The distribution of trace metals in active stream sediments from the mineralized Lom Basin has been evaluated. Fifty-five bottom sediments were collected and the mineralogical composition of six pulverized samples determined by XRD. The fine fraction (<?150?μm) was subjected to total digestion (HClO4?+?HF?+?HCl) and analyzed for trace metals using a combination of ICP-MS and AAS analytical methods. Results show that the mineralogy of stream sediments is dominated by quartz (39–86%), phyllosilicates (0–45%) and feldspars (0–27%). Mean concentrations of the analyzed metals are low (e.g. As?=?99.40?μg/kg, Zn?=?573.24?μg/kg, V?=?963.14?μg/kg and Cr?=?763.93?μg/kg). Iron and Mn have significant average concentrations of 28.325 and 442?mg/kg, respectively. Background and threshold values of the trace metals were computed statistically to determine geochemical anomalies of geologic or anthropogenic origin, particularly mining activity. Factor analysis, applied on normalized data, identified three associations: Ni–Cr–V–Co–As–Se–pH, Cu–Zn–Hg–Pb–Cd–Sc and Fe–Mn. The first association is controlled by source geology and the neutral pH, the second by sulphide mineralization and the last by chemical weathering of ferromagnesian minerals. Spatial analysis reveals similar distribution trends for Co–Cr–V–Ni and Cu–Zn–Pb–Sc reflecting the lithology and sulphide mineralization in the basin. Relatively high levels of As were concordant with reported gold occurrences in the area while Fe and Mn distribution are consistent with their source from the Fe-bearing metamorphic rocks. These findings provide baseline geochemical values for common and parallel geological domains in the eastern region of Cameroon. Although this study shows that the stream sediments are not polluted, the evaluation of metal composition in environmental samples from abandoned and active mine sites for comparison and environmental health risk assessment is highly recommended.
{"title":"Regional geochemical baseline concentration of potentially toxic trace metals in the mineralized Lom Basin, East Cameroon: a tool for contamination assessment","authors":"Mumbfu Ernestine Mimba, Takeshi Ohba, Salomon César Nguemhe Fils, Melvin Tamnta Nforba, Nozomi Numanami, Tasin Godlove Bafon, Festus Tongwa Aka, Cheo Emmanuel Suh","doi":"10.1186/s12932-018-0056-5","DOIUrl":"https://doi.org/10.1186/s12932-018-0056-5","url":null,"abstract":"<p>The distribution of trace metals in active stream sediments from the mineralized Lom Basin has been evaluated. Fifty-five bottom sediments were collected and the mineralogical composition of six pulverized samples determined by XRD. The fine fraction (<?150?μm) was subjected to total digestion (HClO<sub>4</sub>?+?HF?+?HCl) and analyzed for trace metals using a combination of ICP-MS and AAS analytical methods. Results show that the mineralogy of stream sediments is dominated by quartz (39–86%), phyllosilicates (0–45%) and feldspars (0–27%). Mean concentrations of the analyzed metals are low (e.g. As?=?99.40?μg/kg, Zn?=?573.24?μg/kg, V?=?963.14?μg/kg and Cr?=?763.93?μg/kg). Iron and Mn have significant average concentrations of 28.325 and 442?mg/kg, respectively. Background and threshold values of the trace metals were computed statistically to determine geochemical anomalies of geologic or anthropogenic origin, particularly mining activity. Factor analysis, applied on normalized data, identified three associations: Ni–Cr–V–Co–As–Se–pH, Cu–Zn–Hg–Pb–Cd–Sc and Fe–Mn. The first association is controlled by source geology and the neutral pH, the second by sulphide mineralization and the last by chemical weathering of ferromagnesian minerals. Spatial analysis reveals similar distribution trends for Co–Cr–V–Ni and Cu–Zn–Pb–Sc reflecting the lithology and sulphide mineralization in the basin. Relatively high levels of As were concordant with reported gold occurrences in the area while Fe and Mn distribution are consistent with their source from the Fe-bearing metamorphic rocks. These findings provide baseline geochemical values for common and parallel geological domains in the eastern region of Cameroon. Although this study shows that the stream sediments are not polluted, the evaluation of metal composition in environmental samples from abandoned and active mine sites for comparison and environmental health risk assessment is highly recommended.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0056-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4095228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-04-02DOI: 10.1186/s12932-018-0055-6
Daniel G. Strawn
