Pub Date : 2020-02-14DOI: 10.1186/s12932-020-00066-8
Andrew N. Thomas, Elisabeth Eiche, Jörg Göttlicher, Ralph Steininger, Liane G. Benning, Helen M. Freeman, Dominique J. Tobler, Marco Mangayayam, Knud Dideriksen, Thomas Neumann
Chromium contamination is a serious environmental issue in areas affected by leather tanning and metal plating, and green rust sulfate has been tested extensively as a potential material for in situ chemical reduction of hexavalent chromium in groundwater. Reported products and mechanisms for the reaction have varied, most likely because of green rust’s layered structure, as reduction at outer and interlayer surfaces might produce different reaction products with variable stabilities. Based on studies of Cr(III) oxidation by biogenic Mn (IV) oxides, Cr mobility in oxic soils is controlled by the solubility of the Cr(III)-bearing phase. Therefore, careful engineering of green rust properties, i.e., crystal/particle size, morphology, structure, and electron availability, is essential for its optimization as a remediation reagent. In the present study, pure green rust sulfate and green rust sulfate with Al, Mg and Zn substitutions were synthesized and reacted with identical chromate (CrO42?) solutions. The reaction products were characterized by X-ray diffraction, pair distribution function analysis, X-ray absorption spectroscopy and transmission electron microscopy and treated with synthetic δ-MnO2 to assess how easily Cr(III) in the products could be oxidized. It was found that Mg substitution had the most beneficial effect on Cr lability in the product. Less than 2.5% of the Cr(III) present in the reacted Mg-GR was reoxidized by δ-MnO2 within 14?days, and the particle structure and Cr speciation observed during X-ray scattering and absorption analyses of this product suggested that Cr(VI) was reduced in its interlayer. Reduction in the interlayer lead to the linkage of newly-formed Cr(III) to hydroxyl groups in the adjacent octahedral layers, which resulted in increased structural coherency between these layers, distinctive rim domains, sequestration of Cr(III) in insoluble Fe oxide bonding environments resistant to reoxidation and partial transformation to Cr(III)-substituted feroxyhyte. Based on the results of this study of hexavalent chromium reduction by green rust sulfate and other studies, further improvements can also be made to this remediation technique by reacting chromate with a large excess of green rust sulfate, which provides excess Fe(II) that can catalyze transformation to more crystalline iron oxides, and synthesis of the reactant under alkaline conditions, which has been shown to favor chromium reduction in the interlayer of Fe(II)-bearing phyllosilicates.
{"title":"Effects of metal cation substitution on hexavalent chromium reduction by green rust","authors":"Andrew N. Thomas, Elisabeth Eiche, Jörg Göttlicher, Ralph Steininger, Liane G. Benning, Helen M. Freeman, Dominique J. Tobler, Marco Mangayayam, Knud Dideriksen, Thomas Neumann","doi":"10.1186/s12932-020-00066-8","DOIUrl":"https://doi.org/10.1186/s12932-020-00066-8","url":null,"abstract":"<p>Chromium contamination is a serious environmental issue in areas affected by leather tanning and metal plating, and green rust sulfate has been tested extensively as a potential material for in situ chemical reduction of hexavalent chromium in groundwater. Reported products and mechanisms for the reaction have varied, most likely because of green rust’s layered structure, as reduction at outer and interlayer surfaces might produce different reaction products with variable stabilities. Based on studies of Cr(III) oxidation by biogenic Mn (IV) oxides, Cr mobility in oxic soils is controlled by the solubility of the Cr(III)-bearing phase. Therefore, careful engineering of green rust properties, i.e., crystal/particle size, morphology, structure, and electron availability, is essential for its optimization as a remediation reagent. In the present study, pure green rust sulfate and green rust sulfate with Al, Mg and Zn substitutions were synthesized and reacted with identical chromate (CrO<sub>4</sub><sup>2?</sup>) solutions. The reaction products were characterized by X-ray diffraction, pair distribution function analysis, X-ray absorption spectroscopy and transmission electron microscopy and treated with synthetic δ-MnO<sub>2</sub> to assess how easily Cr(III) in the products could be oxidized. It was found that Mg substitution had the most beneficial effect on Cr lability in the product. Less than 2.5% of the Cr(III) present in the reacted Mg-GR was reoxidized by δ-MnO<sub>2</sub> within 14?days, and the particle structure and Cr speciation observed during X-ray scattering and absorption analyses of this product suggested that Cr(VI) was reduced in its interlayer. Reduction in the interlayer lead to the linkage of newly-formed Cr(III) to hydroxyl groups in the adjacent octahedral layers, which resulted in increased structural coherency between these layers, distinctive rim domains, sequestration of Cr(III) in insoluble Fe oxide bonding environments resistant to reoxidation and partial transformation to Cr(III)-substituted feroxyhyte. Based on the results of this study of hexavalent chromium reduction by green rust sulfate and other studies, further improvements can also be made to this remediation technique by reacting chromate with a large excess of green rust sulfate, which provides excess Fe(II) that can catalyze transformation to more crystalline iron oxides, and synthesis of the reactant under alkaline conditions, which has been shown to favor chromium reduction in the interlayer of Fe(II)-bearing phyllosilicates.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"21 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2020-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-020-00066-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4570760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-04DOI: 10.1186/s12932-019-0065-z
Ozren Hasan, Slobodan Miko, Nikolina Ilijanić, Dea Brunović, Željko Dedić, Martina Šparica Miko, Zoran Peh
The study presented in this work emerged as a result of a multiyear regional geochemical survey based on low-density topsoil sampling and the ensuing geochemical atlas of Croatia. This study focuses on the Dinaric part of Croatia to expound the underlying mechanisms controlling the mobilities and variations in distribution of potentially harmful elements as observed from different environmental angles. Although serious environmental degradation of the vulnerable karst soil landscapes was expected to occur chiefly through the accumulation of various heavy metals, the most acute threat materialized through the soil acidification (Al-toxicity) affecting the entire Dinaric karst area. This picture surfaced from the analysis of all three investigated discriminant function models employing the abovementioned environmental criteria selected autonomously with respect to the evaluated soil geochemistry, namely, geologic setting, regional placement and land use. These models are presented by not only the characteristic discriminant-function diagrams but also a set of appropriate mathematically derived geochemical maps disclosing the allocations of potential threats to the karst soil landscapes posed by soil acidity.
