Pub Date : 2023-03-22DOI: 10.1017/S0016756823000079
J. A. Dev, JK Tomson, T. V. Vijaya Kumar, N. Sorcar
Abstract The Precambrian Southern Granulite Terrane (SGT) of south India is well-known for the preservation of high- to ultrahigh-temperature (HT-UHT) granulites, prominently exposed in its central part forming a linear belt referred to as the Kambam UHT belt. This belt also hosts widespread occurrences of mafic granulites that are observed in close spatial association with the HT-UHT granulites. This study presents detailed petrology, geochemistry and geochronology of representative mafic granulites from the area to understand their petrogenesis and tectonic setting. The results demonstrate that mafic granulites are low- to medium-K tholeiites, with continental arc affinity, formed by the partial melting of a subduction-modified enriched mantle source. The composition of the parent mantle source is modelled with a spinel/garnet lherzolite contribution ratio between 100/0 and 70/30, suggesting the mixing of spinel and garnet bearing melts during asthenosphere upwelling. Zircon U–Pb geochronology of mafic granulites constrains their emplacement between 612 Ma and 625 Ma, that subsequently underwent metamorphism between 581 Ma and 531 Ma. This overlaps with the timing of HT-UHT metamorphism in the Kambam UHT belt bracketed between 593 and 532 Ma. Zircon Hf isotopic studies reveal parent magma generation from reworked melting sources involving Archean and Proterozoic components. These results propose an alternative heat source for the formation of HT-UHT granulites in the Kambam UHT belt which can be designated as a major terrane boundary within the SGT.
{"title":"Age and petrogenesis of mafic granulites from central Madurai block, south India: implications on regional tectonics","authors":"J. A. Dev, JK Tomson, T. V. Vijaya Kumar, N. Sorcar","doi":"10.1017/S0016756823000079","DOIUrl":"https://doi.org/10.1017/S0016756823000079","url":null,"abstract":"Abstract The Precambrian Southern Granulite Terrane (SGT) of south India is well-known for the preservation of high- to ultrahigh-temperature (HT-UHT) granulites, prominently exposed in its central part forming a linear belt referred to as the Kambam UHT belt. This belt also hosts widespread occurrences of mafic granulites that are observed in close spatial association with the HT-UHT granulites. This study presents detailed petrology, geochemistry and geochronology of representative mafic granulites from the area to understand their petrogenesis and tectonic setting. The results demonstrate that mafic granulites are low- to medium-K tholeiites, with continental arc affinity, formed by the partial melting of a subduction-modified enriched mantle source. The composition of the parent mantle source is modelled with a spinel/garnet lherzolite contribution ratio between 100/0 and 70/30, suggesting the mixing of spinel and garnet bearing melts during asthenosphere upwelling. Zircon U–Pb geochronology of mafic granulites constrains their emplacement between 612 Ma and 625 Ma, that subsequently underwent metamorphism between 581 Ma and 531 Ma. This overlaps with the timing of HT-UHT metamorphism in the Kambam UHT belt bracketed between 593 and 532 Ma. Zircon Hf isotopic studies reveal parent magma generation from reworked melting sources involving Archean and Proterozoic components. These results propose an alternative heat source for the formation of HT-UHT granulites in the Kambam UHT belt which can be designated as a major terrane boundary within the SGT.","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"160 1","pages":"955 - 971"},"PeriodicalIF":2.3,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45537837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-21DOI: 10.1017/S0016756823000122
G. O’Sullivan, Brendan C. Hoare, Chris Mark, Foteini Drakou, E. Tomlinson
Abstract We present U–Pb dates from peridotitic pyrope-rich garnet from four mantle xenoliths entrained in a kimberlite from Bultfontein, South Africa. Garnet dates magmatic emplacement due to the high mantle residence temperatures of the source material prior to eruption, which were most likely above the closure temperature for the pyrope U–Pb system. We determine a U–Pb date of 84.0 ± 8.1 Ma for the emplacement of the Bultfontein kimberlite from garnet in our four xenolith samples. The date reproduces previous dates obtained from other mineral-isotope systems (chiefly Rb–Sr in phlogopite). Garnet can be dated despite extremely low concentrations of U (median ∼0.05 μg/g), because concentrations of common Pb are often low or non-detectable. This means that sub-concordant garnets can be dated with moderate precision using very large laser-ablation spots (130 μm) measured by quadrupole inductively coupled plasma – mass spectrometry (LA-Q-ICP-MS). Our strategy demonstrates successful U–Pb dating of a U-poor mineral due to high initial ratios of U to common Pb in some grains, and the wide spread of isotopic compositions of grains on a concordia diagram. In addition, the analytical protocol is not complex and uses widely available analytical methods and strategies. This new methodology has some advantages and disadvantages for dating kimberlite emplacement versus established methods (U-based decay systems in perovskite and zircon, or Rb- or K-based systems in phlogopite). However, this method has unique promise for its potential application to detrital diamond prospecting and, more speculatively, to the dating of pyrope inclusions in diamond.
