首页 > 最新文献

Frontiers in Synaptic Neuroscience最新文献

英文 中文
Visualizing the triheteromeric N-methyl-D-aspartate receptor subunit composition. 可视化 N-甲基-D-天冬氨酸受体亚基的三单体组成。
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-05-24 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1156777
Stephen Beesley, Akash Gunjan, Sanjay S Kumar

N-methyl-D-aspartate receptors (NMDARs) are one of three ligand-gated ionotropic channels that transduce the effects of neurotransmitter glutamate at excitatory synapses within the central nervous system. Their ability to influx Ca2+ into cells, unlike mature AMPA or kainate receptors, implicates them in a variety of processes ranging from synaptic plasticity to cell death. Many of the receptor's capabilities, including binding glutamate and regulating Ca2+ influx, have been attributed to their subunit composition, determined putatively using cell biology, electrophysiology and/or pharmacology. Here, we show that subunit composition of synaptic NMDARs can also be readily visualized in acute brain slices (rat) using highly specific antibodies directed against extracellular epitopes of the subunit proteins and high-resolution confocal microscopy. This has helped confirm the expression of triheteromeric t-NMDARs (containing GluN1, GluN2, and GluN3 subunits) at synapses for the first time and reconcile functional differences with diheteromeric d-NMDARs (containing GluN1 and GluN2 subunits) described previously. Even though structural information about individual receptors is still diffraction limited, fluorescently tagged receptor subunit puncta coalesce with precision at various magnifications and/or with the postsynaptic density (PSD-95) but not the presynaptic active zone marker Bassoon. These data are particularly relevant for identifying GluN3A-containing t-NMDARs that are highly Ca2+ permeable and whose expression at excitatory synapses renders neurons vulnerable to excitotoxicity and cell death. Imaging NMDAR subunit proteins at synapses not only offers firsthand insights into subunit composition to correlate function but may also help identify zones of vulnerability within brain structures underlying neurodegenerative diseases like Temporal Lobe Epilepsy.

N-甲基-D-天冬氨酸受体(NMDARs)是三种配体门控离子通道之一,可在中枢神经系统的兴奋性突触处传递神经递质谷氨酸的效应。与成熟的 AMPA 或 kainate 受体不同,谷氨酸受体具有将 Ca2+ 导入细胞的能力,这使其参与了从突触可塑性到细胞死亡的各种过程。该受体的许多功能,包括结合谷氨酸和调节 Ca2+ 流入,都归因于其亚基组成,这可能是通过细胞生物学、电生理学和/或药理学确定的。在这里,我们展示了利用针对亚基蛋白细胞外表位的高度特异性抗体和高分辨率共聚焦显微镜,也能在急性脑切片(大鼠)中轻松观察到突触 NMDARs 的亚基组成。这有助于首次证实突触中表达了三异构体 t-NMDAR(包含 GluN1、GluN2 和 GluN3 亚基),并调和了与之前描述的二异构体 d-NMDAR(包含 GluN1 和 GluN2 亚基)在功能上的差异。尽管单个受体的结构信息仍受到衍射的限制,但荧光标记的受体亚基点在不同的放大倍数下和/或与突触后密度(PSD-95)而非突触前活性区标记巴松精确地凝聚在一起。这些数据对于确定含 GluN3A 的 t-NMDARs 尤为重要,这些 t-NMDARs 具有高 Ca2+ 通透性,其在兴奋性突触的表达会使神经元易受兴奋毒性和细胞死亡的影响。对突触处的 NMDAR 亚基蛋白进行成像,不仅能提供亚基组成的第一手资料,从而与功能相关联,而且还有助于确定脑结构中神经退行性疾病(如颞叶癫痫)的脆弱区。
{"title":"Visualizing the triheteromeric N-methyl-D-aspartate receptor subunit composition.","authors":"Stephen Beesley, Akash Gunjan, Sanjay S Kumar","doi":"10.3389/fnsyn.2023.1156777","DOIUrl":"10.3389/fnsyn.2023.1156777","url":null,"abstract":"<p><p>N-methyl-D-aspartate receptors (NMDARs) are one of three ligand-gated ionotropic channels that transduce the effects of neurotransmitter glutamate at excitatory synapses within the central nervous system. Their ability to influx Ca<sup>2+</sup> into cells, unlike mature AMPA or kainate receptors, implicates them in a variety of processes ranging from synaptic plasticity to cell death. Many of the receptor's capabilities, including binding glutamate and regulating Ca<sup>2+</sup> influx, have been attributed to their subunit composition, determined putatively using cell biology, electrophysiology and/or pharmacology. Here, we show that subunit composition of synaptic NMDARs can also be readily visualized in acute brain slices (rat) using highly specific antibodies directed against extracellular epitopes of the subunit proteins and high-resolution confocal microscopy. This has helped confirm the expression of triheteromeric <i>t</i>-NMDARs (containing GluN1, GluN2, and GluN3 subunits) at synapses for the first time and reconcile functional differences with diheteromeric <i>d</i>-NMDARs (containing GluN1 and GluN2 subunits) described previously. Even though structural information about individual receptors is still diffraction limited, fluorescently tagged receptor subunit puncta coalesce with precision at various magnifications and/or with the postsynaptic density (PSD-95) but not the presynaptic active zone marker Bassoon. These data are particularly relevant for identifying GluN3A-containing <i>t</i>-NMDARs that are highly Ca<sup>2+</sup> permeable and whose expression at excitatory synapses renders neurons vulnerable to excitotoxicity and cell death. Imaging NMDAR subunit proteins at synapses not only offers firsthand insights into subunit composition to correlate function but may also help identify zones of vulnerability within brain structures underlying neurodegenerative diseases like Temporal Lobe Epilepsy.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1156777"},"PeriodicalIF":2.8,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9600936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Synaptic plasticity and dysfunction, friend or foe? 编辑:突触可塑性和功能障碍,是敌是友?
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-05-03 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1204605
Fereshteh S Nugent, Ka Wan Li, Lu Chen
{"title":"Editorial: Synaptic plasticity and dysfunction, friend or foe?","authors":"Fereshteh S Nugent, Ka Wan Li, Lu Chen","doi":"10.3389/fnsyn.2023.1204605","DOIUrl":"10.3389/fnsyn.2023.1204605","url":null,"abstract":"","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1204605"},"PeriodicalIF":2.8,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9497004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple modulatory roles of serotonin in chronic pain and injury-related anxiety. 血清素在慢性疼痛和受伤相关焦虑中的多重调节作用。
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-04-18 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1122381
Shun Hao, Wantong Shi, Weiqi Liu, Qi-Yu Chen, Min Zhuo