{"title":"Discrimination of topsoil environments in a karst landscape: an outcome of a geochemical mapping campaign","authors":"Ozren Hasan, Slobodan Miko, Nikolina Ilijanić, Dea Brunović, Željko Dedić, Martina Šparica Miko, Zoran Peh","doi":"10.1186/s12932-019-0065-z","DOIUrl":"https://doi.org/10.1186/s12932-019-0065-z","url":null,"abstract":"<p>The study presented in this work emerged as a result of a multiyear regional geochemical survey based on low-density topsoil sampling and the ensuing geochemical atlas of Croatia. This study focuses on the Dinaric part of Croatia to expound the underlying mechanisms controlling the mobilities and variations in distribution of potentially harmful elements as observed from different environmental angles. Although serious environmental degradation of the vulnerable karst soil landscapes was expected to occur chiefly through the accumulation of various heavy metals, the most acute threat materialized through the soil acidification (Al-toxicity) affecting the entire Dinaric karst area. This picture surfaced from the analysis of all three investigated discriminant function models employing the abovementioned environmental criteria selected autonomously with respect to the evaluated soil geochemistry, namely, geologic setting, regional placement and land use. These models are presented by not only the characteristic discriminant-function diagrams but also a set of appropriate mathematically derived geochemical maps disclosing the allocations of potential threats to the karst soil landscapes posed by soil acidity.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"21 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-019-0065-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4161058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-09-05DOI: 10.1186/s12932-019-0064-0
Mark Rollog, Nigel J. Cook, Paul Guagliardo, Kathy Ehrig, Sarah E. Gilbert, Matt Kilburn
Production of radionuclide-free copper concentrates is dependent on understanding and controlling the deportment of daughter radionuclides (RNs) produced from 238U decay, specifically 226Ra, 210Pb, and 210Po. Sulfuric acid leaching is currently employed in the Olympic Dam processing plant (South Australia) to remove U and fluorine from copper concentrates prior to smelting but does not adequately remove the aforementioned RN. Due to chemical similarities between lead and alkaline earth metals (including Ra), two sets of experiments were designed to understand solution interactions between Sr, Ba, and Pb at various conditions. Nanoscale secondary ion mass spectrometry (NanoSIMS) isotopic spatial distribution maps and laser ablation inductively coupled-plasma mass spectrometry transects were performed on laboratory-grown crystals of baryte, celestite, and anglesite which had been exposed to different solutions under different pH and reaction time conditions. Analysis of experimental products reveals three uptake mechanisms: overgrowth of nearly pure SrSO4 and PbSO4 on baryte; incorporation of minor of Pb and Ba into celestite due to diffusion; and extensive replacement of Pb by Sr (and less extensive replacement of Pb by Ba) in anglesite via coupled dissolution-reprecipitation reactions. The presence of H2SO4 either enhanced or inhibited these reactions. Kinetic modelling supports the experimental results, showing potential for extrapolating the (Sr, Ba, Pb)SO4 system to encompass RaSO4. Direct observation of grain-scale element distributions by nanoSIMS aids understanding of the controlling conditions and mechanisms of replacement that may be critical steps for Pb and Ra removal from concentrates by allowing construction of a cationic replacement scenario targeting Pb or Ra, or ideally all insoluble sulfates. Experimental results provide a foundation for further investigation of RN uptake during minerals processing, especially during acid leaching. The new evidence enhances understanding of micro- to nanoscale chemical interactions and not only aids determination of where radionuclides reside during each processing stage but also guides development of flowsheets targeting their removal.
