Pub Date : 2023-02-07DOI: 10.3390/futurepharmacol3010014
Ching-Yun Wang, Chieh-Wen Wu, Ting-Yi Lin
Senescence-resumed proliferation (SRP) is proposed to be a mechanism associated with the escape of p21-mediated senescence and the activation of Wnt/β-catenin pathways that enhance malignancy. The keloid genomic landscape shows heavy intersections between TP53 and TGF-β signaling. The machinery to maintain cellular integrity through senescence, apoptosis, and autophagy is co-regulated with stemness, hedgehog, and immunomodulation. Our study demonstrated the presence of SRP and how, on the transcriptome level, TP53 and Wnt/β-catenin pathways are regulated to deliver the same cellular fate. Our study proves that SRP co-regulated with senescence-associated reprogramming (Wnt/β-catenin pathways) and TP53-p21 dysregulations originate from a common etiology and present a novel therapeutic target opportunity.
{"title":"Role of Senescence-Resumed Proliferation in Keloid Pathogenesis","authors":"Ching-Yun Wang, Chieh-Wen Wu, Ting-Yi Lin","doi":"10.3390/futurepharmacol3010014","DOIUrl":"https://doi.org/10.3390/futurepharmacol3010014","url":null,"abstract":"Senescence-resumed proliferation (SRP) is proposed to be a mechanism associated with the escape of p21-mediated senescence and the activation of Wnt/β-catenin pathways that enhance malignancy. The keloid genomic landscape shows heavy intersections between TP53 and TGF-β signaling. The machinery to maintain cellular integrity through senescence, apoptosis, and autophagy is co-regulated with stemness, hedgehog, and immunomodulation. Our study demonstrated the presence of SRP and how, on the transcriptome level, TP53 and Wnt/β-catenin pathways are regulated to deliver the same cellular fate. Our study proves that SRP co-regulated with senescence-associated reprogramming (Wnt/β-catenin pathways) and TP53-p21 dysregulations originate from a common etiology and present a novel therapeutic target opportunity.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84793842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antimicrobial resistance has brought great burden to global public health. Alternative strategies are needed to reduce the development of drug resistance. Herein, we have developed an effective synergistic antibacterial strategy combining low−temperature photothermal therapy (LT−PTT) with antibiotic therapy, improving the bactericidal efficiency to avoid antimicrobial resistance. Copper sulfide templated with bovine serum albumin (CuS−BSA) nanoparticles were selected as the photothermal agent, and co−loaded into the hydrogel (Gel) with mupirocin. The Gel could slow down the release rate of CuS−BSA and mupirocin, thereby prolonging the effective drug reaction time. More importantly, when applying near−infrared laser irradiation, the antibacterial activity of the platform could be enhanced greatly by LT−PTT effect of CuS−BSA nanoparticles. In vitro and in vivo results both confirmed that the antibacterial efficacy of the synergistic therapeutic strategy was improved greatly with complete bacterial removal. Overall, this platform has posed a potential strategy to reduce the development of drug resistance and improve patient compliance.