Chronic pain is long-lasting pain that often persists during chronic diseases or after recovery from disease or injury. It often causes serious side effects, such as insomnia, anxiety, or depression which negatively impacts the patient's overall quality of life. Serotonin (5-HT) in the central nervous system (CNS) has been recognized as an important neurotransmitter and neuromodulator which regulates various physiological functions, such as pain sensation, cognition, and emotions-especially anxiety and depression. Its widespread and diverse receptors underlie the functional complexity of 5-HT in the CNS. Recent studies found that both chronic pain and anxiety are associated with synaptic plasticity in the anterior cingulate cortex (ACC), the insular cortex (IC), and the spinal cord. 5-HT exerts multiple modulations of synaptic transmission and plasticity in the ACC and the spinal cord, including activation, inhibition, and biphasic actions. In this review, we will discuss the multiple actions of the 5-HT system in both chronic pain and injury-related anxiety, and the synaptic mechanisms behind them. It is likely that the specific 5-HT receptors would be new promising therapeutic targets for the effective treatment of chronic pain and injury-related anxiety in the future.

慢性疼痛是指在慢性疾病期间或疾病或受伤恢复后经常持续存在的长期疼痛。它通常会引起严重的副作用,如失眠、焦虑或抑郁,对患者的整体生活质量造成负面影响。中枢神经系统(CNS)中的羟色胺(5-HT)被认为是一种重要的神经递质和神经调节剂,可调节各种生理功能,如痛觉、认知和情绪,尤其是焦虑和抑郁。5-羟色胺受体的广泛性和多样性是其在中枢神经系统功能复杂性的基础。最近的研究发现,慢性疼痛和焦虑都与前扣带回皮层(ACC)、岛叶回皮层(IC)和脊髓的突触可塑性有关。5-HT 对 ACC 和脊髓中的突触传递和可塑性有多种调节作用,包括激活、抑制和双相作用。在本综述中,我们将讨论 5-HT 系统在慢性疼痛和受伤相关焦虑中的多种作用及其背后的突触机制。未来,特定的 5-HT 受体很可能成为有效治疗慢性疼痛和受伤相关焦虑的新靶点。
{"title":"Multiple modulatory roles of serotonin in chronic pain and injury-related anxiety.","authors":"Shun Hao, Wantong Shi, Weiqi Liu, Qi-Yu Chen, Min Zhuo","doi":"10.3389/fnsyn.2023.1122381","DOIUrl":"10.3389/fnsyn.2023.1122381","url":null,"abstract":"<p><p>Chronic pain is long-lasting pain that often persists during chronic diseases or after recovery from disease or injury. It often causes serious side effects, such as insomnia, anxiety, or depression which negatively impacts the patient's overall quality of life. Serotonin (5-HT) in the central nervous system (CNS) has been recognized as an important neurotransmitter and neuromodulator which regulates various physiological functions, such as pain sensation, cognition, and emotions-especially anxiety and depression. Its widespread and diverse receptors underlie the functional complexity of 5-HT in the CNS. Recent studies found that both chronic pain and anxiety are associated with synaptic plasticity in the anterior cingulate cortex (ACC), the insular cortex (IC), and the spinal cord. 5-HT exerts multiple modulations of synaptic transmission and plasticity in the ACC and the spinal cord, including activation, inhibition, and biphasic actions. In this review, we will discuss the multiple actions of the 5-HT system in both chronic pain and injury-related anxiety, and the synaptic mechanisms behind them. It is likely that the specific 5-HT receptors would be new promising therapeutic targets for the effective treatment of chronic pain and injury-related anxiety in the future.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1122381"},"PeriodicalIF":2.8,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9414995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitory hippocampus-medial septum projection controls locomotion and exploratory behavior. 抑制性海马-中隔膜投射控制着运动和探索行为。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-04-06 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1042858
