首页 > 最新文献

Frontiers in Synaptic Neuroscience最新文献

英文 中文
Editorial: New insights into synaptic plasticity in fear conditioning. 社论:对恐惧条件反射中突触可塑性的新见解。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-09-13 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1270701
Ana P Crestani, Ana Cicvaric, Adelaide P Yiu
COPYRIGHT © 2023 Crestani, Cicvaric and Yiu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Editorial: New insights into synaptic plasticity in fear conditioning
{"title":"Editorial: New insights into synaptic plasticity in fear conditioning.","authors":"Ana P Crestani, Ana Cicvaric, Adelaide P Yiu","doi":"10.3389/fnsyn.2023.1270701","DOIUrl":"10.3389/fnsyn.2023.1270701","url":null,"abstract":"COPYRIGHT © 2023 Crestani, Cicvaric and Yiu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Editorial: New insights into synaptic plasticity in fear conditioning","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1270701"},"PeriodicalIF":3.7,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41110277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shared and divergent principles of synaptic transmission between cortical excitatory neurons in rodent and human brain. 啮齿类动物和人脑皮层兴奋性神经元突触传递的共同和不同原理。
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-09-05 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1274383
Christiaan P J de Kock, Dirk Feldmeyer

Information transfer between principal neurons in neocortex occurs through (glutamatergic) synaptic transmission. In this focussed review, we provide a detailed overview on the strength of synaptic neurotransmission between pairs of excitatory neurons in human and laboratory animals with a specific focus on data obtained using patch clamp electrophysiology. We reach two major conclusions: (1) the synaptic strength, measured as unitary excitatory postsynaptic potential (or uEPSP), is remarkably consistent across species, cortical regions, layers and/or cell-types (median 0.5 mV, interquartile range 0.4-1.0 mV) with most variability associated with the cell-type specific connection studied (min 0.1-max 1.4 mV), (2) synaptic function cannot be generalized across human and rodent, which we exemplify by discussing the differences in anatomical and functional properties of pyramidal-to-pyramidal connections within human and rodent cortical layers 2 and 3. With only a handful of studies available on synaptic transmission in human, it is obvious that much remains unknown to date. Uncovering the shared and divergent principles of synaptic transmission across species however, will almost certainly be a pivotal step toward understanding human cognitive ability and brain function in health and disease.

新皮层主要神经元之间的信息传递通过(谷氨酸能)突触传递进行。在这篇重点综述中,我们详细概述了人类和实验动物兴奋性神经元对之间突触神经传递的强度,特别关注使用膜片钳电生理学获得的数据。我们得出了两个主要结论:(1)突触强度,以单一兴奋性突触后电位(或uEPSP)测量,在物种、皮层区域、层和/或细胞类型之间非常一致(中值0.5 mV,四分位间距0.4-1.0 mV),与所研究的细胞类型特异性连接相关的大多数可变性(最小0.1-最大1.4 mV),(2)突触功能不能在人类和啮齿动物中推广,我们通过讨论人类和啮齿动物皮层第2层和第3层内锥体与锥体连接的解剖和功能特性的差异来证明这一点。由于只有少数关于人类突触传递的研究,很明显,到目前为止还有很多未知之处。然而,揭示跨物种突触传递的共同和不同原理,几乎可以肯定是理解人类在健康和疾病中的认知能力和大脑功能的关键一步。
{"title":"Shared and divergent principles of synaptic transmission between cortical excitatory neurons in rodent and human brain.","authors":"Christiaan P J de Kock, Dirk Feldmeyer","doi":"10.3389/fnsyn.2023.1274383","DOIUrl":"10.3389/fnsyn.2023.1274383","url":null,"abstract":"<p><p>Information transfer between principal neurons in neocortex occurs through (glutamatergic) synaptic transmission. In this focussed review, we provide a detailed overview on the strength of synaptic neurotransmission between pairs of excitatory neurons in human and laboratory animals with a specific focus on data obtained using patch clamp electrophysiology. We reach two major conclusions: (1) the synaptic strength, measured as unitary excitatory postsynaptic potential (or uEPSP), is remarkably consistent across species, cortical regions, layers and/or cell-types (median 0.5 mV, interquartile range 0.4-1.0 mV) with most variability associated with the cell-type specific connection studied (min 0.1-max 1.4 mV), (2) synaptic function cannot be generalized across human and rodent, which we exemplify by discussing the differences in anatomical and functional properties of pyramidal-to-pyramidal connections within human and rodent cortical layers 2 and 3. With only a handful of studies available on synaptic transmission in human, it is obvious that much remains unknown to date. Uncovering the shared and divergent principles of synaptic transmission across species however, will almost certainly be a pivotal step toward understanding human cognitive ability and brain function in health and disease.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1274383"},"PeriodicalIF":2.8,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41178547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rethinking the network determinants of motor disability in Parkinson's disease. 重新思考帕金森病运动障碍的网络决定因素。
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-06-28 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1186484
Dalton James Surmeier, Shenyu Zhai, Qiaoling Cui, DeNard V Simmons

