首页 > 最新文献

Frontiers in Synaptic Neuroscience最新文献

英文 中文
Metformin inhibits spontaneous excitatory postsynaptic currents in spinal dorsal cord neurons from paclitaxel-treated rats. 二甲双胍抑制紫杉醇处理大鼠脊髓背神经元突触后自发兴奋电流。
IF 3.7 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.3389/fnsyn.2023.1191383
Ting-Ting Liu, Chun-Yu Qiu, Wang-Ping Hu

Introduction: Cancer patients treated with paclitaxel often develop chemotherapy-induced peripheral neuropathy, which has not been effectively treated with drugs. The anti-diabetic drug metformin is effective in the treatment of neuropathic pain. The aim of this study was to elucidate effect of metformin on paclitaxel-induced neuropathic pain and spinal synaptic transmission.

Methods: Electrophysiological experiments on rat spinal slices were performed in vitro and mechanical allodynia quantified in vitro.

Results: The present data demonstrated that intraperitoneal injection of paclitaxel produced mechanical allodynia and potentiated spinal synaptic transmission. Intrathecal injection of metformin significantly reversed the established mechanical allodynia induced by paclitaxel in rats. Either spinal or systemic administration of metformin significantly inhibited the increased frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in spinal dorsal horn neurons from paclitaxel-treated rats. We found that 1 h incubation of metformin also reduced the frequency rather than the amplitude of sEPSCs in the spinal slices from paclitaxel-treated rats.

Discussion: These results suggested that metformin was able to depress the potentiated spinal synaptic transmission, which may contribute to alleviating the paclitaxel-induced neuropathic pain.

简介:紫杉醇治疗的癌症患者常发生化疗诱导的周围神经病变,药物治疗效果不佳。降糖药二甲双胍是治疗神经性疼痛的有效药物。本研究旨在探讨二甲双胍对紫杉醇致神经性疼痛和脊髓突触传递的影响。方法:对大鼠脊髓切片进行电生理实验,并对机械异常痛进行体外量化。结果:腹腔注射紫杉醇可引起机械性异常痛,增强脊髓突触传递。鞘内注射二甲双胍可明显逆转紫杉醇所致的大鼠机械性异常痛。脊柱或全身给药二甲双胍显著抑制紫杉醇处理大鼠脊髓背角神经元自发兴奋性突触后电流(sEPSCs)频率的增加。我们发现,在紫杉醇处理的大鼠脊髓切片中,二甲双胍孵养1小时也降低了sEPSCs的频率,而不是幅度。讨论:这些结果表明,二甲双胍能够抑制脊髓突触传递的增强,这可能有助于减轻紫杉醇诱导的神经性疼痛。
{"title":"Metformin inhibits spontaneous excitatory postsynaptic currents in spinal dorsal cord neurons from paclitaxel-treated rats.","authors":"Ting-Ting Liu,&nbsp;Chun-Yu Qiu,&nbsp;Wang-Ping Hu","doi":"10.3389/fnsyn.2023.1191383","DOIUrl":"https://doi.org/10.3389/fnsyn.2023.1191383","url":null,"abstract":"<p><strong>Introduction: </strong>Cancer patients treated with paclitaxel often develop chemotherapy-induced peripheral neuropathy, which has not been effectively treated with drugs. The anti-diabetic drug metformin is effective in the treatment of neuropathic pain. The aim of this study was to elucidate effect of metformin on paclitaxel-induced neuropathic pain and spinal synaptic transmission.</p><p><strong>Methods: </strong>Electrophysiological experiments on rat spinal slices were performed <i>in vitro</i> and mechanical allodynia quantified <i>in vitro</i>.</p><p><strong>Results: </strong>The present data demonstrated that intraperitoneal injection of paclitaxel produced mechanical allodynia and potentiated spinal synaptic transmission. Intrathecal injection of metformin significantly reversed the established mechanical allodynia induced by paclitaxel in rats. Either spinal or systemic administration of metformin significantly inhibited the increased frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in spinal dorsal horn neurons from paclitaxel-treated rats. We found that 1 h incubation of metformin also reduced the frequency rather than the amplitude of sEPSCs in the spinal slices from paclitaxel-treated rats.</p><p><strong>Discussion: </strong>These results suggested that metformin was able to depress the potentiated spinal synaptic transmission, which may contribute to alleviating the paclitaxel-induced neuropathic pain.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10195993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9497995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. 阿尔茨海默病是一种突触病:疾病发展过程中突触功能障碍的证据。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-01-01 DOI: 10.3389/fnsyn.2023.1129036
Soraya Meftah, Jian Gan

The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.