{"title":"Intermobility of barium, strontium, and lead in chloride and sulfate leach solutions","authors":"Mark Rollog, Nigel J. Cook, Paul Guagliardo, Kathy Ehrig, Sarah E. Gilbert, Matt Kilburn","doi":"10.1186/s12932-019-0064-0","DOIUrl":"https://doi.org/10.1186/s12932-019-0064-0","url":null,"abstract":"<p>Production of radionuclide-free copper concentrates is dependent on understanding and controlling the deportment of daughter radionuclides (RNs) produced from <sup>238</sup>U decay, specifically <sup>226</sup>Ra, <sup>210</sup>Pb, and <sup>210</sup>Po. Sulfuric acid leaching is currently employed in the Olympic Dam processing plant (South Australia) to remove U and fluorine from copper concentrates prior to smelting but does not adequately remove the aforementioned RN. Due to chemical similarities between lead and alkaline earth metals (including Ra), two sets of experiments were designed to understand solution interactions between Sr, Ba, and Pb at various conditions. Nanoscale secondary ion mass spectrometry (NanoSIMS) isotopic spatial distribution maps and laser ablation inductively coupled-plasma mass spectrometry transects were performed on laboratory-grown crystals of baryte, celestite, and anglesite which had been exposed to different solutions under different pH and reaction time conditions. Analysis of experimental products reveals three uptake mechanisms: overgrowth of nearly pure SrSO<sub>4</sub> and PbSO<sub>4</sub> on baryte; incorporation of minor of Pb and Ba into celestite due to diffusion; and extensive replacement of Pb by Sr (and less extensive replacement of Pb by Ba) in anglesite via coupled dissolution-reprecipitation reactions. The presence of H<sub>2</sub>SO<sub>4</sub> either enhanced or inhibited these reactions. Kinetic modelling supports the experimental results, showing potential for extrapolating the (Sr, Ba, Pb)SO<sub>4</sub> system to encompass RaSO<sub>4</sub>. Direct observation of grain-scale element distributions by nanoSIMS aids understanding of the controlling conditions and mechanisms of replacement that may be critical steps for Pb and Ra removal from concentrates by allowing construction of a cationic replacement scenario targeting Pb or Ra, or ideally all insoluble sulfates. Experimental results provide a foundation for further investigation of RN uptake during minerals processing, especially during acid leaching. The new evidence enhances understanding of micro- to nanoscale chemical interactions and not only aids determination of where radionuclides reside during each processing stage but also guides development of flowsheets targeting their removal.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"20 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-019-0064-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4230495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-05-24DOI: 10.1186/s12932-019-0063-1
Rodrigo C. Pereira, Pedro R. Anizelli, Eduardo Di Mauro, Daniel F. Valezi, Antonio Carlos S. da Costa, Cássia Thaïs B. V. Zaia, Dimas A. M. Zaia
Although, glyphosate (N-(phosphonomethyl) glycine) is one of the most widely used herbicides in the world, its interaction with poorly crystalline iron oxides, such as ferrihydrite, is not well studied. In this research, we examined the adsorption of glyphosate onto ferrihydrite using infrared spectroscopy (FT-IR), electron paramagnetic resonance spectroscopy (EPR), adsorption kinetic models and adsorption isotherm models. The effect of pH and sodium chloride concentration on the adsorption of glyphosate onto ferrihydrite as well as the effect of extractors (CaCl2 0.010?mol?L?1 and Mehlich) on the desorption of glyphosate were also evaluated. There are two important findings described in this work. First, 84% of adsorbed glyphosate strongly interacted to ferrihydrite as an inner-sphere complex and phosphate and amine groups are involved in this interaction. Second, an increase of sodium chloride salt concentration increased the adsorption of glyphosate onto ferrihydrite. The non-linear Langmuir model and pseudo second order model showed a good agreement of theoretical limit of glyphosate adsorbed onto ferrihydrite, 54.88?μg?mg?1 and 48.8?μg?mg?1, respectively. The adsorption of glyphosate onto ferrihydrite decreased when the pH increased. Under the conditions used in this work, EPR spectra did not show dissolution of ferrihydrite. Surface area, pore volume and pHpzc of ferrihydrite decreased after adsorption of glyphosate.