Yuh-Tarng Chen, Rachel Arano, Jun Guo, Uzair Saleem, Ying Li, Wei Xu

Although the hippocampus is generally considered a cognitive center for spatial representation, learning, and memory, increasing evidence supports its roles in regulating locomotion. However, the neuronal mechanisms of the hippocampal regulation of locomotion and exploratory behavior remain unclear. In this study, we found that the inhibitory hippocampal synaptic projection to the medial septum (MS) bi-directionally controls the locomotor speed of mice. The activation of the MS-projecting interneurons in the hippocampus or the activation of the hippocampus-originated inhibitory synaptic terminals in the MS decreased locomotion and exploratory behavior. On the other hand, the inhibition of the hippocampus-originated inhibitory synaptic terminals in the MS increased locomotion. Unlike the septal projecting interneurons, the activation of the hippocampal interneurons projecting to the retrosplenial cortex did not change animal locomotion. Therefore, this study reveals a specific long-range inhibitory synaptic output from the hippocampus to the medial septum in the regulation of animal locomotion.

虽然海马一般被认为是空间表征、学习和记忆的认知中心,但越来越多的证据支持海马在调节运动方面的作用。然而,海马调节运动和探索行为的神经元机制仍不清楚。本研究发现,抑制性海马突触投射到内侧隔(MS)可双向控制小鼠的运动速度。激活海马的MS投射中间神经元或激活MS中源自海马的抑制性突触末端会降低小鼠的运动和探索行为。另一方面,抑制多发性硬化症的海马抑制性突触末端则会增加运动。与中隔投射的中间神经元不同,激活投射到后脾皮层的海马中间神经元并不会改变动物的运动。因此,这项研究揭示了海马到内侧隔的特异性长程抑制性突触输出对动物运动的调节作用。
{"title":"Inhibitory hippocampus-medial septum projection controls locomotion and exploratory behavior.","authors":"Yuh-Tarng Chen, Rachel Arano, Jun Guo, Uzair Saleem, Ying Li, Wei Xu","doi":"10.3389/fnsyn.2023.1042858","DOIUrl":"10.3389/fnsyn.2023.1042858","url":null,"abstract":"<p><p>Although the hippocampus is generally considered a cognitive center for spatial representation, learning, and memory, increasing evidence supports its roles in regulating locomotion. However, the neuronal mechanisms of the hippocampal regulation of locomotion and exploratory behavior remain unclear. In this study, we found that the inhibitory hippocampal synaptic projection to the medial septum (MS) bi-directionally controls the locomotor speed of mice. The activation of the MS-projecting interneurons in the hippocampus or the activation of the hippocampus-originated inhibitory synaptic terminals in the MS decreased locomotion and exploratory behavior. On the other hand, the inhibition of the hippocampus-originated inhibitory synaptic terminals in the MS increased locomotion. Unlike the septal projecting interneurons, the activation of the hippocampal interneurons projecting to the retrosplenial cortex did not change animal locomotion. Therefore, this study reveals a specific long-range inhibitory synaptic output from the hippocampus to the medial septum in the regulation of animal locomotion.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1042858"},"PeriodicalIF":3.7,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9742652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early life adversity impaired dorsal striatal synaptic transmission and behavioral adaptability to appropriate action selection in a sex-dependent manner. 早期生活逆境以性别依赖的方式损害了背纹状体突触传递和行为适应性。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-04-05 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1128640
Gregory de Carvalho, Sheraz Khoja, Mulatwa T Haile, Lulu Y Chen