突触一直被认为是阿尔茨海默病中一个脆弱而关键的靶点,迄今为止,突触丧失是阿尔茨海默病认知能力下降的主要生物学相关因素之一。这发生在神经元丧失之前,有大量证据表明突触功能障碍发生在神经元丧失之前,这支持了突触衰竭是疾病发病机制中关键阶段的观点。阿尔茨海默病的两个主要病理标志--淀粉样蛋白或 tau 蛋白的异常聚集,在阿尔茨海默病的动物和细胞模型中对突触生理产生了明显的影响。此外,越来越多的证据表明,这两种蛋白可能会对神经生理功能紊乱产生协同作用。在此,我们将回顾阿尔茨海默病突触改变的一些主要发现,以及我们从阿尔茨海默病动物模型和细胞模型中了解到的情况。首先,我们简要总结了一些人类证据,这些证据表明突触发生了改变,包括突触与网络活动的关系。随后,我们考虑了阿尔茨海默病的动物和细胞模型,重点介绍了淀粉样蛋白和 tau 病理学小鼠模型,以及这些蛋白在突触功能障碍中可能发挥的作用,无论是单独作用还是研究这两种病理学如何在功能障碍中相互作用。这特别侧重于在这些动物模型中观察到的神经生理功能和功能障碍,通常使用电生理学或钙成像技术进行测量。在突触功能障碍和丧失之后,不可能想象这不会改变大脑内的振荡活动。因此,本综述还讨论了这可能是阿尔茨海默病动物模型和人类患者中某些异常振荡模式的基础。最后,综述了阿尔茨海默病突触功能障碍领域的一些关键方向和注意事项。这包括目前专门针对突触功能障碍的治疗方法,以及调节活动以挽救异常振荡模式的方法。该领域未来值得关注的其他重要方向包括非神经元细胞类型(如星形胶质细胞和小胶质细胞)的作用,以及阿尔茨海默病中独立于淀粉样蛋白和 tau 的功能障碍机制。在可预见的未来,突触必将继续成为阿尔茨海默病的一个重要靶点。
{"title":"Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression.","authors":"Soraya Meftah,&nbsp;Jian Gan","doi":"10.3389/fnsyn.2023.1129036","DOIUrl":"https://doi.org/10.3389/fnsyn.2023.1129036","url":null,"abstract":"<p><p>The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9561114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Editorial: Subcellular computations and information processing. 编辑:亚细胞计算和信息处理。
IF 3.7 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2023-01-01 DOI: 10.3389/fnsyn.2023.1169671
Tomoe Ishikawa, Ayako Wendy Ishikawa, Athanasia Papoutsi, Asami Tanimura, Keisuke Yonehara
COPYRIGHT © 2023 Ishikawa, Ishikawa, Papoutsi, Tanimura and Yonehara. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Editorial: Subcellular computations and information processing
{"title":"Editorial: Subcellular computations and information processing.","authors":"Tomoe Ishikawa,&nbsp;Ayako Wendy Ishikawa,&nbsp;Athanasia Papoutsi,&nbsp;Asami Tanimura,&nbsp;Keisuke Yonehara","doi":"10.3389/fnsyn.2023.1169671","DOIUrl":"https://doi.org/10.3389/fnsyn.2023.1169671","url":null,"abstract":"COPYRIGHT © 2023 Ishikawa, Ishikawa, Papoutsi, Tanimura and Yonehara. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Editorial: Subcellular computations and information processing","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9520148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurexins and their ligands at inhibitory synapses. 抑制性突触中的神经毒素及其配体
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2022-12-21 eCollection Date: 2022-01-01 DOI: 10.3389/fnsyn.2022.1087238
Emma E Boxer, Jason Aoto

Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex trans-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.