Arsenic is a non-essential element that poses risks in many environments, including soil, groundwater, and surface water. Insights into the environmental biogeochemistry of As can be gained by comparing As and P reaction processes. Arsenic and P are chemical analogues, and it is proposed that they have similar chemical behaviors in environmental systems. However some chemical properties of As and P are distinct, such as redox reactions, causing the biogeochemical behavior of the two elements to differ. In the environment, As occurs as either As(V) or As(III) oxyanions (e.g., AsO43? or AsO33?). In contrast, P occurs predominantly as oxidation state five plus; most commonly as the orthophosphate ion (PO43?). In this paper, data from four published case studies are presented with a focus on P and As distribution and speciation in soil. The goal is show how analyzing P chemistry in soils can provide greater insights into As reaction processes in soils. The case studies discussed include: (1) soil developed from shale parent material, (2) mine-waste impacted wetland soils, (3) phosphate-amended contaminated soil, and (4) plants grown in biochar-amended, mine-contaminated soil. Data show that while P and As have competitive reactions in soils, in most natural systems they have distinct biogeochemical processes that create differing mobility and bioavailability. These processes include redox reactions and rhizosphere processes that affect As bioavailability. Results from these case studies are used as examples to illustrate how studying P and As together allows for enhanced interpretation of As biogeochemical processes in soils.
{"title":"Review of interactions between phosphorus and arsenic in soils from four case studies","authors":"Daniel G. Strawn","doi":"10.1186/s12932-018-0055-6","DOIUrl":"https://doi.org/10.1186/s12932-018-0055-6","url":null,"abstract":"<p>Arsenic is a non-essential element that poses risks in many environments, including soil, groundwater, and surface water. Insights into the environmental biogeochemistry of As can be gained by comparing As and P reaction processes. Arsenic and P are chemical analogues, and it is proposed that they have similar chemical behaviors in environmental systems. However some chemical properties of As and P are distinct, such as redox reactions, causing the biogeochemical behavior of the two elements to differ. In the environment, As occurs as either As(V) or As(III) oxyanions (e.g., AsO<sub>4</sub><sup>3?</sup> or AsO<sub>3</sub><sup>3?</sup>). In contrast, P occurs predominantly as oxidation state five plus; most commonly as the orthophosphate ion (PO<sub>4</sub><sup>3?</sup>). In this paper, data from four published case studies are presented with a focus on P and As distribution and speciation in soil. The goal is show how analyzing P chemistry in soils can provide greater insights into As reaction processes in soils. The case studies discussed include: (1) soil developed from shale parent material, (2) mine-waste impacted wetland soils, (3) phosphate-amended contaminated soil, and (4) plants grown in biochar-amended, mine-contaminated soil. Data show that while P and As have competitive reactions in soils, in most natural systems they have distinct biogeochemical processes that create differing mobility and bioavailability. These processes include redox reactions and rhizosphere processes that affect As bioavailability. Results from these case studies are used as examples to illustrate how studying P and As together allows for enhanced interpretation of As biogeochemical processes in soils.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0055-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4064646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-27DOI: 10.1186/s12932-018-0054-7
Wenxian Gou, Matthew G. Siebecker, Zimeng Wang, Wei Li
Trace metals (e.g. Ni, Zn) leached from industrial and agricultural processes are often simultaneously present in contaminated soils and sediments. Their mobility, bioavailability, and ecotoxicity are affected by sorption and cosorption at mineral/solution interfaces. Cosorption of trace metals has been investigated at the macroscopic level, but there is not a clear understanding of the molecular-scale cosorption processes due to lack of spectroscopic information. In this study, Ni and Zn cosorption to aluminum oxides (γ-Al2O3) in binary-sorbate systems were compared to their sorption in single-sorbate systems as a function of pH using both macroscopic batch experiments and synchrotron-based X-ray absorption fine structure spectroscopy. At pH 6.0, Ni and Zn were sorbed as inner-sphere surface complexes and competed for the limited number of reactive sites on γ-Al2O3. In binary-sorbate systems, Ni had no effect on Zn sorption, owning to its lower affinity for the metal oxide surface. In contrast, Zn had a higher affinity for the metal oxide surface and reduced Ni sorption. At pH 7.5, Ni and Zn were sorbed as mixed-metal surface precipitates, including Ni–Al layered double hydroxides (LDHs), Zn–Al LDHs, and likely Ni–Zn–Al layered triple/ternary hydroxides. Additionally, at pH 7.5, Ni and Zn do not exhibit competitive sorption effects in the binary system. Taken together, these results indicated that pH critically influenced the reaction products, and provides a crucial scientific basis to understand the potential mobility, bioavailability, and ecotoxicity of Ni and Zn in natural and contaminated geochemical environments.