For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.

大约在过去的 30 年中,纹状体多巴胺(DA)耗竭是帕金森病(PD)运动症状的网络病理生理学的关键决定因素这一观点一直主导着该领域。虽然支持这一假说的基底神经节回路模型具有极大的启发价值,但这一假说本身却从未得到过直接验证。此外,过去几十年的研究清楚地表明,这一假说所依据的网络模型未能包含基底节的关键特征,包括 DA 作用于整个基底节而不仅仅是纹状体这一事实。为了强调这一点,最近使用渐进性帕金森病小鼠模型进行的研究表明,仅纹状体DA耗竭不足以诱发帕金森病,一旦纹状体外DA信号恢复,帕金森病运动障碍就会减轻。鉴于该领域的大量发现,现在是时候为帕金森病运动障碍的网络决定因素建立一个新模型了。
{"title":"Rethinking the network determinants of motor disability in Parkinson's disease.","authors":"Dalton James Surmeier, Shenyu Zhai, Qiaoling Cui, DeNard V Simmons","doi":"10.3389/fnsyn.2023.1186484","DOIUrl":"10.3389/fnsyn.2023.1186484","url":null,"abstract":"<p><p>For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1186484"},"PeriodicalIF":2.8,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10336242/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10198505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualizing the triheteromeric N-methyl-D-aspartate receptor subunit composition. 可视化 N-甲基-D-天冬氨酸受体亚基的三单体组成。
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-05-24 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1156777
Stephen Beesley, Akash Gunjan, Sanjay S Kumar

N-methyl-D-aspartate receptors (NMDARs) are one of three ligand-gated ionotropic channels that transduce the effects of neurotransmitter glutamate at excitatory synapses within the central nervous system. Their ability to influx Ca2+ into cells, unlike mature AMPA or kainate receptors, implicates them in a variety of processes ranging from synaptic plasticity to cell death. Many of the receptor's capabilities, including binding glutamate and regulating Ca2+ influx, have been attributed to their subunit composition, determined putatively using cell biology, electrophysiology and/or pharmacology. Here, we show that subunit composition of synaptic NMDARs can also be readily visualized in acute brain slices (rat) using highly specific antibodies directed against extracellular epitopes of the subunit proteins and high-resolution confocal microscopy. This has helped confirm the expression of triheteromeric t-NMDARs (containing GluN1, GluN2, and GluN3 subunits) at synapses for the first time and reconcile functional differences with diheteromeric d-NMDARs (containing GluN1 and GluN2 subunits) described previously. Even though structural information about individual receptors is still diffraction limited, fluorescently tagged receptor subunit puncta coalesce with precision at various magnifications and/or with the postsynaptic density (PSD-95) but not the presynaptic active zone marker Bassoon. These data are particularly relevant for identifying GluN3A-containing t-NMDARs that are highly Ca2+ permeable and whose expression at excitatory synapses renders neurons vulnerable to excitotoxicity and cell death. Imaging NMDAR subunit proteins at synapses not only offers firsthand insights into subunit composition to correlate function but may also help identify zones of vulnerability within brain structures underlying neurodegenerative diseases like Temporal Lobe Epilepsy.