自从发现神经肽(Nrxns)是重要的、进化上保守的突触粘附分子以来,人们的注意力主要集中在它们对谷氨酸能突触的功能性贡献上。最近,我们对神经肽在 GABA 能突触中的功能的认识取得了重大进展,发现神经肽可以以脑区和突触特异性的方式在调节抑制性突触的维持和功能方面发挥多向作用。GABA 能神经元种类繁多,具有不同的突触特性、神经支配部位、神经调节和可塑性。不同类别的 GABA 能神经元通常表达不同的 Nrxn 异构体,这些 Nrxn 异构体表现出不同的替代外显子用法。此外,Nrxn 配体可以不同方式表达,并显示出突触特异性定位模式,这可能有助于形成复杂的跨突触分子代码,从而确定抑制性突触功能的特性和局部电路的特性。在这篇综述中,我们将讨论 Nrxns 及其配体如何以脑区、细胞类型和突触特异性的方式形成突触抑制。
{"title":"Neurexins and their ligands at inhibitory synapses.","authors":"Emma E Boxer, Jason Aoto","doi":"10.3389/fnsyn.2022.1087238","DOIUrl":"10.3389/fnsyn.2022.1087238","url":null,"abstract":"<p><p>Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex <i>trans</i>-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9812575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10512814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of the clathrin inhibitor Pitstop-2 on synaptic vesicle recycling at a central synapse in vivo. 网格蛋白抑制剂Pitstop-2对中枢突触突触囊泡循环的影响。
IF 3.7 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-11-17 eCollection Date: 2022-01-01 DOI: 10.3389/fnsyn.2022.1056308
Alp Paksoy, Simone Hoppe, Yvette Dörflinger, Heinz Horstmann, Kurt Sätzler, Christoph Körber

Four modes of endocytosis and subsequent synaptic vesicle (SV) recycling have been described at the presynapse to ensure the availability of SVs for synaptic release. However, it is unclear to what extend these modes operate under physiological activity patterns in vivo. The coat protein clathrin can regenerate SVs either directly from the plasma membrane (PM) via clathrin-mediated endocytosis (CME), or indirectly from synaptic endosomes by SV budding. Here, we examined the role of clathrin in SV recycling under physiological conditions by applying the clathrin inhibitor Pitstop-2 to the calyx of Held, a synapse optimized for high frequency synaptic transmission in the auditory brainstem, in vivo. The effects of clathrin-inhibition on SV recycling were investigated by serial sectioning scanning electron microscopy (S3EM) and 3D reconstructions of endocytic structures labeled by the endocytosis marker horseradish peroxidase (HRP). We observed large endosomal compartments as well as HRP-filled, black SVs (bSVs) that have been recently recycled. The application of Pitstop-2 led to reduced bSV but not large endosome density, increased volumes of large endosomes and shifts in the localization of both types of endocytic compartments within the synapse. These changes after perturbation of clathrin function suggest that clathrin plays a role in SV recycling from both, the PM and large endosomes, under physiological activity patterns, in vivo.