Early life adversity (ELA) is a major health burden in the United States, with 62% of adults reporting at least one adverse childhood experience. These experiences during critical stages of brain development can perturb the development of neural circuits that mediate sensory cue processing and behavioral regulation. Recent studies have reported that ELA impaired the maturation of dendritic spines on neurons in the dorsolateral striatum (DLS) but not in the dorsomedial striatum (DMS). The DMS and DLS are part of two distinct corticostriatal circuits that have been extensively implicated in behavioral flexibility by regulating and integrating action selection with the reward value of those actions. To date, no studies have investigated the multifaceted effects of ELA on aspects of behavioral flexibility that require alternating between different action selection strategies or higher-order cognitive processes, and the underlying synaptic transmission in corticostriatal circuitries. To address this, we employed whole-cell patch-clamp electrophysiology to assess the effects of ELA on synaptic transmission in the DMS and DLS. We also investigated the effects of ELA on the ability to update action control in response to outcome devaluation in an instrumental learning paradigm and reversal of action-outcome contingency in a water T-maze paradigm. At the circuit level, ELA decreased corticostriatal glutamate transmission in male but not in female mice. Interestingly, in DMS, glutamate transmission is decreased in male ELA mice, but increased in female ELA mice. ELA impaired the ability to update action control in response to reward devaluation in a context that promotes goal-directedness in male mice and induced deficits in reversal learning. Overall, our findings demonstrate the sex- and region-dependent effects of ELA on behavioral flexibility and underlying corticostriatal glutamate transmission. By establishing a link between ELA and circuit mechanisms underlying behavioral flexibility, our findings will begin to identify novel molecular mechanisms that can represent strategies for treating behavioral inflexibility in individuals who experienced early life traumatic incidents.

早期生活逆境(ELA)是美国的一大健康负担,62%的成年人报告至少有一次不良童年经历。在大脑发育的关键阶段,这些经历会干扰介导感觉线索处理和行为调节的神经回路的发育。最近的研究报道,ELA损害了背外侧纹状体(DLS)神经元的树突棘的成熟,但不损害背内侧纹状体(DMS)神经元的成熟。DMS和DLS是两个不同的皮质纹状体回路的一部分,这两个回路通过调节和整合动作选择与这些动作的奖励值,与行为灵活性广泛相关。到目前为止,还没有研究调查ELA对行为灵活性方面的多方面影响,这些方面需要在不同的动作选择策略或高阶认知过程之间交替,以及皮质纹状体回路中潜在的突触传递。为了解决这一问题,我们采用全细胞膜片钳电生理学来评估ELA对DMS和DLS突触传递的影响。我们还研究了工具学习范式中ELA对更新行动控制以应对结果贬值的能力的影响,以及水T迷宫范式中行动-结果偶然性的逆转。在回路水平上,ELA降低了雄性小鼠的皮质纹状体谷氨酸传递,但没有降低雌性小鼠的传递。有趣的是,在DMS中,雄性ELA小鼠的谷氨酸传递减少,而雌性ELA小鼠则增加。ELA损害了在促进雄性小鼠目标定向的背景下更新动作控制以应对奖励贬值的能力,并导致逆转学习缺陷。总的来说,我们的研究结果证明了ELA对行为灵活性和潜在的皮质纹状体谷氨酸传递的性别和区域依赖性影响。通过在ELA和行为灵活性背后的回路机制之间建立联系,我们的研究结果将开始确定新的分子机制,这些机制可以代表早期经历创伤事件的个体治疗行为灵活性的策略。
{"title":"Early life adversity impaired dorsal striatal synaptic transmission and behavioral adaptability to appropriate action selection in a sex-dependent manner.","authors":"Gregory de Carvalho,&nbsp;Sheraz Khoja,&nbsp;Mulatwa T Haile,&nbsp;Lulu Y Chen","doi":"10.3389/fnsyn.2023.1128640","DOIUrl":"10.3389/fnsyn.2023.1128640","url":null,"abstract":"<p><p>Early life adversity (ELA) is a major health burden in the United States, with 62% of adults reporting at least one adverse childhood experience. These experiences during critical stages of brain development can perturb the development of neural circuits that mediate sensory cue processing and behavioral regulation. Recent studies have reported that ELA impaired the maturation of dendritic spines on neurons in the dorsolateral striatum (DLS) but not in the dorsomedial striatum (DMS). The DMS and DLS are part of two distinct corticostriatal circuits that have been extensively implicated in behavioral flexibility by regulating and integrating action selection with the reward value of those actions. To date, no studies have investigated the multifaceted effects of ELA on aspects of behavioral flexibility that require alternating between different action selection strategies or higher-order cognitive processes, and the underlying synaptic transmission in corticostriatal circuitries. To address this, we employed whole-cell patch-clamp electrophysiology to assess the effects of ELA on synaptic transmission in the DMS and DLS. We also investigated the effects of ELA on the ability to update action control in response to outcome devaluation in an instrumental learning paradigm and reversal of action-outcome contingency in a water T-maze paradigm. At the circuit level, ELA decreased corticostriatal glutamate transmission in male but not in female mice. Interestingly, in DMS, glutamate transmission is decreased in male ELA mice, but increased in female ELA mice. ELA impaired the ability to update action control in response to reward devaluation in a context that promotes goal-directedness in male mice and induced deficits in reversal learning. Overall, our findings demonstrate the sex- and region-dependent effects of ELA on behavioral flexibility and underlying corticostriatal glutamate transmission. By establishing a link between ELA and circuit mechanisms underlying behavioral flexibility, our findings will begin to identify novel molecular mechanisms that can represent strategies for treating behavioral inflexibility in individuals who experienced early life traumatic incidents.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1128640"},"PeriodicalIF":3.7,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9742649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Genetic disorders of neurotransmitter release machinery. 神经递质释放机制的遗传疾病。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-03-31 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1148957
Burak Uzay, Ege T Kavalali

Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.

突触神经递质的释放是一个进化保守的过程,它介导神经元和一些外周组织之间的快速信息传递。神经递质的释放是通过突触小泡对接和引物等连续事件来确保的,这些事件为突触小泡的快速融合做好准备。这些事件由不同的突触前蛋白相互作用协调,并受突触前钙调节。最近的研究发现,神经递质释放机制的不同组成部分存在各种突变,导致神经递质释放异常,从而引发了一系列精神和神经症状。在此,我们回顾了神经递质释放核心机制不同组成部分的基因改变如何影响神经元之间的信息传递,以及突触释放异常如何影响神经系统功能。
{"title":"Genetic disorders of neurotransmitter release machinery.","authors":"Burak Uzay, Ege T Kavalali","doi":"10.3389/fnsyn.2023.1148957","DOIUrl":"10.3389/fnsyn.2023.1148957","url":null,"abstract":"<p><p>Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1148957"},"PeriodicalIF":3.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9318312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of single-cell knockout of Fragile X Messenger Ribonucleoprotein on synaptic structural plasticity. 单细胞敲除脆性 X 信使核糖核蛋白对突触结构可塑性的影响
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-03-23 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1135479
Marie Gredell, Ju Lu, Yi Zuo

Fragile X Syndrome (FXS) is the best-known form of inherited intellectual disability caused by the loss-of-function mutation in a single gene. The FMR1 gene mutation abolishes the expression of Fragile X Messenger Ribonucleoprotein (FMRP), which regulates the expression of many synaptic proteins. Cortical pyramidal neurons in postmortem FXS patient brains show abnormally high density and immature morphology of dendritic spines; this phenotype is replicated in the Fmr1 knockout (KO) mouse. While FMRP is well-positioned in the dendrite to regulate synaptic plasticity, intriguing in vitro and in vivo data show that wild type neurons embedded in a network of Fmr1 KO neurons or glia exhibit spine abnormalities just as neurons in Fmr1 global KO mice. This raises the question: does FMRP regulate synaptic morphology and dynamics in a cell-autonomous manner, or do the synaptic phenotypes arise from abnormal pre-synaptic inputs? To address this question, we combined viral and mouse genetic approaches to delete FMRP from a very sparse subset of cortical layer 5 pyramidal neurons (L5 PyrNs) either during early postnatal development or in adulthood. We then followed the structural dynamics of dendritic spines on these Fmr1 KO neurons by in vivo two-photon microscopy. We found that, while L5 PyrNs in adult Fmr1 global KO mice have abnormally high density of thin spines, single-cell Fmr1 KO in adulthood does not affect spine density, morphology, or dynamics. On the contrary, neurons with neonatal FMRP deletion have normal spine density but elevated spine formation at 1 month of age, replicating the phenotype in Fmr1 global KO mice. Interestingly, these neurons exhibit elevated thin spine density, but normal total spine density, by adulthood. Together, our data reveal cell-autonomous FMRP regulation of cortical synaptic dynamics during adolescence, but spine defects in adulthood also implicate non-cell-autonomous factors.

