Defne Yigci, Joseph Bonventre, Aydogan Ozcan, Savas Tasoglu
Global terrestrial water supplies are rapidly depleting due to the consequences of climate change. Water scarcity results in an inevitable compromise of safe hygiene and sanitation practices, leading to the transmission of water-borne infectious diseases, and the preventable deaths of over 800.000 people each year. Moreover, almost 500 million people lack access to toilets and sanitation systems. Ecosystems are estimated to be contaminated by 6.2 million tons of nitrogenous products from human wastewater management practices. It is therefore imperative to transform toilet and sewage systems to promote equitable access to water and sanitation, improve public health, conserve water, and protect ecosystems. Here, the integration of emerging technologies in toilet and sewage networks to repurpose toilet and wastewater systems is reviewed. Potential applications of these systems to develop sustainable solutions to environmental challenges, promote public health, and advance person-centered healthcare are discussed.
{"title":"Repurposing Sewage and Toilet Systems: Environmental, Public Health, and Person-Centered Healthcare Applications","authors":"Defne Yigci, Joseph Bonventre, Aydogan Ozcan, Savas Tasoglu","doi":"10.1002/gch2.202300358","DOIUrl":"10.1002/gch2.202300358","url":null,"abstract":"<p>Global terrestrial water supplies are rapidly depleting due to the consequences of climate change. Water scarcity results in an inevitable compromise of safe hygiene and sanitation practices, leading to the transmission of water-borne infectious diseases, and the preventable deaths of over 800.000 people each year. Moreover, almost 500 million people lack access to toilets and sanitation systems. Ecosystems are estimated to be contaminated by 6.2 million tons of nitrogenous products from human wastewater management practices. It is therefore imperative to transform toilet and sewage systems to promote equitable access to water and sanitation, improve public health, conserve water, and protect ecosystems. Here, the integration of emerging technologies in toilet and sewage networks to repurpose toilet and wastewater systems is reviewed. Potential applications of these systems to develop sustainable solutions to environmental challenges, promote public health, and advance person-centered healthcare are discussed.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300358","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Khai Jie Wong, Joel Jie Foo, Tan Ji Siang, Valerine Khoo, Wee-Jun Ong
Photocatalytic hydrogen evolution is an environmentally friendly means of energy generation. Although g-C3N4 possesses fascinating features, its inherent shortcomings limit its photocatalytic applications. Therefore, modifying the intrinsic properties of g-C3N4 and introducing cocatalysts are essential to ameliorate the photocatalytic efficiency. To achieve this, metal-like Ti3C2Tx is integrated with crystalline g-C3N4 via a combined salt-assisted and freeze-drying approach to form crystalline g-C3N4/Ti3C2Tx (CCN/TCT) hybrids with different Ti3C2Tx loading amounts (0, 0.2, 0.3, 0.4, 0.5, 1, 5, 10 wt.%). Benefiting from the crystallization of CN, as evidenced by the XRD graph, and the marvelous conductivity of Ti3C2Tx supported by EIS plots, CCN/TCT/Pt loaded with 0.5 wt.% Ti3C2Tx displays an elevated H2 (2) should be subscripted evolution rate of 2651.93 µmol g−1 h−1 and a high apparent quantum efficiency of 7.26% (420 nm), outperforming CN/Pt, CCN/Pt, and other CCN/TCT/Pt hybrids. The enhanced performance is attributed to the synergistic effect of the highly crystalline structure of CCN that enables fleet charge transport and the efficient dual cocatalysts, Ti3C2Tx and Pt, that foster charge separation and provide plentiful active sites. This work demonstrates the potential of CCN/TCT as a promising material for hydrogen production, suggesting a significant advancement in the design of CCN heterostructures for effective photocatalytic systems.