N-甲基-D-天冬氨酸受体(NMDARs)是三种配体门控离子通道之一,可在中枢神经系统的兴奋性突触处传递神经递质谷氨酸的效应。与成熟的 AMPA 或 kainate 受体不同,谷氨酸受体具有将 Ca2+ 导入细胞的能力,这使其参与了从突触可塑性到细胞死亡的各种过程。该受体的许多功能,包括结合谷氨酸和调节 Ca2+ 流入,都归因于其亚基组成,这可能是通过细胞生物学、电生理学和/或药理学确定的。在这里,我们展示了利用针对亚基蛋白细胞外表位的高度特异性抗体和高分辨率共聚焦显微镜,也能在急性脑切片(大鼠)中轻松观察到突触 NMDARs 的亚基组成。这有助于首次证实突触中表达了三异构体 t-NMDAR(包含 GluN1、GluN2 和 GluN3 亚基),并调和了与之前描述的二异构体 d-NMDAR(包含 GluN1 和 GluN2 亚基)在功能上的差异。尽管单个受体的结构信息仍受到衍射的限制,但荧光标记的受体亚基点在不同的放大倍数下和/或与突触后密度(PSD-95)而非突触前活性区标记巴松精确地凝聚在一起。这些数据对于确定含 GluN3A 的 t-NMDARs 尤为重要,这些 t-NMDARs 具有高 Ca2+ 通透性,其在兴奋性突触的表达会使神经元易受兴奋毒性和细胞死亡的影响。对突触处的 NMDAR 亚基蛋白进行成像,不仅能提供亚基组成的第一手资料,从而与功能相关联,而且还有助于确定脑结构中神经退行性疾病(如颞叶癫痫)的脆弱区。
{"title":"Visualizing the triheteromeric N-methyl-D-aspartate receptor subunit composition.","authors":"Stephen Beesley, Akash Gunjan, Sanjay S Kumar","doi":"10.3389/fnsyn.2023.1156777","DOIUrl":"10.3389/fnsyn.2023.1156777","url":null,"abstract":"<p><p>N-methyl-D-aspartate receptors (NMDARs) are one of three ligand-gated ionotropic channels that transduce the effects of neurotransmitter glutamate at excitatory synapses within the central nervous system. Their ability to influx Ca<sup>2+</sup> into cells, unlike mature AMPA or kainate receptors, implicates them in a variety of processes ranging from synaptic plasticity to cell death. Many of the receptor's capabilities, including binding glutamate and regulating Ca<sup>2+</sup> influx, have been attributed to their subunit composition, determined putatively using cell biology, electrophysiology and/or pharmacology. Here, we show that subunit composition of synaptic NMDARs can also be readily visualized in acute brain slices (rat) using highly specific antibodies directed against extracellular epitopes of the subunit proteins and high-resolution confocal microscopy. This has helped confirm the expression of triheteromeric <i>t</i>-NMDARs (containing GluN1, GluN2, and GluN3 subunits) at synapses for the first time and reconcile functional differences with diheteromeric <i>d</i>-NMDARs (containing GluN1 and GluN2 subunits) described previously. Even though structural information about individual receptors is still diffraction limited, fluorescently tagged receptor subunit puncta coalesce with precision at various magnifications and/or with the postsynaptic density (PSD-95) but not the presynaptic active zone marker Bassoon. These data are particularly relevant for identifying GluN3A-containing <i>t</i>-NMDARs that are highly Ca<sup>2+</sup> permeable and whose expression at excitatory synapses renders neurons vulnerable to excitotoxicity and cell death. Imaging NMDAR subunit proteins at synapses not only offers firsthand insights into subunit composition to correlate function but may also help identify zones of vulnerability within brain structures underlying neurodegenerative diseases like Temporal Lobe Epilepsy.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1156777"},"PeriodicalIF":2.8,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9600936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiple modulatory roles of serotonin in chronic pain and injury-related anxiety. 血清素在慢性疼痛和受伤相关焦虑中的多重调节作用。
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-04-18 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1122381
Shun Hao, Wantong Shi, Weiqi Liu, Qi-Yu Chen, Min Zhuo

Chronic pain is long-lasting pain that often persists during chronic diseases or after recovery from disease or injury. It often causes serious side effects, such as insomnia, anxiety, or depression which negatively impacts the patient's overall quality of life. Serotonin (5-HT) in the central nervous system (CNS) has been recognized as an important neurotransmitter and neuromodulator which regulates various physiological functions, such as pain sensation, cognition, and emotions-especially anxiety and depression. Its widespread and diverse receptors underlie the functional complexity of 5-HT in the CNS. Recent studies found that both chronic pain and anxiety are associated with synaptic plasticity in the anterior cingulate cortex (ACC), the insular cortex (IC), and the spinal cord. 5-HT exerts multiple modulations of synaptic transmission and plasticity in the ACC and the spinal cord, including activation, inhibition, and biphasic actions. In this review, we will discuss the multiple actions of the 5-HT system in both chronic pain and injury-related anxiety, and the synaptic mechanisms behind them. It is likely that the specific 5-HT receptors would be new promising therapeutic targets for the effective treatment of chronic pain and injury-related anxiety in the future.