脆性 X 综合征(FXS)是一种最著名的遗传性智力残疾,由单个基因的功能缺失突变引起。FMR1基因突变会导致脆性X信使核糖核蛋白(FMRP)的表达消失,而FMRP能调节许多突触蛋白的表达。FXS 患者死后大脑皮质锥体神经元的树突棘密度异常高且形态不成熟;这种表型在 Fmr1 基因敲除(KO)小鼠中得到了复制。虽然 FMRP 在树突中的位置很好,可以调节突触可塑性,但有趣的体外和体内数据显示,嵌入 Fmr1 KO 神经元或神经胶质细胞网络中的野生型神经元与 Fmr1 整体 KO 小鼠的神经元一样表现出棘突异常。这就提出了一个问题:是 FMRP 以细胞自主的方式调节突触形态和动态,还是突触表型源于异常的突触前输入?为了解决这个问题,我们结合病毒和小鼠遗传学方法,在出生后早期或成年期从皮质第 5 层锥体神经元(L5 PyrNs)的一个非常稀少的亚群中删除了 FMRP。然后,我们通过体内双光子显微镜跟踪了这些 Fmr1 KO 神经元树突棘的结构动态。我们发现,虽然成年 Fmr1 整体 KO 小鼠的 L5 PyrNs 具有异常高密度的细刺,但成年期单细胞 Fmr1 KO 并不影响刺的密度、形态或动态。相反,新生儿 FMRP 缺失的神经元脊柱密度正常,但在 1 个月大时脊柱形成增加,复制了 Fmr1 全局 KO 小鼠的表型。有趣的是,这些神经元在成年后表现出脊柱细密度升高,但脊柱总密度正常。总之,我们的数据揭示了细胞自主的 FMRP 在青春期对大脑皮层突触动力学的调控,但成年期的棘突缺陷也与非细胞自主因素有关。
{"title":"The effect of single-cell knockout of Fragile X Messenger Ribonucleoprotein on synaptic structural plasticity.","authors":"Marie Gredell, Ju Lu, Yi Zuo","doi":"10.3389/fnsyn.2023.1135479","DOIUrl":"10.3389/fnsyn.2023.1135479","url":null,"abstract":"<p><p>Fragile X Syndrome (FXS) is the best-known form of inherited intellectual disability caused by the loss-of-function mutation in a single gene. The <i>FMR1</i> gene mutation abolishes the expression of Fragile X Messenger Ribonucleoprotein (FMRP), which regulates the expression of many synaptic proteins. Cortical pyramidal neurons in postmortem FXS patient brains show abnormally high density and immature morphology of dendritic spines; this phenotype is replicated in the <i>Fmr1</i> knockout (KO) mouse. While FMRP is well-positioned in the dendrite to regulate synaptic plasticity, intriguing <i>in vitro</i> and <i>in vivo</i> data show that wild type neurons embedded in a network of <i>Fmr1</i> KO neurons or glia exhibit spine abnormalities just as neurons in <i>Fmr1</i> global KO mice. This raises the question: does FMRP regulate synaptic morphology and dynamics in a cell-autonomous manner, or do the synaptic phenotypes arise from abnormal pre-synaptic inputs? To address this question, we combined viral and mouse genetic approaches to delete FMRP from a very sparse subset of cortical layer 5 pyramidal neurons (L5 PyrNs) either during early postnatal development or in adulthood. We then followed the structural dynamics of dendritic spines on these <i>Fmr1</i> KO neurons by <i>in vivo</i> two-photon microscopy. We found that, while L5 PyrNs in adult <i>Fmr1</i> global KO mice have abnormally high density of thin spines, single-cell <i>Fmr1</i> KO in adulthood does not affect spine density, morphology, or dynamics. On the contrary, neurons with neonatal FMRP deletion have normal spine density but elevated spine formation at 1 month of age, replicating the phenotype in <i>Fmr1</i> global KO mice. Interestingly, these neurons exhibit elevated thin spine density, but normal total spine density, by adulthood. Together, our data reveal cell-autonomous FMRP regulation of cortical synaptic dynamics during adolescence, but spine defects in adulthood also implicate non-cell-autonomous factors.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1135479"},"PeriodicalIF":3.7,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9501626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. 聚焦突触:用于研究突触病的突触成像和质谱分析的最新进展。
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-03-15 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1130198
Nicole Hindley, Anna Sanchez Avila, Christopher Henstridge

Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.