{"title":"Uranium–lead geochronology applied to pyrope garnet with very low concentrations of uranium","authors":"G. O’Sullivan, Brendan C. Hoare, Chris Mark, Foteini Drakou, E. Tomlinson","doi":"10.1017/S0016756823000122","DOIUrl":"https://doi.org/10.1017/S0016756823000122","url":null,"abstract":"Abstract We present U–Pb dates from peridotitic pyrope-rich garnet from four mantle xenoliths entrained in a kimberlite from Bultfontein, South Africa. Garnet dates magmatic emplacement due to the high mantle residence temperatures of the source material prior to eruption, which were most likely above the closure temperature for the pyrope U–Pb system. We determine a U–Pb date of 84.0 ± 8.1 Ma for the emplacement of the Bultfontein kimberlite from garnet in our four xenolith samples. The date reproduces previous dates obtained from other mineral-isotope systems (chiefly Rb–Sr in phlogopite). Garnet can be dated despite extremely low concentrations of U (median ∼0.05 μg/g), because concentrations of common Pb are often low or non-detectable. This means that sub-concordant garnets can be dated with moderate precision using very large laser-ablation spots (130 μm) measured by quadrupole inductively coupled plasma – mass spectrometry (LA-Q-ICP-MS). Our strategy demonstrates successful U–Pb dating of a U-poor mineral due to high initial ratios of U to common Pb in some grains, and the wide spread of isotopic compositions of grains on a concordia diagram. In addition, the analytical protocol is not complex and uses widely available analytical methods and strategies. This new methodology has some advantages and disadvantages for dating kimberlite emplacement versus established methods (U-based decay systems in perovskite and zircon, or Rb- or K-based systems in phlogopite). However, this method has unique promise for its potential application to detrital diamond prospecting and, more speculatively, to the dating of pyrope inclusions in diamond.","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"160 1","pages":"1010 - 1019"},"PeriodicalIF":2.3,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46906161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-20DOI: 10.1017/S0016756823000092
S. Baba, M. Owada, T. Hokada, T. Adachi, N. Nakano
Abstract This paper reports geochemical characteristics of mafic gneisses and granulites collected from four localities in central Dronning Maud Land to evaluate the tectonic setting of their precursor rocks. Precursor rocks for the mafic gneisses and granulites in central Dronning Maud Land were formed in different geological backgrounds and tectonic settings. The mafic gneisses and granulites in the Schirmacher Hills were derived from basaltic rocks in a back-arc setting. Published U–Pb zircon ages and the geochemical variation of the basement rocks indicate their emplacement between 800 and 650 Ma, close to peak metamorphism. While similar protoliths were recognized in the inland nunataks of Hochlinfjellet, in Filchnerfjella the mafic gneisses/granulites were derived from basaltic rocks formed in marginal continental arcs or island arcs. Highly disturbed trace-element patterns indicate that the metamorphic process influenced the geochemical composition during the prograde metamorphic stage. Our results imply that the outcrops in central Dronning Maud Land with different metamorphic ages contain mafic gneisses/granulites from precursor rocks formed under different tectonic settings.