慢性疼痛是指在慢性疾病期间或疾病或受伤恢复后经常持续存在的长期疼痛。它通常会引起严重的副作用,如失眠、焦虑或抑郁,对患者的整体生活质量造成负面影响。中枢神经系统(CNS)中的羟色胺(5-HT)被认为是一种重要的神经递质和神经调节剂,可调节各种生理功能,如痛觉、认知和情绪,尤其是焦虑和抑郁。5-羟色胺受体的广泛性和多样性是其在中枢神经系统功能复杂性的基础。最近的研究发现,慢性疼痛和焦虑都与前扣带回皮层(ACC)、岛叶回皮层(IC)和脊髓的突触可塑性有关。5-HT 对 ACC 和脊髓中的突触传递和可塑性有多种调节作用,包括激活、抑制和双相作用。在本综述中,我们将讨论 5-HT 系统在慢性疼痛和受伤相关焦虑中的多种作用及其背后的突触机制。未来,特定的 5-HT 受体很可能成为有效治疗慢性疼痛和受伤相关焦虑的新靶点。
{"title":"Multiple modulatory roles of serotonin in chronic pain and injury-related anxiety.","authors":"Shun Hao, Wantong Shi, Weiqi Liu, Qi-Yu Chen, Min Zhuo","doi":"10.3389/fnsyn.2023.1122381","DOIUrl":"10.3389/fnsyn.2023.1122381","url":null,"abstract":"<p><p>Chronic pain is long-lasting pain that often persists during chronic diseases or after recovery from disease or injury. It often causes serious side effects, such as insomnia, anxiety, or depression which negatively impacts the patient's overall quality of life. Serotonin (5-HT) in the central nervous system (CNS) has been recognized as an important neurotransmitter and neuromodulator which regulates various physiological functions, such as pain sensation, cognition, and emotions-especially anxiety and depression. Its widespread and diverse receptors underlie the functional complexity of 5-HT in the CNS. Recent studies found that both chronic pain and anxiety are associated with synaptic plasticity in the anterior cingulate cortex (ACC), the insular cortex (IC), and the spinal cord. 5-HT exerts multiple modulations of synaptic transmission and plasticity in the ACC and the spinal cord, including activation, inhibition, and biphasic actions. In this review, we will discuss the multiple actions of the 5-HT system in both chronic pain and injury-related anxiety, and the synaptic mechanisms behind them. It is likely that the specific 5-HT receptors would be new promising therapeutic targets for the effective treatment of chronic pain and injury-related anxiety in the future.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1122381"},"PeriodicalIF":2.8,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9414995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibitory hippocampus-medial septum projection controls locomotion and exploratory behavior. 抑制性海马-中隔膜投射控制着运动和探索行为。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-04-06 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1042858
Yuh-Tarng Chen, Rachel Arano, Jun Guo, Uzair Saleem, Ying Li, Wei Xu

Although the hippocampus is generally considered a cognitive center for spatial representation, learning, and memory, increasing evidence supports its roles in regulating locomotion. However, the neuronal mechanisms of the hippocampal regulation of locomotion and exploratory behavior remain unclear. In this study, we found that the inhibitory hippocampal synaptic projection to the medial septum (MS) bi-directionally controls the locomotor speed of mice. The activation of the MS-projecting interneurons in the hippocampus or the activation of the hippocampus-originated inhibitory synaptic terminals in the MS decreased locomotion and exploratory behavior. On the other hand, the inhibition of the hippocampus-originated inhibitory synaptic terminals in the MS increased locomotion. Unlike the septal projecting interneurons, the activation of the hippocampal interneurons projecting to the retrosplenial cortex did not change animal locomotion. Therefore, this study reveals a specific long-range inhibitory synaptic output from the hippocampus to the medial septum in the regulation of animal locomotion.