突触是健康大脑功能不可或缺的组成部分,同时也越来越多地被认为是大脑疾病早期阶段的关键结构。了解驱动突触功能障碍的病理过程将为我们这个时代最具破坏性的一些疾病带来新的治疗机会。为此,我们需要一套可靠的成像和分子工具,以更高的分辨率来研究突触生物学。历史上,人们一直使用高技术成像模式对少量突触进行研究,或使用粗糙的分子方法对大量突触进行研究。然而,成像技术的最新进展使我们能够以单突触分辨率分析大量突触。此外,其中一些方法现在还可以实现多路复用,这意味着我们可以检查完整组织中单个突触的多种蛋白质。新的分子技术现在可以对分离的突触中的蛋白质进行精确定量。灵敏度越来越高的质谱分析设备的发展,意味着我们现在几乎可以全面扫描突触分子图谱,并观察其在疾病中的变化。随着这些新技术的发展,我们将能更清晰地观察突触,并在突触病领域获得更丰富、更有洞察力的高质量数据。在此,我们将以成像和质谱技术为重点,讨论方法学的进步如何促进对突触的研究。
{"title":"Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy.","authors":"Nicole Hindley, Anna Sanchez Avila, Christopher Henstridge","doi":"10.3389/fnsyn.2023.1130198","DOIUrl":"10.3389/fnsyn.2023.1130198","url":null,"abstract":"<p><p>Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1130198"},"PeriodicalIF":2.8,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9296620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. 阿尔茨海默病是一种突触病:疾病发展过程中突触功能障碍的证据。
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-03-09 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1129036
Soraya Meftah, Jian Gan

The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.

突触一直被认为是阿尔茨海默病中一个脆弱而关键的靶点,迄今为止,突触丧失是阿尔茨海默病认知能力下降的主要生物学相关因素之一。这发生在神经元丧失之前,有大量证据表明突触功能障碍发生在神经元丧失之前,这支持了突触衰竭是疾病发病机制中关键阶段的观点。阿尔茨海默病的两个主要病理标志--淀粉样蛋白或 tau 蛋白的异常聚集,在阿尔茨海默病的动物和细胞模型中对突触生理产生了明显的影响。此外,越来越多的证据表明,这两种蛋白可能会对神经生理功能紊乱产生协同作用。在此,我们将回顾阿尔茨海默病突触改变的一些主要发现,以及我们从阿尔茨海默病动物模型和细胞模型中了解到的情况。首先,我们简要总结了一些人类证据,这些证据表明突触发生了改变,包括突触与网络活动的关系。随后,我们考虑了阿尔茨海默病的动物和细胞模型,重点介绍了淀粉样蛋白和 tau 病理学小鼠模型,以及这些蛋白在突触功能障碍中可能发挥的作用,无论是单独作用还是研究这两种病理学如何在功能障碍中相互作用。这特别侧重于在这些动物模型中观察到的神经生理功能和功能障碍,通常使用电生理学或钙成像技术进行测量。在突触功能障碍和丧失之后,不可能想象这不会改变大脑内的振荡活动。因此,本综述还讨论了这可能是阿尔茨海默病动物模型和人类患者中某些异常振荡模式的基础。最后,综述了阿尔茨海默病突触功能障碍领域的一些关键方向和注意事项。这包括目前专门针对突触功能障碍的治疗方法,以及调节活动以挽救异常振荡模式的方法。该领域未来值得关注的其他重要方向包括非神经元细胞类型(如星形胶质细胞和小胶质细胞)的作用,以及阿尔茨海默病中独立于淀粉样蛋白和 tau 的功能障碍机制。在可预见的未来,突触必将继续成为阿尔茨海默病的一个重要靶点。
{"title":"Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression.","authors":"Soraya Meftah, Jian Gan","doi":"10.3389/fnsyn.2023.1129036","DOIUrl":"10.3389/fnsyn.2023.1129036","url":null,"abstract":"<p><p>The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1129036"},"PeriodicalIF":2.8,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10033629/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9561114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
mGluR-dependent plasticity in rodent models of Alzheimer's disease. 阿尔茨海默病啮齿动物模型中依赖 mGluR 的可塑性。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-03-02 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1123294
Gonzalo Valdivia, Alvaro O Ardiles, Abimbola Idowu, Claudia Salazar, Hey-Kyoung Lee, Michela Gallagher, Adrian G Palacios, Alfredo Kirkwood