{"title":"Contrasting geological background based on the geochemistry of the mafic metamorphic rocks in central Dronning Maud Land","authors":"S. Baba, M. Owada, T. Hokada, T. Adachi, N. Nakano","doi":"10.1017/S0016756823000092","DOIUrl":"https://doi.org/10.1017/S0016756823000092","url":null,"abstract":"Abstract This paper reports geochemical characteristics of mafic gneisses and granulites collected from four localities in central Dronning Maud Land to evaluate the tectonic setting of their precursor rocks. Precursor rocks for the mafic gneisses and granulites in central Dronning Maud Land were formed in different geological backgrounds and tectonic settings. The mafic gneisses and granulites in the Schirmacher Hills were derived from basaltic rocks in a back-arc setting. Published U–Pb zircon ages and the geochemical variation of the basement rocks indicate their emplacement between 800 and 650 Ma, close to peak metamorphism. While similar protoliths were recognized in the inland nunataks of Hochlinfjellet, in Filchnerfjella the mafic gneisses/granulites were derived from basaltic rocks formed in marginal continental arcs or island arcs. Highly disturbed trace-element patterns indicate that the metamorphic process influenced the geochemical composition during the prograde metamorphic stage. Our results imply that the outcrops in central Dronning Maud Land with different metamorphic ages contain mafic gneisses/granulites from precursor rocks formed under different tectonic settings.","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"160 1","pages":"993 - 1009"},"PeriodicalIF":2.3,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44581022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-15DOI: 10.1017/S0016756823000080
S. Verdecchia, C. Casquet, E. Baldo, M. Larrovere, C. I. Lembo Wuest, M. Benítez, C. Ramacciotti, J. Murra, R. Pankhurst
Abstract This paper focuses on one orogenic belt that formed during the Rinconada phase on the final stage of the Famatinian orogeny, between 445 and 410 Ma, which is well exposed at Sierra de Ramaditas and neighbouring ranges in western Argentina. The Ramaditas Complex is formed by metasedimentary and meta-ultrabasic rocks and amphibolites. This complex forms the upper nappe of a thrust stack resulting from westward thrusting. Deformation consists of an early high-temperature S1 foliation (stromatic migmatites), coeval with thrusting and metamorphism. Metamorphism attained peak P–T conditions of 6.0–6.9 kbar and 795–810 °C, at c. 440 Ma, i.e. coincident with the Rinconada orogenic phase. The lower unit and intermediate nappes crop out in the nearby sierras of Maz and Espinal and underwent low- to medium-grade Silurian metamorphism, respectively, together with the upper nappe, defining an inverted Barrovian-type metamorphism with T decreasing and P increasing downwards across the thrust stack (i.e. westward). We argue that the Rinconada orogenic phase developed near the continental margin of SW Gondwana, during a magmatic lull following accretion of the Precordillera terrane to the continental margin at c. 470 Ma. The active margin jumped to the west after accretion, and flat-slab subduction resumed in the early Silurian, provoking thrusting and imbrication of nappe stack under the still hot root (800–900 °C) of the older Famatinian magmatic arc. This ‘hot-iron’ process explains both the inverted Barrovian-type metamorphism and the missing overburden of 21 to 24 km implied by the P estimate.