虽然海马一般被认为是空间表征、学习和记忆的认知中心,但越来越多的证据支持海马在调节运动方面的作用。然而,海马调节运动和探索行为的神经元机制仍不清楚。本研究发现,抑制性海马突触投射到内侧隔(MS)可双向控制小鼠的运动速度。激活海马的MS投射中间神经元或激活MS中源自海马的抑制性突触末端会降低小鼠的运动和探索行为。另一方面,抑制多发性硬化症的海马抑制性突触末端则会增加运动。与中隔投射的中间神经元不同,激活投射到后脾皮层的海马中间神经元并不会改变动物的运动。因此,这项研究揭示了海马到内侧隔的特异性长程抑制性突触输出对动物运动的调节作用。
{"title":"Inhibitory hippocampus-medial septum projection controls locomotion and exploratory behavior.","authors":"Yuh-Tarng Chen, Rachel Arano, Jun Guo, Uzair Saleem, Ying Li, Wei Xu","doi":"10.3389/fnsyn.2023.1042858","DOIUrl":"10.3389/fnsyn.2023.1042858","url":null,"abstract":"<p><p>Although the hippocampus is generally considered a cognitive center for spatial representation, learning, and memory, increasing evidence supports its roles in regulating locomotion. However, the neuronal mechanisms of the hippocampal regulation of locomotion and exploratory behavior remain unclear. In this study, we found that the inhibitory hippocampal synaptic projection to the medial septum (MS) bi-directionally controls the locomotor speed of mice. The activation of the MS-projecting interneurons in the hippocampus or the activation of the hippocampus-originated inhibitory synaptic terminals in the MS decreased locomotion and exploratory behavior. On the other hand, the inhibition of the hippocampus-originated inhibitory synaptic terminals in the MS increased locomotion. Unlike the septal projecting interneurons, the activation of the hippocampal interneurons projecting to the retrosplenial cortex did not change animal locomotion. Therefore, this study reveals a specific long-range inhibitory synaptic output from the hippocampus to the medial septum in the regulation of animal locomotion.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1042858"},"PeriodicalIF":3.7,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9742652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Early life adversity impaired dorsal striatal synaptic transmission and behavioral adaptability to appropriate action selection in a sex-dependent manner. 早期生活逆境以性别依赖的方式损害了背纹状体突触传递和行为适应性。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-04-05 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1128640
Gregory de Carvalho, Sheraz Khoja, Mulatwa T Haile, Lulu Y Chen

Early life adversity (ELA) is a major health burden in the United States, with 62% of adults reporting at least one adverse childhood experience. These experiences during critical stages of brain development can perturb the development of neural circuits that mediate sensory cue processing and behavioral regulation. Recent studies have reported that ELA impaired the maturation of dendritic spines on neurons in the dorsolateral striatum (DLS) but not in the dorsomedial striatum (DMS). The DMS and DLS are part of two distinct corticostriatal circuits that have been extensively implicated in behavioral flexibility by regulating and integrating action selection with the reward value of those actions. To date, no studies have investigated the multifaceted effects of ELA on aspects of behavioral flexibility that require alternating between different action selection strategies or higher-order cognitive processes, and the underlying synaptic transmission in corticostriatal circuitries. To address this, we employed whole-cell patch-clamp electrophysiology to assess the effects of ELA on synaptic transmission in the DMS and DLS. We also investigated the effects of ELA on the ability to update action control in response to outcome devaluation in an instrumental learning paradigm and reversal of action-outcome contingency in a water T-maze paradigm. At the circuit level, ELA decreased corticostriatal glutamate transmission in male but not in female mice. Interestingly, in DMS, glutamate transmission is decreased in male ELA mice, but increased in female ELA mice. ELA impaired the ability to update action control in response to reward devaluation in a context that promotes goal-directedness in male mice and induced deficits in reversal learning. Overall, our findings demonstrate the sex- and region-dependent effects of ELA on behavioral flexibility and underlying corticostriatal glutamate transmission. By establishing a link between ELA and circuit mechanisms underlying behavioral flexibility, our findings will begin to identify novel molecular mechanisms that can represent strategies for treating behavioral inflexibility in individuals who experienced early life traumatic incidents.