{"title":"Competitive sorption of Ni and Zn at the aluminum oxide/water interface: an XAFS study","authors":"Wenxian Gou, Matthew G. Siebecker, Zimeng Wang, Wei Li","doi":"10.1186/s12932-018-0054-7","DOIUrl":"https://doi.org/10.1186/s12932-018-0054-7","url":null,"abstract":"<p>Trace metals (e.g. Ni, Zn) leached from industrial and agricultural processes are often simultaneously present in contaminated soils and sediments. Their mobility, bioavailability, and ecotoxicity are affected by sorption and cosorption at mineral/solution interfaces. Cosorption of trace metals has been investigated at the macroscopic level, but there is not a clear understanding of the molecular-scale cosorption processes due to lack of spectroscopic information. In this study, Ni and Zn cosorption to aluminum oxides (γ-Al<sub>2</sub>O<sub>3</sub>) in binary-sorbate systems were compared to their sorption in single-sorbate systems as a function of pH using both macroscopic batch experiments and synchrotron-based X-ray absorption fine structure spectroscopy. At pH 6.0, Ni and Zn were sorbed as inner-sphere surface complexes and competed for the limited number of reactive sites on γ-Al<sub>2</sub>O<sub>3</sub>. In binary-sorbate systems, Ni had no effect on Zn sorption, owning to its lower affinity for the metal oxide surface. In contrast, Zn had a higher affinity for the metal oxide surface and reduced Ni sorption. At pH 7.5, Ni and Zn were sorbed as mixed-metal surface precipitates, including Ni–Al layered double hydroxides (LDHs), Zn–Al LDHs, and likely Ni–Zn–Al layered triple/ternary hydroxides. Additionally, at pH 7.5, Ni and Zn do not exhibit competitive sorption effects in the binary system. Taken together, these results indicated that pH critically influenced the reaction products, and provides a crucial scientific basis to understand the potential mobility, bioavailability, and ecotoxicity of Ni and Zn in natural and contaminated geochemical environments.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0054-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5054784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-03-01DOI: 10.1186/s12932-018-0053-8
James D. Kubicki, Nadine Kabengi, Maria Chrysochoou, Nefeli Bompoti
Density functional theory (DFT) calculations were performed on a model of a ferrihydrite nanoparticle interacting with chromate (( {text{CrO}}_{4}^{2 - } )) in water. Two configurations each of monodentate and bidentate adsorbed chromate as well as an outer-sphere and a dissolved bichromate (( {text{HCrO}}_{4}^{ - } )) were simulated. In addition to the 3-D periodic planewave DFT models, molecular clusters were extracted from the energy-minimized structures. Calculated interatomic distances from the periodic and cluster models compare favorably with Extended X-ray Absorption Fine Structure spectroscopy values, with larger discrepancies seen for the clusters due to over-relaxation of the model substrate. Relative potential energies were derived from the periodic models and Gibbs free energies from the cluster models. A key result is that the bidentate binuclear configuration is the lowest in potential energy in the periodic models followed by the outer-sphere complex. This result is consistent with observations of the predominance of bidentate chromate adsorption on ferrihydrite under conditions of high surface coverage (Johnston Environ Sci Technol 46:5851–5858, 2012). Cluster models were also used to perform frequency analyses for comparison with observed ATR FTIR spectra. Calculated frequencies on monodentate, bidentate binuclear, and outer-sphere complexes each have infrared (IR)-active modes consistent with experiment. Inconsistencies between the thermodynamic predictions and the IR-frequency analysis suggest that the 3-D periodic models are not capturing key components of the system that influence the adsorption equilibria under varying conditions of pH, ionic strength and electrolyte composition. Model equilibration via molecular dynamics (MD) simulations is necessary to escape metastable states created during DFT energy minimizations based on the initial classical force field MD-derived starting configurations.