{"title":"Harnessing the Power of Light: The Synergistic Effects of Crystalline Carbon Nitride and Ti3C2Tx MXene in Photocatalytic Hydrogen Production","authors":"Khai Jie Wong, Joel Jie Foo, Tan Ji Siang, Valerine Khoo, Wee-Jun Ong","doi":"10.1002/gch2.202300235","DOIUrl":"10.1002/gch2.202300235","url":null,"abstract":"<p>Photocatalytic hydrogen evolution is an environmentally friendly means of energy generation. Although g-C<sub>3</sub>N<sub>4</sub> possesses fascinating features, its inherent shortcomings limit its photocatalytic applications. Therefore, modifying the intrinsic properties of g-C<sub>3</sub>N<sub>4</sub> and introducing cocatalysts are essential to ameliorate the photocatalytic efficiency. To achieve this, metal-like Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> is integrated with crystalline g-C<sub>3</sub>N<sub>4</sub> via a combined salt-assisted and freeze-drying approach to form crystalline g-C<sub>3</sub>N<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> (CCN/TCT) hybrids with different Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> loading amounts (0, 0.2, 0.3, 0.4, 0.5, 1, 5, 10 wt.%). Benefiting from the crystallization of CN, as evidenced by the XRD graph, and the marvelous conductivity of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> supported by EIS plots, CCN/TCT/Pt loaded with 0.5 wt.% Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> displays an elevated H2 (2) should be subscripted evolution rate of 2651.93 µmol g<sup>−1</sup> h<sup>−1</sup> and a high apparent quantum efficiency of 7.26% (420 nm), outperforming CN/Pt, CCN/Pt, and other CCN/TCT/Pt hybrids. The enhanced performance is attributed to the synergistic effect of the highly crystalline structure of CCN that enables fleet charge transport and the efficient dual cocatalysts, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and Pt, that foster charge separation and provide plentiful active sites. This work demonstrates the potential of CCN/TCT as a promising material for hydrogen production, suggesting a significant advancement in the design of CCN heterostructures for effective photocatalytic systems.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300235","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140932074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A recent comment by Boivin et al. urges academia and governments to address sexism and fight bias at higher education and research institutions as losing female academics is costing science and society too much. Herein, I discuss further underlying reasons of sexism in academia and the importance of a deep dive into the causes of inequity at individual faculty and school levels to develop bespoke and enforceable gender equity plans, the importance of not using basic statistic as the only tool to measure equity/inequity as well as how key performance indicators could be better used to advance gender equity and end sexism in academia.
{"title":"Comment on “Sexism in Academia is Bad for Science and a Waste of Public Funding”","authors":"Leonie Barner","doi":"10.1002/gch2.202400072","DOIUrl":"10.1002/gch2.202400072","url":null,"abstract":"<p>A recent comment by Boivin et al. urges academia and governments to address sexism and fight bias at higher education and research institutions as losing female academics is costing science and society too much. Herein, I discuss further underlying reasons of sexism in academia and the importance of a deep dive into the causes of inequity at individual faculty and school levels to develop bespoke and enforceable gender equity plans, the importance of not using basic statistic as the only tool to measure equity/inequity as well as how key performance indicators could be better used to advance gender equity and end sexism in academia.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202400072","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140661638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristiane Kalinke, Robert D. Crapnell, Paulo R. de Oliveira, Bruno C. Janegitz, Juliano A. Bonacin, Craig E. Banks
This review aims to provide an overview of sustainable approaches that can be incorporated into well-known procedures for the development of materials, pre- and post-treatments, modifications, and applications of 3D-printed objects, especially for fused filament fabrication (FFF). Different examples of conductive and non-conductive bespoke filaments using renewable biopolymers, bioplasticizers, and recycled materials are presented and discussed. The main final characteristics of the polymeric materials achieved according to the feedstock, preparation, extrusion, and treatments are also covered. In addition to recycling and remanufacturing, this review also explores other alternative approaches that can be adopted to enhance the sustainability of methods, aiming to produce efficient and environmentally friendly 3D printed products. Adjusting printing parameters and miniaturizing systems are also highlighted in this regard. All these recommended strategies are employed to minimize environmental damage, while also enabling the production of high-quality, economical materials and 3D printed systems. These efforts align with the principles of Green Chemistry, Sustainable Development Goals (SDGs), 3Rs (Reduce, Reuse, Recycle), and Circular Economy concepts.