{"title":"The effect of pH and ionic strength on the adsorption of glyphosate onto ferrihydrite","authors":"Rodrigo C. Pereira, Pedro R. Anizelli, Eduardo Di Mauro, Daniel F. Valezi, Antonio Carlos S. da Costa, Cássia Thaïs B. V. Zaia, Dimas A. M. Zaia","doi":"10.1186/s12932-019-0063-1","DOIUrl":"https://doi.org/10.1186/s12932-019-0063-1","url":null,"abstract":"<p>Although, glyphosate (<i>N</i>-(phosphonomethyl) glycine) is one of the most widely used herbicides in the world, its interaction with poorly crystalline iron oxides, such as ferrihydrite, is not well studied. In this research, we examined the adsorption of glyphosate onto ferrihydrite using infrared spectroscopy (FT-IR), electron paramagnetic resonance spectroscopy (EPR), adsorption kinetic models and adsorption isotherm models. The effect of pH and sodium chloride concentration on the adsorption of glyphosate onto ferrihydrite as well as the effect of extractors (CaCl<sub>2</sub> 0.010?mol?L<sup>?1</sup> and Mehlich) on the desorption of glyphosate were also evaluated. There are two important findings described in this work. First, 84% of adsorbed glyphosate strongly interacted to ferrihydrite as an inner-sphere complex and phosphate and amine groups are involved in this interaction. Second, an increase of sodium chloride salt concentration increased the adsorption of glyphosate onto ferrihydrite. The non-linear Langmuir model and pseudo second order model showed a good agreement of theoretical limit of glyphosate adsorbed onto ferrihydrite, 54.88?μg?mg<sup>?1</sup> and 48.8?μg?mg<sup>?1</sup>, respectively. The adsorption of glyphosate onto ferrihydrite decreased when the pH increased. Under the conditions used in this work, EPR spectra did not show dissolution of ferrihydrite. Surface area, pore volume and pH<sub>pzc</sub> of ferrihydrite decreased after adsorption of glyphosate.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"20 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2019-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-019-0063-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4948912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-22DOI: 10.1186/s12932-019-0062-2
Andreas Voegelin, Anna-Caterina Senn, Ralf Kaegi, Stephan J. Hug
Iron(III)-precipitates formed by the oxidation of dissolved Fe(II) are important sorbents for major and trace elements in aquatic and terrestrial systems. Their reductive dissolution in turn may result in the release of associated elements. We examined the reductive dissolution kinetics of an environmentally relevant set of Fe(II)-derived arsenate-containing Fe(III)-precipitates whose structure as function of phosphate (P) and silicate (Si) content varied between poorly-crystalline lepidocrocite, amorphous Fe(III)-phosphate, and Si-containing ferrihydrite. The experiments were performed with 0.2–0.5?mM precipitate-Fe(III) using 10?mM Na-ascorbate as reductant, 5?mM bipyridine as Fe(II)-complexing ligand, and 10?mM MOPS/5?mM NaOH as pH 7.0 buffer. Times required for the dissolution of half of the precipitate (t50%) ranged from 1.5 to 39?h; spanning a factor 25 range. At loadings up to ~?0.2 P/Fe (molar ratio), phosphate decreased the t50% of Si-free precipitates, probably by reducing the crystallinity of lepidocrocite. The reductive dissolution of Fe(III)-phosphates formed at higher P/Fe ratios was again slower, possibly due to P-inhibited ascorbate binding to precipitate-Fe(III). The slowest reductive dissolution was observed for P-free Si-ferrihydrite with ~?0.1 Si/Fe, suggesting that silicate binding and polymerization may reduce surface accessibility. The inhibiting effect of Si was reduced by phosphate. Dried-resuspended precipitates dissolved 1.0 to 1.8-times more slowly than precipitates that were kept wet after synthesis, most probably because drying enhanced nanoparticle aggregation. Variations in the reductive dissolution kinetics of Fe(II) oxidation products as reported from this study should be taken into account when addressing the impact of such precipitates on the environmental cycling of co-transformed nutrients and contaminants.
{"title":"Reductive dissolution of As(V)-bearing Fe(III)-precipitates formed by Fe(II) oxidation in aqueous solutions","authors":"Andreas Voegelin, Anna-Caterina Senn, Ralf Kaegi, Stephan J. Hug","doi":"10.1186/s12932-019-0062-2","DOIUrl":"https://doi.org/10.1186/s12932-019-0062-2","url":null,"abstract":"<p>Iron(III)-precipitates formed by the oxidation of dissolved Fe(II) are important sorbents for major and trace elements in aquatic and terrestrial systems. Their reductive dissolution in turn may result in the release of associated elements. We examined the reductive dissolution kinetics of an environmentally relevant set of Fe(II)-derived arsenate-containing Fe(III)-precipitates whose structure as function of phosphate (P) and silicate (Si) content varied between poorly-crystalline lepidocrocite, amorphous Fe(III)-phosphate, and Si-containing ferrihydrite. The experiments were performed with 0.2–0.5?mM precipitate-Fe(III) using 10?mM Na-ascorbate as reductant, 5?mM bipyridine as Fe(II)-complexing ligand, and 10?mM MOPS/5?mM NaOH as pH 7.0 buffer. Times required for the dissolution of half of the precipitate (t<sub>50%</sub>) ranged from 1.5 to 39?h; spanning a factor 25 range. At loadings up to ~?0.2 P/Fe (molar ratio), phosphate decreased the t<sub>50%</sub> of Si-free precipitates, probably by reducing the crystallinity of lepidocrocite. The reductive dissolution of Fe(III)-phosphates formed at higher P/Fe ratios was again slower, possibly due to P-inhibited ascorbate binding to precipitate-Fe(III). The slowest reductive dissolution was observed for P-free Si-ferrihydrite with ~?0.1 Si/Fe, suggesting that silicate binding and polymerization may reduce surface accessibility. The inhibiting effect of Si was reduced by phosphate. Dried-resuspended precipitates dissolved 1.0 to 1.8-times more slowly than precipitates that were kept wet after synthesis, most probably because drying enhanced nanoparticle aggregation. Variations in the reductive dissolution kinetics of Fe(II) oxidation products as reported from this study should be taken into account when addressing the impact of such precipitates on the environmental cycling of co-transformed nutrients and contaminants.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"20 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2019-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-019-0062-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4867141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-03-13DOI: 10.1186/s12932-019-0061-3
Michael Schindler, Haley Mantha, Michael F. Hochella Jr.