Long-term potentiation (LTP) and depression (LTD) are currently the most comprehensive models of synaptic plasticity models to subserve learning and memory. In the CA1 region of the hippocampus LTP and LTD can be induced by the activation of either NMDA receptors or mGluR5 metabotropic glutamate receptors. Alterations in either form of synaptic plasticity, NMDAR-dependent or mGluR-dependent, are attractive candidates to contribute to learning deficits in conditions like Alzheimer's disease (AD) and aging. Research, however, has focused predominantly on NMDAR-dependent forms of LTP and LTD. Here we studied age-associated changes in mGluR-dependent LTP and LTD in the APP/PS1 mouse model of AD and in Octodon degu, a rodent model of aging that exhibits features of AD. At 2 months of age, APP/PS1 mouse exhibited robust mGluR-dependent LTP and LTD that was completely lost by the 8th month of age. The expression of mGluR protein in the hippocampus of APP/PS1 mice was not affected, consistent with previous findings indicating the uncoupling of the plasticity cascade from mGluR5 activation. In O. degu, the average mGluR-LTD magnitude is reduced by half by the 3 rd year of age. In aged O. degu individuals, the reduced mGluR-LTD correlated with reduced performance in a radial arm maze task. Altogether these findings support the idea that the preservation of mGluR-dependent synaptic plasticity is essential for the preservation of learning capacity during aging.

长期延时(LTP)和抑制(LTD)是目前用于学习和记忆的最全面的突触可塑性模型。在海马的 CA1 区,NMDA 受体或 mGluR5 代谢谷氨酸受体的激活可诱导 LTP 和 LTD。无论是 NMDAR 依赖型还是 mGluR 依赖型突触可塑性的改变,都是导致阿尔茨海默病(AD)和衰老等疾病的学习障碍的诱因。然而,研究主要集中在依赖 NMDAR 的 LTP 和 LTD。在这里,我们研究了阿尔茨海默病 APP/PS1 小鼠模型和具有阿尔茨海默病特征的衰老啮齿动物模型 Octodon degu 中依赖于 mGluR 的 LTP 和 LTD 随年龄发生的变化。在 2 个月大时,APP/PS1 小鼠表现出强大的 mGluR 依赖性 LTP 和 LTD,到第 8 个月大时则完全丧失。APP/PS1小鼠海马中mGluR蛋白的表达未受影响,这与之前的研究结果一致,表明可塑性级联与mGluR5激活脱钩。在 O. degu 中,mGluR-LTD 的平均水平在 3 岁时降低了一半。在年老的O. degu个体中,mGluR-LTD的降低与径向臂迷宫任务中表现的降低相关。总之,这些发现支持了这样一种观点,即保持依赖于mGluR的突触可塑性对于在衰老过程中保持学习能力至关重要。
{"title":"mGluR-dependent plasticity in rodent models of Alzheimer's disease.","authors":"Gonzalo Valdivia, Alvaro O Ardiles, Abimbola Idowu, Claudia Salazar, Hey-Kyoung Lee, Michela Gallagher, Adrian G Palacios, Alfredo Kirkwood","doi":"10.3389/fnsyn.2023.1123294","DOIUrl":"10.3389/fnsyn.2023.1123294","url":null,"abstract":"<p><p>Long-term potentiation (LTP) and depression (LTD) are currently the most comprehensive models of synaptic plasticity models to subserve learning and memory. In the CA1 region of the hippocampus LTP and LTD can be induced by the activation of either NMDA receptors or mGluR5 metabotropic glutamate receptors. Alterations in either form of synaptic plasticity, NMDAR-dependent or mGluR-dependent, are attractive candidates to contribute to learning deficits in conditions like Alzheimer's disease (AD) and aging. Research, however, has focused predominantly on NMDAR-dependent forms of LTP and LTD. Here we studied age-associated changes in mGluR-dependent LTP and LTD in the APP/PS1 mouse model of AD and in <i>Octodon degu</i>, a rodent model of aging that exhibits features of AD. At 2 months of age, APP/PS1 mouse exhibited robust mGluR-dependent LTP and LTD that was completely lost by the 8th month of age. The expression of mGluR protein in the hippocampus of APP/PS1 mice was not affected, consistent with previous findings indicating the uncoupling of the plasticity cascade from mGluR5 activation. In <i>O. degu</i>, the average mGluR-LTD magnitude is reduced by half by the 3 <i><sup>rd</sup></i> year of age. In aged <i>O. degu</i> individuals, the reduced mGluR-LTD correlated with reduced performance in a radial arm maze task. Altogether these findings support the idea that the preservation of mGluR-dependent synaptic plasticity is essential for the preservation of learning capacity during aging.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1123294"},"PeriodicalIF":3.7,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10139412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Synaptic Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1