{"title":"A Synergistic Antibacterial Platform Combining Low−Temperature Photothermal Therapy and Antibiotic Therapy","authors":"Qiming Zhang, Lei Chang, Caixia Sun, Wanchao Zuo, Shibo Zhang, Cong Liu, Shuyue Deng, Pengcheng Wu, Panpan Dai, Jianjun Dai, Yanmin Ju","doi":"10.3390/futurepharmacol3010013","DOIUrl":"https://doi.org/10.3390/futurepharmacol3010013","url":null,"abstract":"Antimicrobial resistance has brought great burden to global public health. Alternative strategies are needed to reduce the development of drug resistance. Herein, we have developed an effective synergistic antibacterial strategy combining low−temperature photothermal therapy (LT−PTT) with antibiotic therapy, improving the bactericidal efficiency to avoid antimicrobial resistance. Copper sulfide templated with bovine serum albumin (CuS−BSA) nanoparticles were selected as the photothermal agent, and co−loaded into the hydrogel (Gel) with mupirocin. The Gel could slow down the release rate of CuS−BSA and mupirocin, thereby prolonging the effective drug reaction time. More importantly, when applying near−infrared laser irradiation, the antibacterial activity of the platform could be enhanced greatly by LT−PTT effect of CuS−BSA nanoparticles. In vitro and in vivo results both confirmed that the antibacterial efficacy of the synergistic therapeutic strategy was improved greatly with complete bacterial removal. Overall, this platform has posed a potential strategy to reduce the development of drug resistance and improve patient compliance.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74052395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.3390/futurepharmacol3010011
E. H. Thong, E. Lee, Choi-Ying Yun, Tony Y. W. Li, C. Sia
Background: Dementia is associated with a greater burden of cardiovascular risk factors. There is a significant vascular contribution to dementia, and aspirin may play a role in targeting this vascular dysregulation via its anti-inflammatory and antiplatelet effects. We provide an overview of the effects of aspirin therapy on the prevention of dementia and cognitive decline in patients with or without dementia and/or cognitive impairment. Methods: We performed a search for studies enrolling adults with or without dementia or MCI and comparing aspirin with placebo, usual care, or active control with respect to cognitive outcomes. Results: We describe aspirin’s effects on the primary prevention of cognitive impairment and various subtypes of dementia, as well as its role in cognitive decline in certain subsets of patients, including those with cerebral small vessel disease (CVSD), coronary heart disease (CHD), and gender differences. Overall, the benefits of aspirin in preventing dementia and cognitive decline remain inconclusive. The majority of cohort studies investigating aspirin’s role in preventing cognitive decline or dementia looked promising, but this was not supported in most randomised controlled trials. However, aspirin may still be beneficial in certain subgroups of patients (such as CHD, VD, and CSVD) and warrants further investigation.
{"title":"Aspirin Therapy, Cognitive Impairment, and Dementia—A Review","authors":"E. H. Thong, E. Lee, Choi-Ying Yun, Tony Y. W. Li, C. Sia","doi":"10.3390/futurepharmacol3010011","DOIUrl":"https://doi.org/10.3390/futurepharmacol3010011","url":null,"abstract":"Background: Dementia is associated with a greater burden of cardiovascular risk factors. There is a significant vascular contribution to dementia, and aspirin may play a role in targeting this vascular dysregulation via its anti-inflammatory and antiplatelet effects. We provide an overview of the effects of aspirin therapy on the prevention of dementia and cognitive decline in patients with or without dementia and/or cognitive impairment. Methods: We performed a search for studies enrolling adults with or without dementia or MCI and comparing aspirin with placebo, usual care, or active control with respect to cognitive outcomes. Results: We describe aspirin’s effects on the primary prevention of cognitive impairment and various subtypes of dementia, as well as its role in cognitive decline in certain subsets of patients, including those with cerebral small vessel disease (CVSD), coronary heart disease (CHD), and gender differences. Overall, the benefits of aspirin in preventing dementia and cognitive decline remain inconclusive. The majority of cohort studies investigating aspirin’s role in preventing cognitive decline or dementia looked promising, but this was not supported in most randomised controlled trials. However, aspirin may still be beneficial in certain subgroups of patients (such as CHD, VD, and CSVD) and warrants further investigation.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90437207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.3390/futurepharmacol3010012
Tâmara Dauare de Almeida, F. Evangelista, A. Sabino
The occurrence of severe bleeding syndrome because of the PML-RARα fusion protein is a life-threatening event in APL. This protein destabilizes homeostasis, maturation, remodeling, and tissue regeneration in addition to hampering the maintenance and differentiation of hematopoietic cells into different lineages, fixing cells in the promyelocyte stage. APL is a classic example of how effective targeted therapy is and, therefore, how important the use of such therapy is to the overall survival of patients, which in this case is represented by the use of ATRA/ATO. Despite that, about 10% of cases of APL patients demonstrate resistance to treatment. Facing this scenario, we point out promising target therapies such as those recommended by the NCCN and Leukemia Net. Since this is such a heterogeneous molecular disease, it is of great importance to understand how important combined chemotherapy, target therapy, immune-based therapy, and combined therapies are in the survival of these APL patients.