在突触前,描述了四种内吞作用和随后的突触囊泡(SV)循环模式,以确保突触释放SV的可用性。然而,目前尚不清楚这些模式在体内生理活动模式下的作用范围。表皮蛋白网格蛋白既可以通过网格蛋白介导的胞吞作用(CME)直接从质膜(PM)再生SV,也可以通过SV出芽间接从突触内体(synaptic endosome)再生SV。在这里,我们通过将网格蛋白抑制剂Pitstop-2应用于Held(听觉脑干中为高频突触传递而优化的突触)的花萼,在体内研究了生理条件下网格蛋白在SV循环中的作用。通过连续切片扫描电镜(S3EM)和内吞标记物辣根过氧化物酶(HRP)标记的内吞结构三维重建,研究了网格蛋白抑制对SV回收的影响。我们观察到大的内体室室以及最近回收的充满酶的黑色SVs (bSVs)。Pitstop-2的应用导致bSV降低,但核内体密度不高,大核内体体积增加,两种类型的内吞区在突触内的定位发生变化。网格蛋白功能扰动后的这些变化表明,在生理活动模式下,网格蛋白在体内从PM和大核内体中回收SV中起作用。
{"title":"Effects of the clathrin inhibitor Pitstop-2 on synaptic vesicle recycling at a central synapse <i>in vivo</i>.","authors":"Alp Paksoy,&nbsp;Simone Hoppe,&nbsp;Yvette Dörflinger,&nbsp;Heinz Horstmann,&nbsp;Kurt Sätzler,&nbsp;Christoph Körber","doi":"10.3389/fnsyn.2022.1056308","DOIUrl":"https://doi.org/10.3389/fnsyn.2022.1056308","url":null,"abstract":"<p><p>Four modes of endocytosis and subsequent synaptic vesicle (SV) recycling have been described at the presynapse to ensure the availability of SVs for synaptic release. However, it is unclear to what extend these modes operate under physiological activity patterns <i>in vivo</i>. The coat protein clathrin can regenerate SVs either directly from the plasma membrane (PM) via clathrin-mediated endocytosis (CME), or indirectly from synaptic endosomes by SV budding. Here, we examined the role of clathrin in SV recycling under physiological conditions by applying the clathrin inhibitor Pitstop-2 to the calyx of Held, a synapse optimized for high frequency synaptic transmission in the auditory brainstem, <i>in vivo.</i> The effects of clathrin-inhibition on SV recycling were investigated by serial sectioning scanning electron microscopy (S<sup>3</sup>EM) and 3D reconstructions of endocytic structures labeled by the endocytosis marker horseradish peroxidase (HRP). We observed large endosomal compartments as well as HRP-filled, black SVs (bSVs) that have been recently recycled. The application of Pitstop-2 led to reduced bSV but not large endosome density, increased volumes of large endosomes and shifts in the localization of both types of endocytic compartments within the synapse. These changes after perturbation of clathrin function suggest that clathrin plays a role in SV recycling from both, the PM and large endosomes, under physiological activity patterns, <i>in vivo</i>.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35346358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Serotonin as a volume transmission signal in the "simple nervous system" of mollusks: From axonal guidance to behavioral orchestration. 5 -羟色胺在软体动物“简单神经系统”中的体积传递信号:从轴突引导到行为协调。
IF 3.7 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-11-08 eCollection Date: 2022-01-01 DOI: 10.3389/fnsyn.2022.1024778
Elena E Voronezhskaya
COPYRIGHT © 2022 Voronezhskaya. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Serotonin as a volume transmission signal in the “simple nervous system” of mollusks: From axonal guidance to behavioral orchestration
{"title":"Serotonin as a volume transmission signal in the \"simple nervous system\" of mollusks: From axonal guidance to behavioral orchestration.","authors":"Elena E Voronezhskaya","doi":"10.3389/fnsyn.2022.1024778","DOIUrl":"https://doi.org/10.3389/fnsyn.2022.1024778","url":null,"abstract":"COPYRIGHT © 2022 Voronezhskaya. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Serotonin as a volume transmission signal in the “simple nervous system” of mollusks: From axonal guidance to behavioral orchestration","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40494184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane lipid rafts are required for AMPA receptor tyrosine phosphorylation. 膜脂筏是AMPA受体酪氨酸磷酸化所必需的。
IF 3.7 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-10-31 eCollection Date: 2022-01-01 DOI: 10.3389/fnsyn.2022.921772
Takashi Hayashi

Membrane lipid rafts are sphingolipids and cholesterol-enriched membrane microdomains, which form a center for the interaction or assembly of palmitoylated signaling molecules, including Src family non-receptor type protein tyrosine kinases. Lipid rafts abundantly exist in neurons and function in the maintenance of synapses. Excitatory synaptic strength is largely controlled by the surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors in the mammalian brain. AMPA receptor endocytosis from the synaptic surface is regulated by phosphorylation of the GluA2 subunit at tyrosine 876 by Src family kinases. Here, I revealed that tyrosine phosphorylated GluA2 is concentrated in the lipid rafts fraction. Furthermore, stimulation-induced upregulation of GluA2 tyrosine phosphorylation is disrupted by the treatment of neurons with a cholesterol-depleting compound, filipin III. These results indicate the importance of lipid rafts as enzymatic reactive sites for AMPA receptor tyrosine phosphorylation and subsequent AMPA receptor internalization from the synaptic surface.