{"title":"Density functional theory modeling of chromate adsorption onto ferrihydrite nanoparticles","authors":"James D. Kubicki, Nadine Kabengi, Maria Chrysochoou, Nefeli Bompoti","doi":"10.1186/s12932-018-0053-8","DOIUrl":"https://doi.org/10.1186/s12932-018-0053-8","url":null,"abstract":"<p>Density functional theory (DFT) calculations were performed on a model of a ferrihydrite nanoparticle interacting with chromate (<span>( {text{CrO}}_{4}^{2 - } )</span>) in water. Two configurations each of monodentate and bidentate adsorbed chromate as well as an outer-sphere and a dissolved bichromate (<span>( {text{HCrO}}_{4}^{ - } )</span>) were simulated. In addition to the 3-D periodic planewave DFT models, molecular clusters were extracted from the energy-minimized structures. Calculated interatomic distances from the periodic and cluster models compare favorably with Extended X-ray Absorption Fine Structure spectroscopy values, with larger discrepancies seen for the clusters due to over-relaxation of the model substrate. Relative potential energies were derived from the periodic models and Gibbs free energies from the cluster models. A key result is that the bidentate binuclear configuration is the lowest in potential energy in the periodic models followed by the outer-sphere complex. This result is consistent with observations of the predominance of bidentate chromate adsorption on ferrihydrite under conditions of high surface coverage (Johnston Environ Sci Technol 46:5851–5858, 2012). Cluster models were also used to perform frequency analyses for comparison with observed ATR FTIR spectra. Calculated frequencies on monodentate, bidentate binuclear, and outer-sphere complexes each have infrared (IR)-active modes consistent with experiment. Inconsistencies between the thermodynamic predictions and the IR-frequency analysis suggest that the 3-D periodic models are not capturing key components of the system that influence the adsorption equilibria under varying conditions of pH, ionic strength and electrolyte composition. Model equilibration via molecular dynamics (MD) simulations is necessary to escape metastable states created during DFT energy minimizations based on the initial classical force field MD-derived starting configurations.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0053-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4040944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-21DOI: 10.1186/s12932-018-0052-9
Barbara J. Cade-Menun, Kyle R. Elkin, Corey W. Liu, Ray B. Bryant, Peter J. A. Kleinman, Philip A. Moore Jr.