本综述旨在概述可持续方法,这些方法可纳入众所周知的三维打印对象(尤其是熔融长丝制造(FFF))的材料开发、前后处理、修改和应用程序。本文介绍并讨论了使用可再生生物聚合物、生物增塑剂和回收材料定制导电和非导电长丝的不同实例。此外,还介绍了根据原料、制备、挤压和处理实现的聚合物材料的主要最终特性。除回收和再制造外,本综述还探讨了其他可采用的替代方法,以提高方法的可持续性,从而生产出高效、环保的 3D 打印产品。调整打印参数和系统小型化也是这方面的重点。所有这些建议的策略都是为了最大限度地减少对环境的破坏,同时还能生产出优质、经济的材料和 3D 打印系统。这些努力符合绿色化学原则、可持续发展目标(SDGs)、3R(减少、再利用、再循环)和循环经济概念。
{"title":"How to Improve Sustainability in Fused Filament Fabrication (3D Printing) Research?","authors":"Cristiane Kalinke, Robert D. Crapnell, Paulo R. de Oliveira, Bruno C. Janegitz, Juliano A. Bonacin, Craig E. Banks","doi":"10.1002/gch2.202300408","DOIUrl":"10.1002/gch2.202300408","url":null,"abstract":"<p>This review aims to provide an overview of sustainable approaches that can be incorporated into well-known procedures for the development of materials, pre- and post-treatments, modifications, and applications of 3D-printed objects, especially for fused filament fabrication (FFF). Different examples of conductive and non-conductive bespoke filaments using renewable biopolymers, bioplasticizers, and recycled materials are presented and discussed. The main final characteristics of the polymeric materials achieved according to the feedstock, preparation, extrusion, and treatments are also covered. In addition to recycling and remanufacturing, this review also explores other alternative approaches that can be adopted to enhance the sustainability of methods, aiming to produce efficient and environmentally friendly 3D printed products. Adjusting printing parameters and miniaturizing systems are also highlighted in this regard. All these recommended strategies are employed to minimize environmental damage, while also enabling the production of high-quality, economical materials and 3D printed systems. These efforts align with the principles of Green Chemistry, Sustainable Development Goals (SDGs), 3Rs (Reduce, Reuse, Recycle), and Circular Economy concepts.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 7","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300408","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140671027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study presents the parameter extraction of single, double, and triple-diode photovoltaic (PV) models using the weighted leader search algorithm (WLS). The primary objective is to develop models that accurately reflect the characteristics of PV devices so that technical and economic benefits are maximized under all constraints. For this purpose, 24 models, 6 for two different PV cells, and 18 for six PV modules, whose experimental data are publicly available, are developed successfully. The second objective of this research is the selection of the most suitable algorithm for this problem. It is a significant challenge since the evaluation process requires using advanced statistical tools and techniques to determine the reliable selection. Therefore, seven brand-new algorithms, including WLS, the spider wasp optimizer, the shrimp and goby association search, the reversible elementary cellular automata, the fennec fox optimization, the Kepler optimization, and the rime optimization algorithms, are tested. The WLS has yielded the smallest minimum, average, RMSE, and standard deviation among those. Its superiority is also verified by Friedman and Wilcoxon signed-rank test based on 144 pairwise comparisons. In conclusion, it is demonstrated that the WLS is a superior algorithm in PV parameter extraction for developing accurate models.