{"title":"Acute Promyelocytic Leukemia (APL): A Review of the Classic and Emerging Target Therapies towards Molecular Heterogeneity","authors":"Tâmara Dauare de Almeida, F. Evangelista, A. Sabino","doi":"10.3390/futurepharmacol3010012","DOIUrl":"https://doi.org/10.3390/futurepharmacol3010012","url":null,"abstract":"The occurrence of severe bleeding syndrome because of the PML-RARα fusion protein is a life-threatening event in APL. This protein destabilizes homeostasis, maturation, remodeling, and tissue regeneration in addition to hampering the maintenance and differentiation of hematopoietic cells into different lineages, fixing cells in the promyelocyte stage. APL is a classic example of how effective targeted therapy is and, therefore, how important the use of such therapy is to the overall survival of patients, which in this case is represented by the use of ATRA/ATO. Despite that, about 10% of cases of APL patients demonstrate resistance to treatment. Facing this scenario, we point out promising target therapies such as those recommended by the NCCN and Leukemia Net. Since this is such a heterogeneous molecular disease, it is of great importance to understand how important combined chemotherapy, target therapy, immune-based therapy, and combined therapies are in the survival of these APL patients.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77183469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-17DOI: 10.3390/futurepharmacol3010010
High-quality academic publishing is built on rigorous peer review [...]
高质量的学术出版建立在严格的同行评审的基础上[…]
{"title":"Acknowledgment to the Reviewers of Future Pharmacology in 2022","authors":"","doi":"10.3390/futurepharmacol3010010","DOIUrl":"https://doi.org/10.3390/futurepharmacol3010010","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75794834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-13DOI: 10.3390/futurepharmacol3010009
Maurício P. M. Amaral, Marcelo Pereira da Silva Junior, Francisco das Chagas Alves Lima, S. Gutierrez, D. Arcanjo, R. C. M. Oliveira
Anxiety is a normal behavioral component. When it is too frequent or appears in inappropriate contexts, it can be considered pathological. Benzodiazepines (BDZs) are drugs with clinical success in anxiety treatment. BDZs act as allosteric modulators of the γ- aminobutyric acid A receptor (GABAAR). However, these drugs cause adverse effects. Despite the therapeutic advances obtained with BDZs, the search for anxiolytics with fewer adverse effects is ongoing. Studies with monoterpene (–)-borneol [(–)-BOR] demonstrated pharmacological properties such as a partial agonist effect of GABAAR and an anticonvulsive effect. On the other hand, no work has been developed evaluating the anxiolytic/sedative potential. The objective of this study was to investigate the anxiolytic/sedative effects of (–)-BOR in animal models at doses of 25, 50, and 100 mg/kg (i.p.) and whether there was a molecular interaction with GABAAR. The anxiolytic effect of monoterpene (–)-BOR was tested on Swiss mice (25–30 g) in three anxiety models: the elevated plus maze test, the open field test, and the light-dark box test. The thiopental-induced sleep time model was a drug screen for the sedative and hypnotic activity related to GABAARs. In the molecular docking, the interaction between the GABAAR molecule and (–)-BOR was performed using the AutoDock 4.2.6 program. The results demonstrated that (–)-BOR has sedative and anxiolytic activity. The molecular docking study revealed that (–)-BOR can interact with GABAARs through hydrogen bonds.