Mineralogical studies of contaminated soils affected by smelter emission and dust from mining activities indicate that minerals of the spinel group are one of the common hosts of metal-bearing contaminants. Spinel group minerals typically originate from high temperature processes, but an increasing number of studies indicate that metal-bearing spinel group minerals can also form under ambient Earth surface conditions in surficial soils. In this contribution to honor Donald Sparks, we show that the spinels Zn-bearing magnetite (Zn0.5Fe2.5O4) and minium (Pb3O4) form during low temperature alteration of Pb-bearing silica glass in surficial organic rich soils in proximity to a former Cu-smelter in Timmins, Ontario, Canada. The glass most likely formed during high-temperature processes and has been either emitted by the smelter or wind-blown from waste rock piles to near-by soils. The alteration of the glass by percolating pore solutions has resulted in the formation of large micrometer-size dendritic etch features and in nanometer-size dendritic alteration halos composed of nano-size prismatic crystals of Zn-rich magnetite and spherical nanoparticles of minium. Both spinel-type phases are embedded in an amorphous silica matrix which formed during the alteration of the glass at low temperature. A review on the occurrence of spinel-group minerals in smelter-affected soils or mine tailings indicates that the formation of these minerals under ambient Earth surface conditions is quite common and often results in the sequestration of contaminants such as Cu, Ni, Zn and Sb. The pedogenic spinels often occur as euhedral crystals in nano-size mineral assemblages within alteration features such as dendritic etch patterns, mineral surface coatings and mineralized organic matter. Their well-developed crystal forms indicate that (a) they have not formed during a rapid cooling process in a smelter or refinery which typically creates spherical particulate matter, and (b) they have not been part of particulate matter added via fluvial or Aeolian processes which most commonly yield anhedral morphologies. The formation of nano-size spinel-group minerals in low temperature environmental settings may lead to the long-term storage of metal(loid)s in mineral phases and their transport over vast distances via fluvial, alluvial and Aeolian processes.
{"title":"The formation of spinel-group minerals in contaminated soils: the sequestration of metal(loid)s by unexpected incidental nanoparticles","authors":"Michael Schindler, Haley Mantha, Michael F. Hochella Jr.","doi":"10.1186/s12932-019-0061-3","DOIUrl":"https://doi.org/10.1186/s12932-019-0061-3","url":null,"abstract":"<p>Mineralogical studies of contaminated soils affected by smelter emission and dust from mining activities indicate that minerals of the spinel group are one of the common hosts of metal-bearing contaminants. Spinel group minerals typically originate from high temperature processes, but an increasing number of studies indicate that metal-bearing spinel group minerals can also form under ambient Earth surface conditions in surficial soils. In this contribution to honor Donald Sparks, we show that the spinels Zn-bearing magnetite (Zn<sub>0.5</sub>Fe<sub>2.5</sub>O<sub>4</sub>) and minium (Pb<sub>3</sub>O<sub>4</sub>) form during low temperature alteration of Pb-bearing silica glass in surficial organic rich soils in proximity to a former Cu-smelter in Timmins, Ontario, Canada. The glass most likely formed during high-temperature processes and has been either emitted by the smelter or wind-blown from waste rock piles to near-by soils. The alteration of the glass by percolating pore solutions has resulted in the formation of large micrometer-size dendritic etch features and in nanometer-size dendritic alteration halos composed of nano-size prismatic crystals of Zn-rich magnetite and spherical nanoparticles of minium. Both spinel-type phases are embedded in an amorphous silica matrix which formed during the alteration of the glass at low temperature. A review on the occurrence of spinel-group minerals in smelter-affected soils or mine tailings indicates that the formation of these minerals under ambient Earth surface conditions is quite common and often results in the sequestration of contaminants such as Cu, Ni, Zn and Sb. The pedogenic spinels often occur as euhedral crystals in nano-size mineral assemblages within alteration features such as dendritic etch patterns, mineral surface coatings and mineralized organic matter. Their well-developed crystal forms indicate that (a) they have not formed during a rapid cooling process in a smelter or refinery which typically creates spherical particulate matter, and (b) they have not been part of particulate matter added via fluvial or Aeolian processes which most commonly yield anhedral morphologies. The formation of nano-size spinel-group minerals in low temperature environmental settings may lead to the long-term storage of metal(loid)s in mineral phases and their transport over vast distances via fluvial, alluvial and Aeolian processes.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"20 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-019-0061-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4544057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We observed the initial release rate of metals from four fresh (i.e., without long time exposure to the atmosphere) hydrothermal sulfide cores into artificial seawater. The sulfide samples were collected by seafloor drilling from the Okinawa Trough by D/V Chikyu, powdered under inert gas, and immediately subjected to onboard metal-leaching experiments at different temperatures (5?°C and 20?°C), and under different redox conditions (oxic and anoxic), for 1–30?h. Zinc and Pb were preferentially released from sulfide samples containing various metals (i.e., Mn, Fe, Cu, Zn, Cd, and Pb) into seawater. Under oxic experimental conditions, Zn and Pb dissolution rates from two sulfide samples composed mainly of iron disulfide minerals (pyrite and marcasite) were higher than those from two other sulfide samples with abundant sphalerite, galena, and/or silicate minerals. Scanning electron microscopy confirmed that the high metal-releasing sample contained several galvanic couples of iron disulfide with other sulfide minerals, whereas the low metal-releasing sample contained fewer galvanic couples or were coated by a silicate mineral. The experiments overall confirmed that the galvanic effects with iron disulfide minerals greatly induce the initial release of Zn and Pb from hydrothermal sulfides into seawater, especially under warm oxic conditions.