早期生活逆境(ELA)是美国的一大健康负担,62%的成年人报告至少有一次不良童年经历。在大脑发育的关键阶段,这些经历会干扰介导感觉线索处理和行为调节的神经回路的发育。最近的研究报道,ELA损害了背外侧纹状体(DLS)神经元的树突棘的成熟,但不损害背内侧纹状体(DMS)神经元的成熟。DMS和DLS是两个不同的皮质纹状体回路的一部分,这两个回路通过调节和整合动作选择与这些动作的奖励值,与行为灵活性广泛相关。到目前为止,还没有研究调查ELA对行为灵活性方面的多方面影响,这些方面需要在不同的动作选择策略或高阶认知过程之间交替,以及皮质纹状体回路中潜在的突触传递。为了解决这一问题,我们采用全细胞膜片钳电生理学来评估ELA对DMS和DLS突触传递的影响。我们还研究了工具学习范式中ELA对更新行动控制以应对结果贬值的能力的影响,以及水T迷宫范式中行动-结果偶然性的逆转。在回路水平上,ELA降低了雄性小鼠的皮质纹状体谷氨酸传递,但没有降低雌性小鼠的传递。有趣的是,在DMS中,雄性ELA小鼠的谷氨酸传递减少,而雌性ELA小鼠则增加。ELA损害了在促进雄性小鼠目标定向的背景下更新动作控制以应对奖励贬值的能力,并导致逆转学习缺陷。总的来说,我们的研究结果证明了ELA对行为灵活性和潜在的皮质纹状体谷氨酸传递的性别和区域依赖性影响。通过在ELA和行为灵活性背后的回路机制之间建立联系,我们的研究结果将开始确定新的分子机制,这些机制可以代表早期经历创伤事件的个体治疗行为灵活性的策略。
{"title":"Early life adversity impaired dorsal striatal synaptic transmission and behavioral adaptability to appropriate action selection in a sex-dependent manner.","authors":"Gregory de Carvalho,&nbsp;Sheraz Khoja,&nbsp;Mulatwa T Haile,&nbsp;Lulu Y Chen","doi":"10.3389/fnsyn.2023.1128640","DOIUrl":"10.3389/fnsyn.2023.1128640","url":null,"abstract":"<p><p>Early life adversity (ELA) is a major health burden in the United States, with 62% of adults reporting at least one adverse childhood experience. These experiences during critical stages of brain development can perturb the development of neural circuits that mediate sensory cue processing and behavioral regulation. Recent studies have reported that ELA impaired the maturation of dendritic spines on neurons in the dorsolateral striatum (DLS) but not in the dorsomedial striatum (DMS). The DMS and DLS are part of two distinct corticostriatal circuits that have been extensively implicated in behavioral flexibility by regulating and integrating action selection with the reward value of those actions. To date, no studies have investigated the multifaceted effects of ELA on aspects of behavioral flexibility that require alternating between different action selection strategies or higher-order cognitive processes, and the underlying synaptic transmission in corticostriatal circuitries. To address this, we employed whole-cell patch-clamp electrophysiology to assess the effects of ELA on synaptic transmission in the DMS and DLS. We also investigated the effects of ELA on the ability to update action control in response to outcome devaluation in an instrumental learning paradigm and reversal of action-outcome contingency in a water T-maze paradigm. At the circuit level, ELA decreased corticostriatal glutamate transmission in male but not in female mice. Interestingly, in DMS, glutamate transmission is decreased in male ELA mice, but increased in female ELA mice. ELA impaired the ability to update action control in response to reward devaluation in a context that promotes goal-directedness in male mice and induced deficits in reversal learning. Overall, our findings demonstrate the sex- and region-dependent effects of ELA on behavioral flexibility and underlying corticostriatal glutamate transmission. By establishing a link between ELA and circuit mechanisms underlying behavioral flexibility, our findings will begin to identify novel molecular mechanisms that can represent strategies for treating behavioral inflexibility in individuals who experienced early life traumatic incidents.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1128640"},"PeriodicalIF":3.7,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10116150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9742649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Genetic disorders of neurotransmitter release machinery. 神经递质释放机制的遗传疾病。
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-03-31 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1148957
Burak Uzay, Ege T Kavalali

Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.