{"title":"Anxiolytic/Sedative Effect of Monoterpene (–)-Borneol in Mice and In Silico Molecular Interaction with GABAA Receptor","authors":"Maurício P. M. Amaral, Marcelo Pereira da Silva Junior, Francisco das Chagas Alves Lima, S. Gutierrez, D. Arcanjo, R. C. M. Oliveira","doi":"10.3390/futurepharmacol3010009","DOIUrl":"https://doi.org/10.3390/futurepharmacol3010009","url":null,"abstract":"Anxiety is a normal behavioral component. When it is too frequent or appears in inappropriate contexts, it can be considered pathological. Benzodiazepines (BDZs) are drugs with clinical success in anxiety treatment. BDZs act as allosteric modulators of the γ- aminobutyric acid A receptor (GABAAR). However, these drugs cause adverse effects. Despite the therapeutic advances obtained with BDZs, the search for anxiolytics with fewer adverse effects is ongoing. Studies with monoterpene (–)-borneol [(–)-BOR] demonstrated pharmacological properties such as a partial agonist effect of GABAAR and an anticonvulsive effect. On the other hand, no work has been developed evaluating the anxiolytic/sedative potential. The objective of this study was to investigate the anxiolytic/sedative effects of (–)-BOR in animal models at doses of 25, 50, and 100 mg/kg (i.p.) and whether there was a molecular interaction with GABAAR. The anxiolytic effect of monoterpene (–)-BOR was tested on Swiss mice (25–30 g) in three anxiety models: the elevated plus maze test, the open field test, and the light-dark box test. The thiopental-induced sleep time model was a drug screen for the sedative and hypnotic activity related to GABAARs. In the molecular docking, the interaction between the GABAAR molecule and (–)-BOR was performed using the AutoDock 4.2.6 program. The results demonstrated that (–)-BOR has sedative and anxiolytic activity. The molecular docking study revealed that (–)-BOR can interact with GABAARs through hydrogen bonds.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73660032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-12DOI: 10.3390/futurepharmacol3010008
L. Sangalli, S. Brazzoli
Migraine is ranked as the third most common disorder worldwide and is considered one of the most disabling neurological conditions. Its treatment has mostly relied on medications that were non-specifically developed for migraine, thus accompanied by low adherence, inadequate effectiveness and intolerable side effects. These recent years have seen the development of new migraine-specific therapies targeting the calcitonin gene-related peptide (CGRP) and its receptor. These newly developed therapies, the small molecule gepants targeting the CGRP receptor and the anti-CGRP monoclonal antibodies (mAbs), are currently available in the market and FDA-approved for migraine treatment. As they are migraine-specific therapies, they largely expand their use to patients that could not tolerate previous treatments, either for systemic contraindications or drug-to-drug interactions, or where any other available option was not efficacious. Randomized controlled trials have demonstrated the efficacy of these new medications, with minor adverse effects reported (most commonly nausea and constipation). This article will review the mechanism of action, indications, contraindications, and tolerability profile of gepants and anti-CGRP mAbs, by summarizing the available literature. Finally, avenues for future research will be identified, so that upcoming controlled studies may be designed to fill such gaps.
{"title":"Calcitonin Gene-Related Peptide (CGRP)-Targeted Treatments—New Therapeutic Technologies for Migraine","authors":"L. Sangalli, S. Brazzoli","doi":"10.3390/futurepharmacol3010008","DOIUrl":"https://doi.org/10.3390/futurepharmacol3010008","url":null,"abstract":"Migraine is ranked as the third most common disorder worldwide and is considered one of the most disabling neurological conditions. Its treatment has mostly relied on medications that were non-specifically developed for migraine, thus accompanied by low adherence, inadequate effectiveness and intolerable side effects. These recent years have seen the development of new migraine-specific therapies targeting the calcitonin gene-related peptide (CGRP) and its receptor. These newly developed therapies, the small molecule gepants targeting the CGRP receptor and the anti-CGRP monoclonal antibodies (mAbs), are currently available in the market and FDA-approved for migraine treatment. As they are migraine-specific therapies, they largely expand their use to patients that could not tolerate previous treatments, either for systemic contraindications or drug-to-drug interactions, or where any other available option was not efficacious. Randomized controlled trials have demonstrated the efficacy of these new medications, with minor adverse effects reported (most commonly nausea and constipation). This article will review the mechanism of action, indications, contraindications, and tolerability profile of gepants and anti-CGRP mAbs, by summarizing the available literature. Finally, avenues for future research will be identified, so that upcoming controlled studies may be designed to fill such gaps.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"220 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76070378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-09DOI: 10.3390/futurepharmacol3010005
Jean Carlos Lipreri da Silva, H. P. Vicari, J. Machado-Neto
Recent advances have been made in understanding molecular markers involved in cancer malignancy, resulting in better tumor staging and identifying new potential therapeutic targets. Ezrin (EZR), a member of the ezrin, radixin, moesin (ERM) protein family, is essential for linking the actin cytoskeleton to the cell membrane and participates in the signal transduction of key signaling pathways such as Rho GTPases and PI3K/AKT/mTOR. Clinical and preclinical studies in a wide variety of solid and hematological tumors indicate that (i) EZR is highly expressed and predicts an unfavorable clinical outcome, and (ii) EZR inhibition reduces proliferation, migration, and invasion in experimental models. The development of pharmacological inhibitors for EZR (or the signaling mediated by it) has opened a new round of investigation, but studies are still limited. The scope of the present review is to survey studies on the expression and clinical impact of EZR in cancer, as well as studies that perform interventions on the function of this gene/protein in cancer cells, providing proof-of-concept of its antineoplastic potential.