{"title":"Onboard experiment investigating metal leaching of fresh hydrothermal sulfide cores into seawater","authors":"Shigeshi Fuchida, Jun-ichiro Ishibashi, Kazuhiko Shimada, Tatsuo Nozaki, Hidenori Kumagai, Masanobu Kawachi, Yoshitaka Matsushita, Hiroshi Koshikawa","doi":"10.1186/s12932-018-0060-9","DOIUrl":"https://doi.org/10.1186/s12932-018-0060-9","url":null,"abstract":"<p>We observed the initial release rate of metals from four fresh (i.e., without long time exposure to the atmosphere) hydrothermal sulfide cores into artificial seawater. The sulfide samples were collected by seafloor drilling from the Okinawa Trough by <i>D/V Chikyu</i>, powdered under inert gas, and immediately subjected to onboard metal-leaching experiments at different temperatures (5?°C and 20?°C), and under different redox conditions (oxic and anoxic), for 1–30?h. Zinc and Pb were preferentially released from sulfide samples containing various metals (i.e., Mn, Fe, Cu, Zn, Cd, and Pb) into seawater. Under oxic experimental conditions, Zn and Pb dissolution rates from two sulfide samples composed mainly of iron disulfide minerals (pyrite and marcasite) were higher than those from two other sulfide samples with abundant sphalerite, galena, and/or silicate minerals. Scanning electron microscopy confirmed that the high metal-releasing sample contained several galvanic couples of iron disulfide with other sulfide minerals, whereas the low metal-releasing sample contained fewer galvanic couples or were coated by a silicate mineral. The experiments overall confirmed that the galvanic effects with iron disulfide minerals greatly induce the initial release of Zn and Pb from hydrothermal sulfides into seawater, especially under warm oxic conditions.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0060-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4244700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-08-14DOI: 10.1186/s12932-018-0059-2
Matthew G. Siebecker, Rufus L. Chaney, Donald L. Sparks
Serpentine soils and ultramafic laterites develop over ultramafic bedrock and are important geological materials from environmental, geochemical, and industrial standpoints. They have naturally elevated concentrations of trace metals, such as Ni, Cr, and Co, and also high levels of Fe and Mg. Minerals host these trace metals and influence metal mobility. Ni in particular is an important trace metal in these soils, and the objective of this research was to use microscale (μ) techniques to identify naturally occurring minerals that contain Ni and Ni correlations with other trace metals, such as Fe, Mn, and Cr. Synchrotron based μ-XRF, μ-XRD, and μ-XAS were used. Ni was often located in the octahedral layer of serpentine minerals, such as lizardite, and in other layered phyllosilicate minerals with similar octahedral structure, such as chlorite group minerals including clinochlore and chamosite. Ni was also present in goethite, hematite, magnetite, and ferrihydrite. Goethite was present with lizardite and antigorite on the micrometer scale. Lizardite integrated both Ni and Mn simultaneously in its octahedral layer. Enstatite, pargasite, chamosite, phlogopite, and forsterite incorporated various amounts of Ni and Fe over the micrometer spatial scale. Ni content increased six to seven times within the same 500?μm μ-XRD transect on chamosite and phlogopite. Data are shown down to an 8?μm spatial scale. Ni was not associated with chromite or zincochromite particles. Ni often correlated with Fe and Mn, and generally did not correlate with Cr, Zn, Ca, or K in μ-XRF maps. A split shoulder feature in the μ-XAS data at 8400?eV (3.7???1 in k-space) is highly correlated (94% of averaged LCF results) to Ni located in the octahedral sheet of layered phyllosilicate minerals, such as serpentine and chlorite-group minerals. A comparison of bulk-XAS LCF to averaged μ-XAS LCF results showed good representation of the bulk soil via the μ-XAS technique for two of the three soils. In the locations analyzed by μ-XAS, average Ni speciation was dominated by layered phyllosilicate and serpentine minerals (76%), iron oxides (18%), and manganese oxides (9%). In the locations analyzed by μ-XRD, average Ni speciation was dominated by layered phyllosilicate, serpentine, and ultramafic-related minerals (71%) and iron oxides (17%), illustrating the complementary nature of these two methods.