摘要本文重点研究了一条造山带,该造山带形成于445至410 Ma之间的法马廷造山运动最后阶段的Rinconada阶段,在阿根廷西部的Sierra de Ramaditas和邻近山脉中暴露良好。Ramaditas杂岩由变质沉积岩、变质超基性岩和角闪岩组成。该杂岩形成了西向逆冲作用形成的逆冲叠层的上部推覆体。变形由早期高温S1叶理(闪变混合岩)组成,与逆冲作用和变质作用同时发生。变质作用在约440 Ma时达到了6.0–6.9 kbar和795–810°C的峰值P–T条件,即与Rinconada造山相一致。下部单元和中间推覆体在附近的Maz和Espinal山脉中突出,分别经历了低至中等级别的志留纪变质作用,以及上部推覆体,定义了反向巴罗型变质作用,T在逆冲叠层中向下(即向西)增加,P在下降。我们认为,Rinconada造山期在冈瓦纳大陆西南部大陆边缘附近发育,在约470 Ma前柯迪拉地体向大陆边缘吸积后的岩浆平静期。吸积后活动边缘向西跳跃,志留纪早期恢复了平板俯冲,在较老的法马汀期岩浆弧的高温根部(800–900°C)下引发推覆岩堆的逆冲和叠瓦作用。这种“热铁”过程解释了反向巴罗型变质作用和P估计所暗示的21至24km的覆盖层缺失。
{"title":"Silurian inverted Barrovian-type metamorphism in the Western Sierras Pampeanas (Argentina): a case of top to bottom heating?","authors":"S. Verdecchia, C. Casquet, E. Baldo, M. Larrovere, C. I. Lembo Wuest, M. Benítez, C. Ramacciotti, J. Murra, R. Pankhurst","doi":"10.1017/S0016756823000080","DOIUrl":"https://doi.org/10.1017/S0016756823000080","url":null,"abstract":"Abstract This paper focuses on one orogenic belt that formed during the Rinconada phase on the final stage of the Famatinian orogeny, between 445 and 410 Ma, which is well exposed at Sierra de Ramaditas and neighbouring ranges in western Argentina. The Ramaditas Complex is formed by metasedimentary and meta-ultrabasic rocks and amphibolites. This complex forms the upper nappe of a thrust stack resulting from westward thrusting. Deformation consists of an early high-temperature S1 foliation (stromatic migmatites), coeval with thrusting and metamorphism. Metamorphism attained peak P–T conditions of 6.0–6.9 kbar and 795–810 °C, at c. 440 Ma, i.e. coincident with the Rinconada orogenic phase. The lower unit and intermediate nappes crop out in the nearby sierras of Maz and Espinal and underwent low- to medium-grade Silurian metamorphism, respectively, together with the upper nappe, defining an inverted Barrovian-type metamorphism with T decreasing and P increasing downwards across the thrust stack (i.e. westward). We argue that the Rinconada orogenic phase developed near the continental margin of SW Gondwana, during a magmatic lull following accretion of the Precordillera terrane to the continental margin at c. 470 Ma. The active margin jumped to the west after accretion, and flat-slab subduction resumed in the early Silurian, provoking thrusting and imbrication of nappe stack under the still hot root (800–900 °C) of the older Famatinian magmatic arc. This ‘hot-iron’ process explains both the inverted Barrovian-type metamorphism and the missing overburden of 21 to 24 km implied by the P estimate.","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"160 1","pages":"972 - 992"},"PeriodicalIF":2.3,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42848447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-10DOI: 10.1017/S0016756823000067
S. Müller, A. Kroh, D. Birgel, J. Goedert, S. Kiel, Jörn Peckmann
Abstract Loose limestone blocks of a newly recognized hydrocarbon-seep deposit from the lower Oligocene Jansen Creek Member of the Makah Formation were collected on a beach terrace close to the mouth of Bullman Creek in Washington State, USA. The limestone consists largely of authigenic carbonate phases, including 13C-depleted fibrous cement forming banded and botryoidal crystal aggregates with δ13C values as low as –23.5 ‰. Lipids extracted from the limestone yielded molecular fossils of anaerobic methanotrophic archaea (ANME), dominated by compounds of an ANME-2/DSS consortium with δ13C values as low as −106 ‰, indicating formation at an ancient methane seep. The fossil inventory of the seep deposit is remarkable, consisting almost solely of echinoid remains, whereas typical seep biota are absent. Varying preservation of the echinoid fossils indicates parautochthonous deposition, corroborated by evidence for high fluid flow at the ancient seep, possibly responsible for displacement of echinoids after death. Although a full taxonomic description of the echinoids cannot be given, almost all fossils were assigned to one taxon of irregular spatangoids, except for a single regular echinoid. Abundance and lifestyle of the irregular spatangoids in the Bullman Creek echinoid seep deposit resemble those of the fossil Tithonia oxfordiana from an upper Jurassic seep deposit in France and extant Sarsiaster griegii from modern seeps in the Gulf of Mexico. The Bullman Creek echinoid deposit probably represents a fossil analogue of the Gulf of Mexico Sarsiaster mass occurrence, indicating that the adaptation of spatangoid echinoids to chemosynthesis-based ecosystems ranges back at least to the earliest Oligocene.