突触神经递质的释放是一个进化保守的过程,它介导神经元和一些外周组织之间的快速信息传递。神经递质的释放是通过突触小泡对接和引物等连续事件来确保的,这些事件为突触小泡的快速融合做好准备。这些事件由不同的突触前蛋白相互作用协调,并受突触前钙调节。最近的研究发现,神经递质释放机制的不同组成部分存在各种突变,导致神经递质释放异常,从而引发了一系列精神和神经症状。在此,我们回顾了神经递质释放核心机制不同组成部分的基因改变如何影响神经元之间的信息传递,以及突触释放异常如何影响神经系统功能。
{"title":"Genetic disorders of neurotransmitter release machinery.","authors":"Burak Uzay, Ege T Kavalali","doi":"10.3389/fnsyn.2023.1148957","DOIUrl":"10.3389/fnsyn.2023.1148957","url":null,"abstract":"<p><p>Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1148957"},"PeriodicalIF":3.7,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102358/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9318312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of single-cell knockout of Fragile X Messenger Ribonucleoprotein on synaptic structural plasticity. 单细胞敲除脆性 X 信使核糖核蛋白对突触结构可塑性的影响
IF 3.7 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-03-23 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1135479
Marie Gredell, Ju Lu, Yi Zuo

Fragile X Syndrome (FXS) is the best-known form of inherited intellectual disability caused by the loss-of-function mutation in a single gene. The FMR1 gene mutation abolishes the expression of Fragile X Messenger Ribonucleoprotein (FMRP), which regulates the expression of many synaptic proteins. Cortical pyramidal neurons in postmortem FXS patient brains show abnormally high density and immature morphology of dendritic spines; this phenotype is replicated in the Fmr1 knockout (KO) mouse. While FMRP is well-positioned in the dendrite to regulate synaptic plasticity, intriguing in vitro and in vivo data show that wild type neurons embedded in a network of Fmr1 KO neurons or glia exhibit spine abnormalities just as neurons in Fmr1 global KO mice. This raises the question: does FMRP regulate synaptic morphology and dynamics in a cell-autonomous manner, or do the synaptic phenotypes arise from abnormal pre-synaptic inputs? To address this question, we combined viral and mouse genetic approaches to delete FMRP from a very sparse subset of cortical layer 5 pyramidal neurons (L5 PyrNs) either during early postnatal development or in adulthood. We then followed the structural dynamics of dendritic spines on these Fmr1 KO neurons by in vivo two-photon microscopy. We found that, while L5 PyrNs in adult Fmr1 global KO mice have abnormally high density of thin spines, single-cell Fmr1 KO in adulthood does not affect spine density, morphology, or dynamics. On the contrary, neurons with neonatal FMRP deletion have normal spine density but elevated spine formation at 1 month of age, replicating the phenotype in Fmr1 global KO mice. Interestingly, these neurons exhibit elevated thin spine density, but normal total spine density, by adulthood. Together, our data reveal cell-autonomous FMRP regulation of cortical synaptic dynamics during adolescence, but spine defects in adulthood also implicate non-cell-autonomous factors.