Phosphorus (P) can limit crop production in many soils, and soil testing is used to guide fertilizer recommendations. The Mehlich III (M3) soil test is widely used in North America, followed by colorimetric analysis for P, or by inductively coupled plasma-based spectrometry (ICP) for P and cations. However, differences have been observed in M3 P concentrations measured by these methods. Using 31P nuclear magnetic resonance (P-NMR) and mass spectrometry (MS), we characterized P forms in M3 extracts. In addition to the orthophosphate that would be detected during colorimetric analysis, several organic P forms were present in M3 extracts that would be unreactive colorimetrically but measured by ICP (molybdate unreactive P, MUP). Extraction of these P forms by M3 was confirmed by P-NMR and MS in NaOH-ethylenediaminetetraacetic acid extracts of whole soils and residues after M3 extraction. The most abundant P form in M3 extracts was myo-inositol hexaphosphate (myo-IHP, phytate), a compound that may not contribute to plant-available P if tightly sorbed in soil. Concentrations of myo-IHP and other organic P forms varied among soils, and even among treatment plots on the same soil. Extraction of myo-IHP in M3 appeared to be linked to cations, with substantially more myo-IHP extracted from soils fertilized with alum-treated poultry litter than untreated litter. These results suggest that ICP analysis may substantially over-estimate plant-available P in samples with high MUP concentrations, but there is no way at present to determine MUP concentrations without analysis by both colorimetry and ICP. This study also tested procedures that will improve future soil P-NMR studies, such as treatment of acid extracts, and demonstrated that techniques such as P-NMR and MS are complimentary, each yielding additional information that analysis by a single technique may not provide.
在许多土壤中,磷(P)可以限制作物生产,土壤测试用于指导肥料推荐。Mehlich III (M3)土壤测试在北美广泛使用,其次是P的比色分析,或P和阳离子的电感耦合等离子体光谱法(ICP)。然而,这些方法测得的M3 P浓度存在差异。利用31P核磁共振(P- nmr)和质谱(MS)对M3提取物中的P形态进行了表征。除了在比色分析中检测到的正磷酸盐外,M3提取物中还存在几种有机P形式,这些形式将是非反应性比色,但通过ICP(钼酸盐非反应性P, MUP)进行测量。在全土壤和M3萃取后残渣的naoh -乙二胺四乙酸提取物中,通过P- nmr和MS证实了M3对这些P形态的提取。M3提取物中最丰富的磷形式是肌醇六磷酸(myo-IHP,植酸盐),这种化合物如果被土壤紧密吸收,可能不会为植物提供有效磷。myo-IHP和其他有机磷形式的浓度在不同土壤之间,甚至在同一土壤上的不同处理地块之间也存在差异。M3中myo-IHP的提取似乎与阳离子有关,从铝处理过的家禽凋落物施肥的土壤中提取的myo-IHP比未处理过的凋落物多得多。这些结果表明,ICP分析可能大大高估了MUP浓度高的样品中的植物可利用磷,但目前没有办法在没有比色法和ICP分析的情况下确定MUP浓度。本研究还测试了将改进未来土壤P-NMR研究的程序,如酸提取物的处理,并证明了P-NMR和MS等技术是互补的,每种技术都能提供单一技术可能无法提供的额外信息。
{"title":"Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test","authors":"Barbara J. Cade-Menun, Kyle R. Elkin, Corey W. Liu, Ray B. Bryant, Peter J. A. Kleinman, Philip A. Moore Jr.","doi":"10.1186/s12932-018-0052-9","DOIUrl":"https://doi.org/10.1186/s12932-018-0052-9","url":null,"abstract":"<p>Phosphorus (P) can limit crop production in many soils, and soil testing is used to guide fertilizer recommendations. The Mehlich III (M3) soil test is widely used in North America, followed by colorimetric analysis for P, or by inductively coupled plasma-based spectrometry (ICP) for P and cations. However, differences have been observed in M3 P concentrations measured by these methods. Using <sup>31</sup>P nuclear magnetic resonance (P-NMR) and mass spectrometry (MS), we characterized P forms in M3 extracts. In addition to the orthophosphate that would be detected during colorimetric analysis, several