{"title":"Parameter Extraction of Single, Double, and Triple-Diode Photovoltaic Models Using the Weighted Leader Search Algorithm","authors":"İpek Çetinbaş","doi":"10.1002/gch2.202300355","DOIUrl":"10.1002/gch2.202300355","url":null,"abstract":"<p>This study presents the parameter extraction of single, double, and triple-diode photovoltaic (PV) models using the weighted leader search algorithm (WLS). The primary objective is to develop models that accurately reflect the characteristics of PV devices so that technical and economic benefits are maximized under all constraints. For this purpose, 24 models, 6 for two different PV cells, and 18 for six PV modules, whose experimental data are publicly available, are developed successfully. The second objective of this research is the selection of the most suitable algorithm for this problem. It is a significant challenge since the evaluation process requires using advanced statistical tools and techniques to determine the reliable selection. Therefore, seven brand-new algorithms, including WLS, the spider wasp optimizer, the shrimp and goby association search, the reversible elementary cellular automata, the fennec fox optimization, the Kepler optimization, and the rime optimization algorithms, are tested. The WLS has yielded the smallest minimum, average, RMSE, and standard deviation among those. Its superiority is also verified by Friedman and Wilcoxon signed-rank test based on 144 pairwise comparisons. In conclusion, it is demonstrated that the WLS is a superior algorithm in PV parameter extraction for developing accurate models.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 5","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300355","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giuseppe Sportelli, Miriam Marchi, Paolo Fornasiero, Giacomo Filippini, Federico Franco, Michele Melchionna
The use of light as a catalytic prompt for the synthesis of industrial relevant compounds is widely explored in the past years, with a special consideration over the hydrogen evolution reaction (HER). However, semiconductors for heterogeneous photocatalysis suffer from fast charge recombination and, consequently, low solar-to-hydrogen efficiency. These drawbacks can be mitigated by coupling photocatalysts with an external circuit that can physically separate the photogenerated charge carriers (electrons and holes). For this reason, photoelectrochemical (PEC) production of hydrogen is under the spotlight as promising green and sustainable technique and widely investigated in numerous publications. However, considering that a significant fraction of the hydrogen produced is used for reduction processes, the development of PEC devices for direct in situ hydrogenation can address the challenges associated with hydrogen storage and distribution. This Perspective aims at highlighting the fundamental aspects of HER from PEC systems, and how these can be harnessed toward the implementation of suitable settings for the hydrogenation of organic compounds of industrial value.
在过去几年中,利用光作为催化剂合成工业相关化合物的研究得到了广泛的探索,其中特别关注氢进化反应(HER)。然而,用于异相光催化的半导体存在电荷快速重组的问题,因此太阳能转化为氢气的效率较低。通过将光催化剂与外部电路耦合,使光生成的电荷载流子(电子和空穴)物理分离,可以减轻这些缺点。因此,光电化学(PEC)制氢技术作为一种前景广阔的绿色可持续技术备受关注,并在众多出版物中得到广泛研究。然而,考虑到所产生的氢有很大一部分用于还原过程,开发用于直接原位氢化的 PEC 设备可以解决与氢储存和分配相关的挑战。本视角旨在强调 PEC 系统产生的 HER 的基本方面,以及如何利用这些方面实现具有工业价值的有机化合物氢化的适当设置。
{"title":"Photoelectrocatalysis for Hydrogen Evolution Ventures into the World of Organic Synthesis","authors":"Giuseppe Sportelli, Miriam Marchi, Paolo Fornasiero, Giacomo Filippini, Federico Franco, Michele Melchionna","doi":"10.1002/gch2.202400012","DOIUrl":"10.1002/gch2.202400012","url":null,"abstract":"<p>The use of light as a catalytic prompt for the synthesis of industrial relevant compounds is widely explored in the past years, with a special consideration over the hydrogen evolution reaction (HER). However, semiconductors for heterogeneous photocatalysis suffer from fast charge recombination and, consequently, low solar-to-hydrogen efficiency. These drawbacks can be mitigated by coupling photocatalysts with an external circuit that can physically separate the photogenerated charge carriers (electrons and holes). For this reason, photoelectrochemical (PEC) production of hydrogen is under the spotlight as promising green and sustainable technique and widely investigated in numerous publications. However, considering that a significant fraction of the hydrogen produced is used for reduction processes, the development of PEC devices for direct in situ hydrogenation can address the challenges associated with hydrogen storage and distribution. This Perspective aims at highlighting the fundamental aspects of HER from PEC systems, and how these can be harnessed toward the implementation of suitable settings for the hydrogenation of organic compounds of industrial value.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 6","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202400012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, photocatalysts with high photocatalytic activity performance are synthesized by synthesizing graphene aerogel-supported, cadmium-doped TiO2 composites by hydrothermal method for the effective degradation of organic dyes in wastewater. Here, GA–TiO2–Cd is investigated as a photocatalyst for the degradation of toxic dyes named Orange G, Acid Blue 161, and Brilliant Green in the UV part of the light spectrum. As a result of the experiments, it is observed that the effective decomposition of organic dyes is due to graphene aerogel (GA) and cadmium-doped TiO2 nanoparticles. The results show that for 20 ppm solutions of Orange G, Acid Blue 161, and Brilliant Green, dyes are removed at approximately 81.075%, 84.15%, and 95.18% in 120 min. The morphology and elemental analysis of the synthesized composites are determined using SEM-EDS, crystal structure analysis by XRD, chemical bond analysis by FTIR, optical properties by UV-Vis-NIR spectrophotometry, and thermal resistance by TGA analysis.