{"title":"Perspectives for Targeting Ezrin in Cancer Development and Progression","authors":"Jean Carlos Lipreri da Silva, H. P. Vicari, J. Machado-Neto","doi":"10.3390/futurepharmacol3010005","DOIUrl":"https://doi.org/10.3390/futurepharmacol3010005","url":null,"abstract":"Recent advances have been made in understanding molecular markers involved in cancer malignancy, resulting in better tumor staging and identifying new potential therapeutic targets. Ezrin (EZR), a member of the ezrin, radixin, moesin (ERM) protein family, is essential for linking the actin cytoskeleton to the cell membrane and participates in the signal transduction of key signaling pathways such as Rho GTPases and PI3K/AKT/mTOR. Clinical and preclinical studies in a wide variety of solid and hematological tumors indicate that (i) EZR is highly expressed and predicts an unfavorable clinical outcome, and (ii) EZR inhibition reduces proliferation, migration, and invasion in experimental models. The development of pharmacological inhibitors for EZR (or the signaling mediated by it) has opened a new round of investigation, but studies are still limited. The scope of the present review is to survey studies on the expression and clinical impact of EZR in cancer, as well as studies that perform interventions on the function of this gene/protein in cancer cells, providing proof-of-concept of its antineoplastic potential.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80793306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-09DOI: 10.3390/futurepharmacol3010006
Conrad Fischer, Jenson R. Feys
While the COVID-19 pandemic seems to be on its decline, the unclear impacts of long-COVID cases, breakthrough infections in immunocompromised individuals, vaccine hesitancy, and inhomogeneous health-care accessibility constitute a not to be underestimated threat. These cases, along with pandemic preparedness, ask for an alert identification of new drugs and the optimization of existing drugs as therapeutic treatment options for this and potential future diseases. Mpro inhibitors were identified early on as potent drug candidates against coronaviruses, since they target viable processing machinery within the virus, i.e., the main protease that cleaves the polyproteins encoded by the viral RNA into functional proteins. Different strategies, including reversible and irreversible inhibition as well as allosteric inhibitors, mostly from drug repurposing endeavors, have been explored in the design of potent SARS-CoV-2 Mpro antivirals. Ambitious screening efforts have uttered an outstanding chemical and structural diversity, which has led to half a dozen lead compounds being currently in clinical trials and the emergency FDA approval of ritonavir-boosted nirmatrelvir as a COVID-19 therapeutic. This comprehensive analysis of the achieved inhibitor diversity sorted into irreversible, reversible, and allosteric Mpro binders, along with a discussion of emerging resistance reports and possible evasion strategies, is aimed at stimulating continuing Mpro drug design efforts.