{"title":"Mass occurrence of echinoids in an Oligocene hydrocarbon-seep limestone from the Olympic Peninsula, Washington State, USA","authors":"S. Müller, A. Kroh, D. Birgel, J. Goedert, S. Kiel, Jörn Peckmann","doi":"10.1017/S0016756823000067","DOIUrl":"https://doi.org/10.1017/S0016756823000067","url":null,"abstract":"Abstract Loose limestone blocks of a newly recognized hydrocarbon-seep deposit from the lower Oligocene Jansen Creek Member of the Makah Formation were collected on a beach terrace close to the mouth of Bullman Creek in Washington State, USA. The limestone consists largely of authigenic carbonate phases, including 13C-depleted fibrous cement forming banded and botryoidal crystal aggregates with δ13C values as low as –23.5 ‰. Lipids extracted from the limestone yielded molecular fossils of anaerobic methanotrophic archaea (ANME), dominated by compounds of an ANME-2/DSS consortium with δ13C values as low as −106 ‰, indicating formation at an ancient methane seep. The fossil inventory of the seep deposit is remarkable, consisting almost solely of echinoid remains, whereas typical seep biota are absent. Varying preservation of the echinoid fossils indicates parautochthonous deposition, corroborated by evidence for high fluid flow at the ancient seep, possibly responsible for displacement of echinoids after death. Although a full taxonomic description of the echinoids cannot be given, almost all fossils were assigned to one taxon of irregular spatangoids, except for a single regular echinoid. Abundance and lifestyle of the irregular spatangoids in the Bullman Creek echinoid seep deposit resemble those of the fossil Tithonia oxfordiana from an upper Jurassic seep deposit in France and extant Sarsiaster griegii from modern seeps in the Gulf of Mexico. The Bullman Creek echinoid deposit probably represents a fossil analogue of the Gulf of Mexico Sarsiaster mass occurrence, indicating that the adaptation of spatangoid echinoids to chemosynthesis-based ecosystems ranges back at least to the earliest Oligocene.","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"160 1","pages":"941 - 954"},"PeriodicalIF":2.3,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46386084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-01DOI: 10.1017/S0016756823000043
F. I. Bezerra, J. H. Da Silva, Enzo Victorino Hernández Agressot, P. Freire, B. C. Viana, M. Mendes
Abstract Many studies have improved our understanding of the mode of preservation at the Crato fossil Lagerstätte. The high degree of preservation of the Crato mineralized insects is thought to be a consequence of the diffusion of ions through carcasses and envelopment by bacteria that, in turn, created microenvironmental conditions that led to mineralization, mainly pyritization. Pyritized insects have been oxidized by in situ weathering to more stable oxide/hydroxy minerals during Quaternary time. This transformation is essential to maintain the palaeontological information acquired during microbially induced pyritization in an oxidizing atmosphere. However, intense weathering can diminish or obscure the morphological fidelity, and little attention has been paid to the post-diagenetic processes experienced by these fossils. Here, we aim to determine the degree of alteration undergone by Crato pyritized insects using the following combination of analytical tools: scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared and Raman spectroscopy. Our results show that well-preserved insects are preferentially replaced by haematite and poorly preserved fossils are replaced by goethite. In addition, we recorded three types of post-diagenetic alteration: insects with iron-oxide overgrowths; insects associated with black coatings, sometimes with the formation of dendrites; and insects preserved as an impression, where only the outline of the body remains. All of these alterations have the potential to distort or tarnish palaeontological information. Here, we measured the effects of such telodiagenetic alterations at macro and micro scales. Therefore, this taphonomic approach has wide applicability wherever fine-grained deposits bearing mineralized insects are found.