{"title":"Degradation of Orange G, Acid Blue 161, and Brillant Green Dyes Using UV Light-Activated GA–TiO2–Cd Composite","authors":"Derya Tekin, Derya Birhan, Taner Tekin, Hakan Kiziltas","doi":"10.1002/gch2.202300271","DOIUrl":"10.1002/gch2.202300271","url":null,"abstract":"<p>In this study, photocatalysts with high photocatalytic activity performance are synthesized by synthesizing graphene aerogel-supported, cadmium-doped TiO<sub>2</sub> composites by hydrothermal method for the effective degradation of organic dyes in wastewater. Here, GA–TiO<sub>2</sub>–Cd is investigated as a photocatalyst for the degradation of toxic dyes named Orange G, Acid Blue 161, and Brilliant Green in the UV part of the light spectrum. As a result of the experiments, it is observed that the effective decomposition of organic dyes is due to graphene aerogel (GA) and cadmium-doped TiO<sub>2</sub> nanoparticles. The results show that for 20 ppm solutions of Orange G, Acid Blue 161, and Brilliant Green, dyes are removed at approximately 81.075%, 84.15%, and 95.18% in 120 min. The morphology and elemental analysis of the synthesized composites are determined using SEM-EDS, crystal structure analysis by XRD, chemical bond analysis by FTIR, optical properties by UV-Vis-NIR spectrophotometry, and thermal resistance by TGA analysis.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 5","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300271","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yağmur Uysal, Zeynep Görkem Doğaroğlu, Mehmet Nuri Makas, Zehranur Çaylali
Water scarcity presents a formidable challenge to agriculture, particularly in arid, semiarid, and rainfed settings. In agricultural contexts, hydrogels serve as granular agents for water retention, undergoing considerable expansion upon water exposure. They assume versatile roles encompassing soil-water retention, the dispensation of nutrients and pesticides, seed encapsulation, erosion mitigation, and even food supplementation. This study's objective involves the examination of biochar-infused hydrogels, fashioned by incorporating vine pruning waste-derived biochars, and the assessment of swelling behaviors in various aqueous environments encompassing deionized, tap, and saline water at concentrations of 0.5–1%. Characterizations of the vine-biochars-VB and biochar-incorporated hydrogels-VBHG are executed, with particular attention to their swelling properties across diverse media. As an initial step toward appraising their agricultural relevance, these hydrogels are introduced to a germination medium featuring wheat seeds to discern potential influences on germination dynamics. The maximum swelling capacity of VBHG is recorded in deionized water, tap water at pH 7.0, tap water at pH 9.0, saline water at 0.5%, and saline water at 1%, reaching 352%, 207%, 230%, 522%, and 549%, respectively. Remarkably, the 0.5% VBHG treatment exhibits the most pronounced root elongation. The application of hydrogels in agriculture exhibits promise, particularly within drought-related contexts and potential soilless applications.