{"title":"Natural speciation of nickel at the micrometer scale in serpentine (ultramafic) topsoils using microfocused X-ray fluorescence, diffraction, and absorption","authors":"Matthew G. Siebecker, Rufus L. Chaney, Donald L. Sparks","doi":"10.1186/s12932-018-0059-2","DOIUrl":"https://doi.org/10.1186/s12932-018-0059-2","url":null,"abstract":"<p>Serpentine soils and ultramafic laterites develop over ultramafic bedrock and are important geological materials from environmental, geochemical, and industrial standpoints. They have naturally elevated concentrations of trace metals, such as Ni, Cr, and Co, and also high levels of Fe and Mg. Minerals host these trace metals and influence metal mobility. Ni in particular is an important trace metal in these soils, and the objective of this research was to use microscale (μ) techniques to identify naturally occurring minerals that contain Ni and Ni correlations with other trace metals, such as Fe, Mn, and Cr. Synchrotron based μ-XRF, μ-XRD, and μ-XAS were used. Ni was often located in the octahedral layer of serpentine minerals, such as lizardite, and in other layered phyllosilicate minerals with similar octahedral structure, such as chlorite group minerals including clinochlore and chamosite. Ni was also present in goethite, hematite, magnetite, and ferrihydrite. Goethite was present with lizardite and antigorite on the micrometer scale. Lizardite integrated both Ni and Mn simultaneously in its octahedral layer. Enstatite, pargasite, chamosite, phlogopite, and forsterite incorporated various amounts of Ni and Fe over the micrometer spatial scale. Ni content increased six to seven times within the same 500?μm μ-XRD transect on chamosite and phlogopite. Data are shown down to an 8?μm spatial scale. Ni was not associated with chromite or zincochromite particles. Ni often correlated with Fe and Mn, and generally did not correlate with Cr, Zn, Ca, or K in μ-XRF maps. A split shoulder feature in the μ-XAS data at 8400?eV (3.7??<sup>?1</sup> in k-space) is highly correlated (94% of averaged LCF results) to Ni located in the octahedral sheet of layered phyllosilicate minerals, such as serpentine and chlorite-group minerals. A comparison of bulk-XAS LCF to averaged μ-XAS LCF results showed good representation of the bulk soil via the μ-XAS technique for two of the three soils. In the locations analyzed by μ-XAS, average Ni speciation was dominated by layered phyllosilicate and serpentine minerals (76%), iron oxides (18%), and manganese oxides (9%). In the locations analyzed by μ-XRD, average Ni speciation was dominated by layered phyllosilicate, serpentine, and ultramafic-related minerals (71%) and iron oxides (17%), illustrating the complementary nature of these two methods.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0059-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4562593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-06-26DOI: 10.1186/s12932-018-0057-4
Andrew W. Knight, Austen B. Tigges, Anastasia G. Ilgen
Nano-scale spatial confinement can alter chemistry at mineral–water interfaces. These nano-scale confinement effects can lead to anomalous fate and transport behavior of aqueous metal species. When a fluid resides in a nanoporous environments (pore size under 100?nm), the observed density, surface tension, and dielectric constant diverge from those measured in the bulk. To evaluate the impact of nano-scale confinement on the adsorption of copper (Cu2+), we performed batch adsorption studies using mesoporous silica. Mesoporous silica with the narrow distribution of pore diameters (SBA-15; 8, 6, and 4?nm pore diameters) was chosen since the silanol functional groups are typical to surface environments. Batch adsorption isotherms were fit with adsorption models (Langmuir, Freundlich, and Dubinin–Radushkevich) and adsorption kinetic data were fit to a pseudo-first-order reaction model. We found that with decreasing pore size, the maximum surface area-normalized uptake of Cu2+ increased. The pseudo-first-order kinetic model demonstrates that the adsorption is faster as the pore size decreases from 8 to 4?nm. We attribute these effects to the deviations in fundamental water properties as pore diameter decreases. In particular, these effects are most notable in SBA-15 with a 4-nm pore where the changes in water properties may be responsible for the enhanced Cu mobility, and therefore, faster Cu adsorption kinetics.