{"title":"SARS-CoV-2 Mpro Inhibitors: Achieved Diversity, Developing Resistance and Future Strategies","authors":"Conrad Fischer, Jenson R. Feys","doi":"10.3390/futurepharmacol3010006","DOIUrl":"https://doi.org/10.3390/futurepharmacol3010006","url":null,"abstract":"While the COVID-19 pandemic seems to be on its decline, the unclear impacts of long-COVID cases, breakthrough infections in immunocompromised individuals, vaccine hesitancy, and inhomogeneous health-care accessibility constitute a not to be underestimated threat. These cases, along with pandemic preparedness, ask for an alert identification of new drugs and the optimization of existing drugs as therapeutic treatment options for this and potential future diseases. Mpro inhibitors were identified early on as potent drug candidates against coronaviruses, since they target viable processing machinery within the virus, i.e., the main protease that cleaves the polyproteins encoded by the viral RNA into functional proteins. Different strategies, including reversible and irreversible inhibition as well as allosteric inhibitors, mostly from drug repurposing endeavors, have been explored in the design of potent SARS-CoV-2 Mpro antivirals. Ambitious screening efforts have uttered an outstanding chemical and structural diversity, which has led to half a dozen lead compounds being currently in clinical trials and the emergency FDA approval of ritonavir-boosted nirmatrelvir as a COVID-19 therapeutic. This comprehensive analysis of the achieved inhibitor diversity sorted into irreversible, reversible, and allosteric Mpro binders, along with a discussion of emerging resistance reports and possible evasion strategies, is aimed at stimulating continuing Mpro drug design efforts.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87082235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-06DOI: 10.3390/futurepharmacol3010003
N. M. Kowal, X. Di, S. Omarsdottir, E. Olafsdottir
The bryozoan Flustra foliacea produces a range of indole alkaloids, and some have shown weak antibiotic, muscle-relaxant and cytotoxic properties; however, most of them have not been tested for bioactivity. Many of these alkaloids possess a physostigmine scaffold, and physostigmine is a well-known acetylcholinesterase (AChE) inhibitor. AChE inhibitors are of interest as drug leads in neurodegenerative diseases and are currently used in symptomatic treatment of Alzheimer’s disease (AD). In this study, the AChE inhibitory activity of Flustra alkaloids was studied in vitro using the colorimetric method of Ellman and AChE from Electrophorus electricus. Twenty-five compounds isolated from the Icelandic bryozoan F. foliacea were screened at a 100 µM concentration. Two of them, flustramine E and flustramine I, showed inhibition of 48%, and flustramine Q showed 82% inhibition. For flustramine Q, the IC50 was 9.6 µM. Molecular modelling and docking studies indicated that simple in silico designed derivatives of flustramine Q could have potential for increased potency. Marine natural products including brominated indole alkaloids from Flustra foliacea are an interesting new source of AChE inhibitors with potential towards central nervous system disorders, e.g., Alzheimer’s disease.
{"title":"Flustramine Q, a Novel Marine Origin Acetylcholinesterase Inhibitor from Flustra foliacea","authors":"N. M. Kowal, X. Di, S. Omarsdottir, E. Olafsdottir","doi":"10.3390/futurepharmacol3010003","DOIUrl":"https://doi.org/10.3390/futurepharmacol3010003","url":null,"abstract":"The bryozoan Flustra foliacea produces a range of indole alkaloids, and some have shown weak antibiotic, muscle-relaxant and cytotoxic properties; however, most of them have not been tested for bioactivity. Many of these alkaloids possess a physostigmine scaffold, and physostigmine is a well-known acetylcholinesterase (AChE) inhibitor. AChE inhibitors are of interest as drug leads in neurodegenerative diseases and are currently used in symptomatic treatment of Alzheimer’s disease (AD). In this study, the AChE inhibitory activity of Flustra alkaloids was studied in vitro using the colorimetric method of Ellman and AChE from Electrophorus electricus. Twenty-five compounds isolated from the Icelandic bryozoan F. foliacea were screened at a 100 µM concentration. Two of them, flustramine E and flustramine I, showed inhibition of 48%, and flustramine Q showed 82% inhibition. For flustramine Q, the IC50 was 9.6 µM. Molecular modelling and docking studies indicated that simple in silico designed derivatives of flustramine Q could have potential for increased potency. Marine natural products including brominated indole alkaloids from Flustra foliacea are an interesting new source of AChE inhibitors with potential towards central nervous system disorders, e.g., Alzheimer’s disease.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"236 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85318556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}