膜脂筏是鞘脂和富含胆固醇的膜微结构域,形成了棕榈酰化信号分子相互作用或组装的中心,包括Src家族非受体型蛋白酪氨酸激酶。脂筏在神经元中大量存在,并在突触的维持中起作用。哺乳动物脑内兴奋性突触强度主要受α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体的表面表达控制。AMPA受体突触表面的内吞作用是由Src家族激酶磷酸化酪氨酸876处的GluA2亚基调控的。在这里,我发现酪氨酸磷酸化的GluA2集中在脂筏部分。此外,刺激诱导的GluA2酪氨酸磷酸化上调被消耗胆固醇的化合物filipin III处理的神经元所破坏。这些结果表明脂筏作为AMPA受体酪氨酸磷酸化和随后AMPA受体从突触表面内化的酶活性位点的重要性。
{"title":"Membrane lipid rafts are required for AMPA receptor tyrosine phosphorylation.","authors":"Takashi Hayashi","doi":"10.3389/fnsyn.2022.921772","DOIUrl":"https://doi.org/10.3389/fnsyn.2022.921772","url":null,"abstract":"<p><p>Membrane lipid rafts are sphingolipids and cholesterol-enriched membrane microdomains, which form a center for the interaction or assembly of palmitoylated signaling molecules, including Src family non-receptor type protein tyrosine kinases. Lipid rafts abundantly exist in neurons and function in the maintenance of synapses. Excitatory synaptic strength is largely controlled by the surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors in the mammalian brain. AMPA receptor endocytosis from the synaptic surface is regulated by phosphorylation of the GluA2 subunit at tyrosine 876 by Src family kinases. Here, I revealed that tyrosine phosphorylated GluA2 is concentrated in the lipid rafts fraction. Furthermore, stimulation-induced upregulation of GluA2 tyrosine phosphorylation is disrupted by the treatment of neurons with a cholesterol-depleting compound, filipin III. These results indicate the importance of lipid rafts as enzymatic reactive sites for AMPA receptor tyrosine phosphorylation and subsequent AMPA receptor internalization from the synaptic surface.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662747/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40691335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Neocortical layer 5 subclasses: From cellular properties to roles in behavior. 新皮层 5 亚类:从细胞特性到行为作用
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2022-10-28 eCollection Date: 2022-01-01 DOI: 10.3389/fnsyn.2022.1006773
Sara Moberg, Naoya Takahashi

Layer 5 (L5) serves as the main output layer of cortical structures, where long-range projecting pyramidal neurons broadcast the columnar output to other cortical and extracortical regions of the brain. L5 pyramidal neurons are grouped into two subclasses based on their projection targets; while intratelencephalic (IT) neurons project to cortical areas and the striatum, extratelencephalic (ET) neurons project to subcortical areas such as the thalamus, midbrain, and brainstem. Each L5 subclass possesses distinct morphological and electrophysiological properties and is incorporated into a unique synaptic network. Thanks to recent advances in genetic tools and methodologies, it has now become possible to distinguish between the two subclasses in the living brain. There is increasing evidence indicating that each subclass plays a unique role in sensory processing, decision-making, and learning. This review first summarizes the anatomical and physiological properties as well as the neuromodulation of IT and ET neurons in the rodent neocortex, and then reviews recent literature on their roles in sensory processing and rodent behavior. Our ultimate goal is to provide a comprehensive understanding of the role of each subclass in cortical function by examining their operational regimes based on their cellular properties.