organic P forms were present in M3 extracts that would be unreactive colorimetrically but measured by ICP (molybdate unreactive P, MUP). Extraction of these P forms by M3 was confirmed by P-NMR and MS in NaOH-ethylenediaminetetraacetic acid extracts of whole soils and residues after M3 extraction. The most abundant P form in M3 extracts was <i>myo</i>-inositol hexaphosphate (<i>myo</i>-IHP, phytate), a compound that may not contribute to plant-available P if tightly sorbed in soil. Concentrations of <i>myo</i>-IHP and other organic P forms varied among soils, and even among treatment plots on the same soil. Extraction of <i>myo</i>-IHP in M3 appeared to be linked to cations, with substantially more <i>myo</i>-IHP extracted from soils fertilized with alum-treated poultry litter than untreated litter. These results suggest that ICP analysis may substantially over-estimate plant-available P in samples with high MUP concentrations, but there is no way at present to determine MUP concentrations without analysis by both colorimetry and ICP. This study also tested procedures that will improve future soil P-NMR studies, such as treatment of acid extracts, and demonstrated that techniques such as P-NMR and MS are complimentary, each yielding additional information that analysis by a single technique may not provide.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0052-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4817768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-13DOI: 10.1186/s12932-018-0050-y
Tingting Fan, Chengbao Li, Juan Gao, Dongmei Zhou, Marcelo Eduardo Alves, Yujun Wang
The coexistence of Cd2+ and Zn2+ ions in nature has a significant influence on their environmental behaviors in soils and bioavailability for plants. While many studies have been done on the mutual toxicity of Cd2+ and Zn2+, few studies can be found in the literature focused on the interaction of Cd2+ and Zn2+ on soil clay fractions especially in terms of energy relationship.
The binding energies of Cd2+ on boggy soil (Histosols) particles and Zn2+ on yellow brown soil (Haplic Luvisols) particles were the highest, while those of Cd2+ and Zn2+ on paddy soil (Inceptisols) particles were the lowest. These results indicated that Cd2+ and Zn2+ have a strong capacity to adsorb in the solid phase at the soil–water interface of boggy soil and yellow brown soil, respectively. However, both Cd2+ and Zn2+ adsorbed on paddy soil particles easily release into the solution of the soil suspension. Unlike the binding energy, the higher adsorption energies of ions in boggy and yellow brown soils showed a weak binding force of ions in boggy soil and yellow brown soil. A 1:1 ratio of Cd2+ to Zn2+ promotes the mutual inhibition of their retentions. Cd2+ and Zn2+ have high mobility and bioavailability in paddy soil and yellow drab soil (Ustalfs), whereas they have high potential mobility and bioavailability in boggy soil and yellow brown soil.
In the combined system, Zn2+ had preferential adsorption than Cd2+ on soil clay fractions. Boggy soil and yellow brown soil have a low environmental risk with lower mobility and bioavailability of Cd2+ and Zn2+ while paddy soil and yellow drab soil present a substantial environmental risk. In the combined system, Cd2+ and Zn2+ restrain each other, resulting in the weaker binding force between ions and soil particles at a 1:1 ratio of Cd2+–Zn2+.