{"title":"Adsorption of copper (II) on mesoporous silica: the effect of nano-scale confinement","authors":"Andrew W. Knight, Austen B. Tigges, Anastasia G. Ilgen","doi":"10.1186/s12932-018-0057-4","DOIUrl":"https://doi.org/10.1186/s12932-018-0057-4","url":null,"abstract":"<p>Nano-scale spatial confinement can alter chemistry at mineral–water interfaces. These nano-scale confinement effects can lead to anomalous fate and transport behavior of aqueous metal species. When a fluid resides in a nanoporous environments (pore size under 100?nm), the observed density, surface tension, and dielectric constant diverge from those measured in the bulk. To evaluate the impact of nano-scale confinement on the adsorption of copper (Cu<sup>2+</sup>), we performed batch adsorption studies using mesoporous silica. Mesoporous silica with the narrow distribution of pore diameters (SBA-15; 8, 6, and 4?nm pore diameters) was chosen since the silanol functional groups are typical to surface environments. Batch adsorption isotherms were fit with adsorption models (Langmuir, Freundlich, and Dubinin–Radushkevich) and adsorption kinetic data were fit to a pseudo-first-order reaction model. We found that with decreasing pore size, the maximum surface area-normalized uptake of Cu<sup>2+</sup> increased. The pseudo-first-order kinetic model demonstrates that the adsorption is faster as the pore size decreases from 8 to 4?nm. We attribute these effects to the deviations in fundamental water properties as pore diameter decreases. In particular, these effects are most notable in SBA-15 with a 4-nm pore where the changes in water properties may be responsible for the enhanced Cu mobility, and therefore, faster Cu adsorption kinetics.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0057-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5009191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, the wide application of CuO nanoparticles (NPs) in engineering field inevitably leads to its release into various geologic settings, which has aroused great concern about the geochemical behaviors of CuO NPs due to its high surface reactivity and impact on the fate of co-existing contaminants. However, the redox transformation of pollutants mediated by CuO NPs and the underlying mechanism still remain poorly understood. Here, we studied the interaction of CuO NPs with As(III), and explored the reaction pathways using batch experiments and multiple spectroscopic techniques. The results of in situ quick scanning X-ray absorption spectroscopy (Q-XAS) analysis verified that CuO NPs is capable of catalytically oxidize As(III) under dark conditions efficiently at a wide range of pHs. As(III) was firstly adsorbed on CuO NPs surface and then gradually oxidized to As(V) with dissolved O2 as the terminal electron acceptor. As(III) adsorption increased to the maximum at a pH close to PZC of CuO NPs (~?pH 9.2), and then sharply decreased with increasing pH, while the oxidation capacity monotonically increased with pH. X-ray photoelectron spectroscopy and electron paramagnetic resonance characterization of samples from batch experiments indicated that two pathways may be involved in As(III) catalytic oxidation: (1) direct electron transfer from As(III) to Cu(II), followed by concomitant re-oxidation of the produced Cu(I) by dissolved O2 back to Cu(II) on CuO NPs surface, and (2) As(III) oxidation by reactive oxygen species (ROS) produced from the above Cu(I) oxygenation process. These observations facilitate a better understanding of the surface catalytic property of CuO NPs and its interaction with As(III) and other elements with variable valence in geochemical environments.
{"title":"Catalytic oxidation of arsenite and reaction pathways on the surface of CuO nanoparticles at a wide range of pHs","authors":"Lingqun Zeng, Biao Wan, Rixiang Huang, Yupeng Yan, Xiaoming Wang, Wenfeng Tan, Fan Liu, Xionghan Feng","doi":"10.1186/s12932-018-0058-3","DOIUrl":"https://doi.org/10.1186/s12932-018-0058-3","url":null,"abstract":"<p>Recently, the wide application of CuO nanoparticles (NPs) in engineering field inevitably leads to its release into various geologic settings, which has aroused great concern about the geochemical behaviors of CuO NPs due to its high surface reactivity and impact on the fate of co-existing contaminants. However, the redox transformation of pollutants mediated by CuO NPs and the underlying mechanism still remain poorly understood. Here, we studied the interaction of CuO NPs with As(III), and explored the reaction pathways using batch experiments and multiple spectroscopic techniques. The results of in situ quick scanning X-ray absorption spectroscopy (Q-XAS) analysis verified that CuO NPs is capable of catalytically oxidize As(III) under dark conditions efficiently at a wide range of pHs. As(III) was firstly adsorbed on CuO NPs surface and then gradually oxidized to As(V) with dissolved O<sub>2</sub> as the terminal electron acceptor. As(III) adsorption increased to the maximum at a pH close to PZC of CuO NPs (~?pH 9.2), and then sharply decreased with increasing pH, while the oxidation capacity monotonically increased with pH. X-ray photoelectron spectroscopy and electron paramagnetic resonance characterization of samples from batch experiments indicated that two pathways may be involved in As(III) catalytic oxidation: (1) direct electron transfer from As(III) to Cu(II), followed by concomitant re-oxidation of the produced Cu(I) by dissolved O<sub>2</sub> back to Cu(II) on CuO NPs surface, and (2) As(III) oxidation by reactive oxygen species (ROS) produced from the above Cu(I) oxygenation process. These observations facilitate a better understanding of the surface catalytic property of CuO NPs and its interaction with As(III) and other elements with variable valence in geochemical environments.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0058-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4862706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}