第 5 层(L5)是大脑皮层结构的主要输出层,长程投射锥体神经元在这里将柱状输出广播到大脑的其他皮层和皮层外区域。L5 锥体神经元根据其投射目标分为两个亚类:脑内(IT)神经元投射到皮层区域和纹状体,脑外(ET)神经元则投射到丘脑、中脑和脑干等皮层下区域。每个 L5 亚类都具有不同的形态学和电生理学特性,并被纳入一个独特的突触网络。由于基因工具和方法的最新进展,现在已经可以在活体大脑中区分这两个亚类。越来越多的证据表明,每个亚类在感觉处理、决策和学习中都扮演着独特的角色。本综述首先概述了啮齿动物新皮层中 IT 和 ET 神经元的解剖和生理特性以及神经调节,然后回顾了有关它们在感觉处理和啮齿动物行为中作用的最新文献。我们的最终目标是根据细胞特性研究每种亚类神经元的运行机制,从而全面了解它们在大脑皮层功能中的作用。
{"title":"Neocortical layer 5 subclasses: From cellular properties to roles in behavior.","authors":"Sara Moberg, Naoya Takahashi","doi":"10.3389/fnsyn.2022.1006773","DOIUrl":"10.3389/fnsyn.2022.1006773","url":null,"abstract":"<p><p>Layer 5 (L5) serves as the main output layer of cortical structures, where long-range projecting pyramidal neurons broadcast the columnar output to other cortical and extracortical regions of the brain. L5 pyramidal neurons are grouped into two subclasses based on their projection targets; while intratelencephalic (IT) neurons project to cortical areas and the striatum, extratelencephalic (ET) neurons project to subcortical areas such as the thalamus, midbrain, and brainstem. Each L5 subclass possesses distinct morphological and electrophysiological properties and is incorporated into a unique synaptic network. Thanks to recent advances in genetic tools and methodologies, it has now become possible to distinguish between the two subclasses in the living brain. There is increasing evidence indicating that each subclass plays a unique role in sensory processing, decision-making, and learning. This review first summarizes the anatomical and physiological properties as well as the neuromodulation of IT and ET neurons in the rodent neocortex, and then reviews recent literature on their roles in sensory processing and rodent behavior. Our ultimate goal is to provide a comprehensive understanding of the role of each subclass in cortical function by examining their operational regimes based on their cellular properties.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650089/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40691334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Palmitoylation of A-kinase anchoring protein 79/150 modulates its nanoscale organization, trafficking, and mobility in postsynaptic spines. a激酶锚定蛋白79/150的棕榈酰化调节其在突触后棘中的纳米级组织、运输和迁移。
IF 3.7 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-09-15 eCollection Date: 2022-01-01 DOI: 10.3389/fnsyn.2022.1004154
Xiaobing Chen, Kevin C Crosby, Austin Feng, Alicia M Purkey, Maria A Aronova, Christine A Winters, Virginia T Crocker, Richard D Leapman, Thomas S Reese, Mark L Dell'Acqua

