beyond CAR-T cells, potentially impacting other engineered immune cell therapies such as CAR-NK and CAR-M.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"391-408"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143673817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabry disease, a rare genetic disorder affecting multiple organs, has understudied correlations among enzyme activity, genotype, and clinical manifestations in patients of different sexes with classical and late-onset phenotypes. In this study, clinical data, α-Gal A activity, and GLA gene test results of 311 patients, who were categorized by classical and late-onset phenotypes, ⩽5% and > 5% of the normal mean value of enzyme activity, and truncated and nontruncated mutation groups, were collected. The common clinical manifestations of Fabry disease included acroparesthesia, hypohidrosis/anhidrosis, neuropsychiatric system, and renal and cardiovascular involvement. Multiorgan involvement was higher in males and classical phenotype patients. In both sexes, classical patients commonly presented with acroparesthesia and multiorgan involvement, whereas late-onset patients showed renal, neuropsychiatric, and cardiovascular involvement. Male and classical patients had lower enzyme activity than female and late-onset patients, respectively. Classical males with enzyme activity of ⩽5% of the normal mean level showed higher multiorgan involvement frequency than those with enzyme activity of > 5%, whereas no significant difference was observed among females. Ninety-five gene mutation sites were detected, with significant phenotype heterogeneity in patients with the same mutation. No significant difference in enzyme activity or clinical manifestations was observed between truncated and nontruncated mutations. Overall, male patients with Fabry disease, regardless of classical or late-onset phenotype, have a higher frequency of multiple-organ involvement and lower α-Gal A activity than female patients. α-Gal A activity was closely correlated with clinical symptoms in males but weakly correlated with clinical manifestations in females. The clinical manifestations of patients with the same mutation are heterogeneous, and the correlation between gene mutation and enzyme activity or clinical manifestation is weak.
{"title":"Correlation of enzyme activities and genotype with clinical manifestations in Chinese patients of different sexes with classical and late-onset Fabry disease.","authors":"Wenkai Guo, Yuansheng Xie, Pengcheng Ji, Qinggang Li, Peng Wang, Guangyan Cai, Xiangmei Chen","doi":"10.1007/s11684-025-1131-9","DOIUrl":"10.1007/s11684-025-1131-9","url":null,"abstract":"<p><p>Fabry disease, a rare genetic disorder affecting multiple organs, has understudied correlations among enzyme activity, genotype, and clinical manifestations in patients of different sexes with classical and late-onset phenotypes. In this study, clinical data, α-Gal A activity, and GLA gene test results of 311 patients, who were categorized by classical and late-onset phenotypes, ⩽5% and > 5% of the normal mean value of enzyme activity, and truncated and nontruncated mutation groups, were collected. The common clinical manifestations of Fabry disease included acroparesthesia, hypohidrosis/anhidrosis, neuropsychiatric system, and renal and cardiovascular involvement. Multiorgan involvement was higher in males and classical phenotype patients. In both sexes, classical patients commonly presented with acroparesthesia and multiorgan involvement, whereas late-onset patients showed renal, neuropsychiatric, and cardiovascular involvement. Male and classical patients had lower enzyme activity than female and late-onset patients, respectively. Classical males with enzyme activity of ⩽5% of the normal mean level showed higher multiorgan involvement frequency than those with enzyme activity of > 5%, whereas no significant difference was observed among females. Ninety-five gene mutation sites were detected, with significant phenotype heterogeneity in patients with the same mutation. No significant difference in enzyme activity or clinical manifestations was observed between truncated and nontruncated mutations. Overall, male patients with Fabry disease, regardless of classical or late-onset phenotype, have a higher frequency of multiple-organ involvement and lower α-Gal A activity than female patients. α-Gal A activity was closely correlated with clinical symptoms in males but weakly correlated with clinical manifestations in females. The clinical manifestations of patients with the same mutation are heterogeneous, and the correlation between gene mutation and enzyme activity or clinical manifestation is weak.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"523-537"},"PeriodicalIF":3.9,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143996177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-04-01Epub Date: 2025-02-27DOI: 10.1007/s11684-024-1117-z
Lina Yang, Liang Ma, Ping Fu, Jing Nie
Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.
{"title":"Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions.","authors":"Lina Yang, Liang Ma, Ping Fu, Jing Nie","doi":"10.1007/s11684-024-1117-z","DOIUrl":"10.1007/s11684-024-1117-z","url":null,"abstract":"<p><p>Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.</p>","PeriodicalId":12558,"journal":{"name":"Frontiers of Medicine","volume":" ","pages":"250-264"},"PeriodicalIF":3.9,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143515318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}