{"title":"Boosting Water Retention in Agriculture: Vine Biochar-Doped Hydrogels' Swelling and Germination Effects","authors":"Yağmur Uysal, Zeynep Görkem Doğaroğlu, Mehmet Nuri Makas, Zehranur Çaylali","doi":"10.1002/gch2.202300254","DOIUrl":"10.1002/gch2.202300254","url":null,"abstract":"<p>Water scarcity presents a formidable challenge to agriculture, particularly in arid, semiarid, and rainfed settings. In agricultural contexts, hydrogels serve as granular agents for water retention, undergoing considerable expansion upon water exposure. They assume versatile roles encompassing soil-water retention, the dispensation of nutrients and pesticides, seed encapsulation, erosion mitigation, and even food supplementation. This study's objective involves the examination of biochar-infused hydrogels, fashioned by incorporating vine pruning waste-derived biochars, and the assessment of swelling behaviors in various aqueous environments encompassing deionized, tap, and saline water at concentrations of 0.5–1%. Characterizations of the vine-biochars-VB and biochar-incorporated hydrogels-VBHG are executed, with particular attention to their swelling properties across diverse media. As an initial step toward appraising their agricultural relevance, these hydrogels are introduced to a germination medium featuring wheat seeds to discern potential influences on germination dynamics. The maximum swelling capacity of VBHG is recorded in deionized water, tap water at pH 7.0, tap water at pH 9.0, saline water at 0.5%, and saline water at 1%, reaching 352%, 207%, 230%, 522%, and 549%, respectively. Remarkably, the 0.5% VBHG treatment exhibits the most pronounced root elongation. The application of hydrogels in agriculture exhibits promise, particularly within drought-related contexts and potential soilless applications.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 5","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140367718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To reduce the high burden of disease caused by air pollution, the World Health Organization (WHO) released new Air Quality Guidelines (AQG) on September 22, 2021. In this study, the daily fine particulate matter (PM2.5) and surface ozone (O3) data of 618 cities around the world is collected from 2019 to 2022. Based on the new AQG, the number of attainment days for daily average concentrations of PM2.5 (≤ 15 µg m−3) and O3 (≤ 100 µg m−3) is approximately 10% and 90%, respectively. China and India exhibit a decreasing trend in the number of highly polluted days (> 75 µg m−3) for PM. Every year over 68% and 27% of cities in the world are exposed to harmful PM2.5 (> 35 µg m−3) and O3 (> 100 µg m−3) pollution, respectively. Combined with the United Nations Sustainable Development Goals (SDGs), it is found that more than 35% of the world's cities face PM2.5-O3 compound pollution. Furthermore, the exposure risks in these cities (China, India, etc.) are mainly categorized as “High Risk”, “Risk”, and “Stabilization”. In contrast, economically developed cities are mainly categorized as “High Safety”, “Safety”, and “Deep Stabilization.” These findings indicate that global implementation of the WHO's new AQG will minimize the inequitable exposure risk from air pollution.
{"title":"Toward Better and Healthier Air Quality: Global PM2.5 and O3 Pollution Status and Risk Assessment Based on the New WHO Air Quality Guidelines for 2021","authors":"Jianhua Liu, Chao He, Yajun Si, Bin Li, Qian Wu, Jinmian Ni, Yue Zhao, Qixin Hu, Shenwen Du, Zhendong Lu, Jiming Jin, Chao Xu","doi":"10.1002/gch2.202300258","DOIUrl":"10.1002/gch2.202300258","url":null,"abstract":"<p>To reduce the high burden of disease caused by air pollution, the World Health Organization (WHO) released new Air Quality Guidelines (AQG) on September 22, 2021. In this study, the daily fine particulate matter (PM<sub>2.5</sub>) and surface ozone (O<sub>3</sub>) data of 618 cities around the world is collected from 2019 to 2022. Based on the new AQG, the number of attainment days for daily average concentrations of PM<sub>2.5</sub> (≤ 15 µg m<sup>−3</sup>) and O<sub>3</sub> (≤ 100 µg m<sup>−3</sup>) is approximately 10% and 90%, respectively. China and India exhibit a decreasing trend in the number of highly polluted days (> 75 µg m<sup>−3</sup>) for PM. Every year over 68% and 27% of cities in the world are exposed to harmful PM<sub>2.5</sub> (> 35 µg m<sup>−3</sup>) and O<sub>3</sub> (> 100 µg m<sup>−3</sup>) pollution, respectively. Combined with the United Nations Sustainable Development Goals (SDGs), it is found that more than 35% of the world's cities face PM<sub>2.5</sub>-O<sub>3</sub> compound pollution. Furthermore, the exposure risks in these cities (China, India, etc.) are mainly categorized as “High Risk”, “Risk”, and “Stabilization”. In contrast, economically developed cities are mainly categorized as “High Safety”, “Safety”, and “Deep Stabilization.” These findings indicate that global implementation of the WHO's new AQG will minimize the inequitable exposure risk from air pollution.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 4","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202300258","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. R. S. Kumar, S. K. Choudhary, P. K. Radhakrishnan, R. S. Bharath, N. Chandrasekaran, V. Sankar, A. Sukumaran, C. Oommen, “Lopsided Blood-Thinning Drug Increases the Risk of Internal Flow Choking Leading to Shock Wave Generation Causing Asymptomatic Cardiovascular Disease.” Global Challenges2021, 5, 2000076. https://doi.org/10.1002/gch2.202000076
The above article, published on January 29, 2021 in Wiley Online Library, has been retracted by agreement between the journal Editor-in-Chief, Mara Staffilani, and Wiley-VCH GmbH, Weinheim.