A-kinase anchoring protein 79-human/150-rodent (AKAP79/150) organizes signaling proteins to control synaptic plasticity. AKAP79/150 associates with the plasma membrane and endosomes through its N-terminal domain that contains three polybasic regions and two Cys residues that are reversibly palmitoylated. Mutations abolishing palmitoylation (AKAP79/150 CS) reduce its endosomal localization and association with the postsynaptic density (PSD). Here we combined advanced light and electron microscopy (EM) to characterize the effects of AKAP79/150 palmitoylation on its postsynaptic nanoscale organization, trafficking, and mobility in hippocampal neurons. Immunogold EM revealed prominent extrasynaptic membrane AKAP150 labeling with less labeling at the PSD. The label was at greater distances from the spine membrane for AKAP150 CS than WT in the PSD but not in extra-synaptic locations. Immunogold EM of GFP-tagged AKAP79 WT showed that AKAP79 adopts a vertical, extended conformation at the PSD with its N-terminus at the membrane, in contrast to extrasynaptic locations where it adopts a compact or open configurations of its N- and C-termini with parallel orientation to the membrane. In contrast, GFP-tagged AKAP79 CS was displaced from the PSD coincident with disruption of its vertical orientation, while proximity and orientation with respect to the extra-synaptic membrane was less impacted. Single-molecule localization microscopy (SMLM) revealed a heterogeneous distribution of AKAP150 with distinct high-density, nano-scale regions (HDRs) overlapping the PSD but more prominently located in the extrasynaptic membrane for WT and the CS mutant. Thick section scanning transmission electron microscopy (STEM) tomography revealed AKAP150 immunogold clusters similar in size to HDRs seen by SMLM and more AKAP150 labeled endosomes in spines for WT than for CS, consistent with the requirement for AKAP palmitoylation in endosomal trafficking. Hidden Markov modeling of single molecule tracking data revealed a bound/immobile fraction and two mobile fractions for AKAP79 in spines, with the CS mutant having shorter dwell times and faster transition rates between states than WT, suggesting that palmitoylation stabilizes individual AKAP molecules in various spine subpopulations. These data demonstrate that palmitoylation fine tunes the nanoscale localization, mobility, and trafficking of AKAP79/150 in dendritic spines, which might have profound effects on its regulation of synaptic plasticity.

a激酶锚定蛋白79-人/150-啮齿动物(AKAP79/150)组织信号蛋白控制突触可塑性。AKAP79/150通过其n端结构域与质膜和核内体结合,该结构域包含三个多碱基区域和两个可逆棕榈酰化的Cys残基。突变消除棕榈酰化(AKAP79/150 CS)降低其内体定位和与突触后密度(PSD)的关联。在这里,我们结合先进的光学和电子显微镜(EM)来表征AKAP79/150棕榈酰化对海马神经元突触后纳米级组织、运输和移动的影响。免疫金电镜显示突触外膜AKAP150标记明显,PSD标记较少。在PSD中,AKAP150 CS的标记距离脊柱膜的距离比WT大,但在突触外位置没有。gfp标记的AKAP79 WT免疫金电镜显示,AKAP79在PSD处呈垂直延伸构象,其N端位于膜上,而在突触外位置,其N端和c端呈紧凑或开放的构型,与膜平行。相比之下,gfp标记的AKAP79 CS从PSD移位,同时其垂直方向被破坏,而相对于突触外膜的接近性和方向受到的影响较小。单分子定位显微镜(SMLM)显示了AKAP150的异质性分布,其高密度纳米级区域(hdr)与PSD重叠,但在WT和CS突变体中更明显地位于突触外膜。厚切片扫描透射电子显微镜(STEM)断层扫描显示,AKAP150免疫金团簇的大小与SMLM所见的hdr相似,WT的棘内体中AKAP150标记的内体比CS多,这与内体运输中AKAP棕榈酰化的要求一致。单分子跟踪数据的隐马尔可夫模型揭示了AKAP79在脊柱中的结合/固定部分和两个移动部分,与WT相比,CS突变体具有更短的停留时间和更快的状态转换速率,这表明棕榈酰化稳定了不同脊柱亚群中的单个AKAP分子。这些数据表明,棕榈酰化精细调节AKAP79/150在树突棘中的纳米级定位、迁移和运输,这可能对其调节突触可塑性产生深远影响。
{"title":"Palmitoylation of A-kinase anchoring protein 79/150 modulates its nanoscale organization, trafficking, and mobility in postsynaptic spines.","authors":"Xiaobing Chen,&nbsp;Kevin C Crosby,&nbsp;Austin Feng,&nbsp;Alicia M Purkey,&nbsp;Maria A Aronova,&nbsp;Christine A Winters,&nbsp;Virginia T Crocker,&nbsp;Richard D Leapman,&nbsp;Thomas S Reese,&nbsp;Mark L Dell'Acqua","doi":"10.3389/fnsyn.2022.1004154","DOIUrl":"https://doi.org/10.3389/fnsyn.2022.1004154","url":null,"abstract":"<p><p>A-kinase anchoring protein 79-human/150-rodent (AKAP79/150) organizes signaling proteins to control synaptic plasticity. AKAP79/150 associates with the plasma membrane and endosomes through its N-terminal domain that contains three polybasic regions and two Cys residues that are reversibly palmitoylated. Mutations abolishing palmitoylation (AKAP79/150 CS) reduce its endosomal localization and association with the postsynaptic density (PSD). Here we combined advanced light and electron microscopy (EM) to characterize the effects of AKAP79/150 palmitoylation on its postsynaptic nanoscale organization, trafficking, and mobility in hippocampal neurons. Immunogold EM revealed prominent extrasynaptic membrane AKAP150 labeling with less labeling at the PSD. The label was at greater distances from the spine membrane for AKAP150 CS than WT in the PSD but not in extra-synaptic locations. Immunogold EM of GFP-tagged AKAP79 WT showed that AKAP79 adopts a vertical, extended conformation at the PSD with its N-terminus at the membrane, in contrast to extrasynaptic locations where it adopts a compact or open configurations of its N- and C-termini with parallel orientation to the membrane. In contrast, GFP-tagged AKAP79 CS was displaced from the PSD coincident with disruption of its vertical orientation, while proximity and orientation with respect to the extra-synaptic membrane was less impacted. Single-molecule localization microscopy (SMLM) revealed a heterogeneous distribution of AKAP150 with distinct high-density, nano-scale regions (HDRs) overlapping the PSD but more prominently located in the extrasynaptic membrane for WT and the CS mutant. Thick section scanning transmission electron microscopy (STEM) tomography revealed AKAP150 immunogold clusters similar in size to HDRs seen by SMLM and more AKAP150 labeled endosomes in spines for WT than for CS, consistent with the requirement for AKAP palmitoylation in endosomal trafficking. Hidden Markov modeling of single molecule tracking data revealed a bound/immobile fraction and two mobile fractions for AKAP79 in spines, with the CS mutant having shorter dwell times and faster transition rates between states than WT, suggesting that palmitoylation stabilizes individual AKAP molecules in various spine subpopulations. These data demonstrate that palmitoylation fine tunes the nanoscale localization, mobility, and trafficking of AKAP79/150 in dendritic spines, which might have profound effects on its regulation of synaptic plasticity.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40388390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Molecular mechanisms of synaptogenesis. 突触发生的分子机制。
IF 3.7 4区 医学 Q3 Biochemistry, Genetics and Molecular Biology Pub Date : 2022-09-13 eCollection Date: 2022-01-01 DOI: 10.3389/fnsyn.2022.939793
Cai Qi, Li-Da Luo, Irena Feng, Shaojie Ma

Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.

突触是神经系统中处理和储存信息的基本单位。只有建立了突触连接,讨论电路的结构和功能才有意义。在人类中,我们无与伦比的认知能力与突触数量的增加有关。此外,参与突触发生的基因也经常与神经或精神疾病有关,这表明突触发生与脑生理和病理之间存在关系。因此,了解突触发生的分子机制是解开电路组装和神经计算之谜的关键。此外,它将为神经和精神疾病的治疗提供治疗见解。多个分子事件必须精确协调才能产生突触。为了理解突触发生的分子机制,我们需要知道突触的分子成分,这些分子成分是如何结合在一起的,以及分子网络是如何根据神经活动而改进以产生新的突触的。由于在这一领域的深入研究,我们对突触发生过程的理解取得了重大进展。本文将从突触分子成分的鉴定及其在突触发生中的作用、细胞粘附分子如何将突触分子连接在一起、神经活动如何动员这些分子产生新突触等方面对突触发生的分子机制进行综述。最后,我们将总结人类突触发生的特异性调控机制以及人类遗传学在突触发生和脑部疾病方面的研究成果。
{"title":"Molecular mechanisms of synaptogenesis.","authors":"Cai Qi,&nbsp;Li-Da Luo,&nbsp;Irena Feng,&nbsp;Shaojie Ma","doi":"10.3389/fnsyn.2022.939793","DOIUrl":"https://doi.org/10.3389/fnsyn.2022.939793","url":null,"abstract":"<p><p>Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40384995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
期刊
Frontiers in Synaptic Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1