{"title":"Effects of chemical weathering on the exceptional preservation of mineralized insects from the Crato Formation, Cretaceous of Brazil: implications for late diagenesis of fine-grained Lagerstätten deposits","authors":"F. I. Bezerra, J. H. Da Silva, Enzo Victorino Hernández Agressot, P. Freire, B. C. Viana, M. Mendes","doi":"10.1017/S0016756823000043","DOIUrl":"https://doi.org/10.1017/S0016756823000043","url":null,"abstract":"Abstract Many studies have improved our understanding of the mode of preservation at the Crato fossil Lagerstätte. The high degree of preservation of the Crato mineralized insects is thought to be a consequence of the diffusion of ions through carcasses and envelopment by bacteria that, in turn, created microenvironmental conditions that led to mineralization, mainly pyritization. Pyritized insects have been oxidized by in situ weathering to more stable oxide/hydroxy minerals during Quaternary time. This transformation is essential to maintain the palaeontological information acquired during microbially induced pyritization in an oxidizing atmosphere. However, intense weathering can diminish or obscure the morphological fidelity, and little attention has been paid to the post-diagenetic processes experienced by these fossils. Here, we aim to determine the degree of alteration undergone by Crato pyritized insects using the following combination of analytical tools: scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared and Raman spectroscopy. Our results show that well-preserved insects are preferentially replaced by haematite and poorly preserved fossils are replaced by goethite. In addition, we recorded three types of post-diagenetic alteration: insects with iron-oxide overgrowths; insects associated with black coatings, sometimes with the formation of dendrites; and insects preserved as an impression, where only the outline of the body remains. All of these alterations have the potential to distort or tarnish palaeontological information. Here, we measured the effects of such telodiagenetic alterations at macro and micro scales. Therefore, this taphonomic approach has wide applicability wherever fine-grained deposits bearing mineralized insects are found.","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"160 1","pages":"911 - 926"},"PeriodicalIF":2.3,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47854842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-20DOI: 10.1017/S001675682200125X
J. Ormö, E. Sturkell, P. Lambert, S. Bourquin, Jean-Baptiste Cherfils
Abstract The Rochechouart impact structure, located in the western part of the Massif Central in France, has been suggested to be one of the largest impact structures in western Europe. Various age datings have placed the event in a span from the Late Triassic to the Early Jurassic, but the most recent works favour a Late Triassic age. Very little is known about the target environment at the time and location of the impact event. Seemingly coeval, potential tsunamites along palaeoshorelines of the sea that covered parts of continental Europe at the time have been suggested to be related to the impact event and may indicate a marine target setting. Here we apply the method of visual line-logging of the graded suevite in the Chassenon SC2 drill core. This method has previously been used to investigate the depositional environment of similar deposits in several marine target impact craters. It allowed us to compare the deposits at these craters with those at Rochechouart, and in this way not only confirm the marine target setting, but also estimate the target water depth to be ∼200 m. Altogether, our results indicate a palaeogeographic target setting in a newly opened seaway connecting the Paris Basin with the Aquitaine Basin, which may indicate an age of impact at the younger end of the hitherto suggested age-span, i.e. in the late Rhaetian – Early Jurassic.
{"title":"Oceanic resurge deposits at the Rochechouart impact structure (France) suggest a marine target environment","authors":"J. Ormö, E. Sturkell, P. Lambert, S. Bourquin, Jean-Baptiste Cherfils","doi":"10.1017/S001675682200125X","DOIUrl":"https://doi.org/10.1017/S001675682200125X","url":null,"abstract":"Abstract The Rochechouart impact structure, located in the western part of the Massif Central in France, has been suggested to be one of the largest impact structures in western Europe. Various age datings have placed the event in a span from the Late Triassic to the Early Jurassic, but the most recent works favour a Late Triassic age. Very little is known about the target environment at the time and location of the impact event. Seemingly coeval, potential tsunamites along palaeoshorelines of the sea that covered parts of continental Europe at the time have been suggested to be related to the impact event and may indicate a marine target setting. Here we apply the method of visual line-logging of the graded suevite in the Chassenon SC2 drill core. This method has previously been used to investigate the depositional environment of similar deposits in several marine target impact craters. It allowed us to compare the deposits at these craters with those at Rochechouart, and in this way not only confirm the marine target setting, but also estimate the target water depth to be ∼200 m. Altogether, our results indicate a palaeogeographic target setting in a newly opened seaway connecting the Paris Basin with the Aquitaine Basin, which may indicate an age of impact at the younger end of the hitherto suggested age-span, i.e. in the late Rhaetian – Early Jurassic.","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"160 1","pages":"794 - 802"},"PeriodicalIF":2.3,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49595900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}