脆性 X 综合征(FXS)是一种最著名的遗传性智力残疾,由单个基因的功能缺失突变引起。FMR1基因突变会导致脆性X信使核糖核蛋白(FMRP)的表达消失,而FMRP能调节许多突触蛋白的表达。FXS 患者死后大脑皮质锥体神经元的树突棘密度异常高且形态不成熟;这种表型在 Fmr1 基因敲除(KO)小鼠中得到了复制。虽然 FMRP 在树突中的位置很好,可以调节突触可塑性,但有趣的体外和体内数据显示,嵌入 Fmr1 KO 神经元或神经胶质细胞网络中的野生型神经元与 Fmr1 整体 KO 小鼠的神经元一样表现出棘突异常。这就提出了一个问题:是 FMRP 以细胞自主的方式调节突触形态和动态,还是突触表型源于异常的突触前输入?为了解决这个问题,我们结合病毒和小鼠遗传学方法,在出生后早期或成年期从皮质第 5 层锥体神经元(L5 PyrNs)的一个非常稀少的亚群中删除了 FMRP。然后,我们通过体内双光子显微镜跟踪了这些 Fmr1 KO 神经元树突棘的结构动态。我们发现,虽然成年 Fmr1 整体 KO 小鼠的 L5 PyrNs 具有异常高密度的细刺,但成年期单细胞 Fmr1 KO 并不影响刺的密度、形态或动态。相反,新生儿 FMRP 缺失的神经元脊柱密度正常,但在 1 个月大时脊柱形成增加,复制了 Fmr1 全局 KO 小鼠的表型。有趣的是,这些神经元在成年后表现出脊柱细密度升高,但脊柱总密度正常。总之,我们的数据揭示了细胞自主的 FMRP 在青春期对大脑皮层突触动力学的调控,但成年期的棘突缺陷也与非细胞自主因素有关。
{"title":"The effect of single-cell knockout of Fragile X Messenger Ribonucleoprotein on synaptic structural plasticity.","authors":"Marie Gredell, Ju Lu, Yi Zuo","doi":"10.3389/fnsyn.2023.1135479","DOIUrl":"10.3389/fnsyn.2023.1135479","url":null,"abstract":"<p><p>Fragile X Syndrome (FXS) is the best-known form of inherited intellectual disability caused by the loss-of-function mutation in a single gene. The <i>FMR1</i> gene mutation abolishes the expression of Fragile X Messenger Ribonucleoprotein (FMRP), which regulates the expression of many synaptic proteins. Cortical pyramidal neurons in postmortem FXS patient brains show abnormally high density and immature morphology of dendritic spines; this phenotype is replicated in the <i>Fmr1</i> knockout (KO) mouse. While FMRP is well-positioned in the dendrite to regulate synaptic plasticity, intriguing <i>in vitro</i> and <i>in vivo</i> data show that wild type neurons embedded in a network of <i>Fmr1</i> KO neurons or glia exhibit spine abnormalities just as neurons in <i>Fmr1</i> global KO mice. This raises the question: does FMRP regulate synaptic morphology and dynamics in a cell-autonomous manner, or do the synaptic phenotypes arise from abnormal pre-synaptic inputs? To address this question, we combined viral and mouse genetic approaches to delete FMRP from a very sparse subset of cortical layer 5 pyramidal neurons (L5 PyrNs) either during early postnatal development or in adulthood. We then followed the structural dynamics of dendritic spines on these <i>Fmr1</i> KO neurons by <i>in vivo</i> two-photon microscopy. We found that, while L5 PyrNs in adult <i>Fmr1</i> global KO mice have abnormally high density of thin spines, single-cell <i>Fmr1</i> KO in adulthood does not affect spine density, morphology, or dynamics. On the contrary, neurons with neonatal FMRP deletion have normal spine density but elevated spine formation at 1 month of age, replicating the phenotype in <i>Fmr1</i> global KO mice. Interestingly, these neurons exhibit elevated thin spine density, but normal total spine density, by adulthood. Together, our data reveal cell-autonomous FMRP regulation of cortical synaptic dynamics during adolescence, but spine defects in adulthood also implicate non-cell-autonomous factors.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1135479"},"PeriodicalIF":3.7,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10076639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9501626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. 聚焦突触:用于研究突触病的突触成像和质谱分析的最新进展。
IF 2.8 4区 医学 Q2 NEUROSCIENCES Pub Date : 2023-03-15 eCollection Date: 2023-01-01 DOI: 10.3389/fnsyn.2023.1130198
Nicole Hindley, Anna Sanchez Avila, Christopher Henstridge

Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.

突触是健康大脑功能不可或缺的组成部分,同时也越来越多地被认为是大脑疾病早期阶段的关键结构。了解驱动突触功能障碍的病理过程将为我们这个时代最具破坏性的一些疾病带来新的治疗机会。为此,我们需要一套可靠的成像和分子工具,以更高的分辨率来研究突触生物学。历史上,人们一直使用高技术成像模式对少量突触进行研究,或使用粗糙的分子方法对大量突触进行研究。然而,成像技术的最新进展使我们能够以单突触分辨率分析大量突触。此外,其中一些方法现在还可以实现多路复用,这意味着我们可以检查完整组织中单个突触的多种蛋白质。新的分子技术现在可以对分离的突触中的蛋白质进行精确定量。灵敏度越来越高的质谱分析设备的发展,意味着我们现在几乎可以全面扫描突触分子图谱,并观察其在疾病中的变化。随着这些新技术的发展,我们将能更清晰地观察突触,并在突触病领域获得更丰富、更有洞察力的高质量数据。在此,我们将以成像和质谱技术为重点,讨论方法学的进步如何促进对突触的研究。
{"title":"Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy.","authors":"Nicole Hindley, Anna Sanchez Avila, Christopher Henstridge","doi":"10.3389/fnsyn.2023.1130198","DOIUrl":"10.3389/fnsyn.2023.1130198","url":null,"abstract":"<p><p>Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.</p>","PeriodicalId":12650,"journal":{"name":"Frontiers in Synaptic Neuroscience","volume":"15 ","pages":"1130198"},"PeriodicalIF":2.8,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10050382/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9296620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers in Synaptic Neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1