The retraction has been agreed due to concerns raised by a third party in a submitted Comment regarding the paper's proposed theory and its application of concepts.
Post-publication review by an independent reviewer determined that the article applies the concept of compressible flow to an inherently incompressible flow system. As a result, the article's hypothesis and following argument do not scientifically support its conclusions. Therefore, the conclusions are considered unreliable.
An investigation by Wiley and the journal's Editor-in-Chief supported this conclusion.
R. S. Kumar、S. K. Choudhary、P. K. Radhakrishnan、R. S. Bharath、N. Chandrasekaran、V. Sankar、A. Sukumaran、C. Oommen,"Lopsided Blood-Thinning Drug Increases the Risk of Internal Flow Choking Leading to Shock Wave Generation Causing Asymptomatic Cardiovascular Disease"。https://doi.org/10.1002/gch2.202000076The 上述文章发表于 2021 年 1 月 29 日的《威利在线图书馆》(Wiley Online Library),经期刊主编马拉-斯塔菲拉尼(Mara Staffilani)和魏因海姆 Wiley-VCH GmbH 公司同意,已被撤回。同意撤回的原因是第三方在提交的评论中对该论文提出的理论及其概念应用提出了担忧。独立审稿人在发表后进行了审查,确定该文章将可压缩流的概念应用于固有的不可压缩流系统。因此,文章的假设和后续论证不能科学地支持其结论。Wiley 和期刊主编的调查支持这一结论。
{"title":"Retraction: Lopsided Blood-Thinning Drug Increases the Risk of Internal Flow Choking Leading to Shock Wave Generation Causing Asymptomatic Cardiovascular Disease","authors":"","doi":"10.1002/gch2.202470083","DOIUrl":"10.1002/gch2.202470083","url":null,"abstract":"<p>V. R. S. Kumar, S. K. Choudhary, P. K. Radhakrishnan, R. S. Bharath, N. Chandrasekaran, V. Sankar, A. Sukumaran, C. Oommen, “Lopsided Blood-Thinning Drug Increases the Risk of Internal Flow Choking Leading to Shock Wave Generation Causing Asymptomatic Cardiovascular Disease.” <i>Global Challenges</i> <b>2021</b>, <i>5</i>, 2000076. https://doi.org/10.1002/gch2.202000076</p><p>The above article, published on January 29, 2021 in Wiley Online Library, has been retracted by agreement between the journal Editor-in-Chief, Mara Staffilani, and Wiley-VCH GmbH, Weinheim.</p><p>The retraction has been agreed due to concerns raised by a third party in a submitted Comment regarding the paper's proposed theory and its application of concepts.</p><p>Post-publication review by an independent reviewer determined that the article applies the concept of compressible flow to an inherently incompressible flow system. As a result, the article's hypothesis and following argument do not scientifically support its conclusions. Therefore, the conclusions are considered unreliable.</p><p>An investigation by Wiley and the journal's Editor-in-Chief supported this conclusion.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 4","pages":""},"PeriodicalIF":4.9,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202470083","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}