{"title":"Wien effect of Cd/Zn on soil clay fraction and their interaction","authors":"Tingting Fan, Chengbao Li, Juan Gao, Dongmei Zhou, Marcelo Eduardo Alves, Yujun Wang","doi":"10.1186/s12932-018-0050-y","DOIUrl":"https://doi.org/10.1186/s12932-018-0050-y","url":null,"abstract":"<p>The coexistence of Cd<sup>2+</sup> and Zn<sup>2+</sup> ions in nature has a significant influence on their environmental behaviors in soils and bioavailability for plants. While many studies have been done on the mutual toxicity of Cd<sup>2+</sup> and Zn<sup>2+</sup>, few studies can be found in the literature focused on the interaction of Cd<sup>2+</sup> and Zn<sup>2+</sup> on soil clay fractions especially in terms of energy relationship.</p><p>The binding energies of Cd<sup>2+</sup> on boggy soil (Histosols) particles and Zn<sup>2+</sup> on yellow brown soil (Haplic Luvisols) particles were the highest, while those of Cd<sup>2+</sup> and Zn<sup>2+</sup> on paddy soil (Inceptisols) particles were the lowest. These results indicated that Cd<sup>2+</sup> and Zn<sup>2+</sup> have a strong capacity to adsorb in the solid phase at the soil–water interface of boggy soil and yellow brown soil, respectively. However, both Cd<sup>2+</sup> and Zn<sup>2+</sup> adsorbed on paddy soil particles easily release into the solution of the soil suspension. Unlike the binding energy, the higher adsorption energies of ions in boggy and yellow brown soils showed a weak binding force of ions in boggy soil and yellow brown soil. A 1:1 ratio of Cd<sup>2+</sup> to Zn<sup>2+</sup> promotes the mutual inhibition of their retentions. Cd<sup>2+</sup> and Zn<sup>2+</sup> have high mobility and bioavailability in paddy soil and yellow drab soil (Ustalfs), whereas they have high potential mobility and bioavailability in boggy soil and yellow brown soil.</p><p>In the combined system, Zn<sup>2+</sup> had preferential adsorption than Cd<sup>2+</sup> on soil clay fractions. Boggy soil and yellow brown soil have a low environmental risk with lower mobility and bioavailability of Cd<sup>2+</sup> and Zn<sup>2+</sup> while paddy soil and yellow drab soil present a substantial environmental risk. In the combined system, Cd<sup>2+</sup> and Zn<sup>2+</sup> restrain each other, resulting in the weaker binding force between ions and soil particles at a 1:1 ratio of Cd<sup>2+</sup>–Zn<sup>2+</sup>.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0050-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4534183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-13DOI: 10.1186/s12932-018-0051-x
Jason W. Stuckey, Christopher Goodwin, Jian Wang, Louis A. Kaplan, Prian Vidal-Esquivel, Thomas P. Beebe Jr., Donald L. Sparks
Minerals constitute a primary ecosystem control on organic C decomposition in soils, and therefore on greenhouse gas fluxes to the atmosphere. Secondary minerals, in particular, Fe and Al (oxyhydr)oxides—collectively referred to as “oxides” hereafter—are prominent protectors of organic C against microbial decomposition through sorption and complexation reactions. However, the impacts of Mn oxides on organic C retention and lability in soils are poorly understood. Here we show that hydrous Mn oxide (HMO), a poorly crystalline δ-MnO2, has a greater maximum sorption capacity for dissolved organic matter (DOM) derived from a deciduous forest composite Oi, Oe, and Oa horizon leachate (“O horizon leachate” hereafter) than does goethite under acidic (pH 5) conditions. Nonetheless, goethite has a stronger sorption capacity for DOM at low initial C:(Mn or Fe) molar ratios compared to HMO, probably due to ligand exchange with carboxylate groups as revealed by attenuated total reflectance-Fourier transform infrared spectroscopy. X-ray photoelectron spectroscopy and scanning transmission X-ray microscopy–near-edge X-ray absorption fine structure spectroscopy coupled with Mn mass balance calculations reveal that DOM sorption onto HMO induces partial Mn reductive dissolution and Mn reduction of the residual HMO. X-ray photoelectron spectroscopy further shows increasing Mn(II) concentrations are correlated with increasing oxidized C (C=O) content (r?=?0.78, P?<?0.0006) on the DOM–HMO complexes. We posit that DOM is the more probable reductant of HMO, as Mn(II)-induced HMO dissolution does not alter the Mn speciation of the residual HMO at pH 5. At a lower C loading (2?×?102?μg?C?m?2), DOM desorption—assessed by 0.1?M NaH2PO4 extraction—is lower for HMO than for goethite, whereas the extent of desorption is the same at a higher C loading (4?×?102?μg?C?m?2). No significant differences are observed in the impacts of HMO and goethite on the biodegradability of the DOM remaining in solution after DOM sorption reaches steady state. Overall, HMO shows a relatively strong capacity to sorb DOM and resist phosphate-induced desorption, but DOM–HMO complexes may be more vulnerable to reductive dissolution than DOM–goethite complexes.
{"title":"Impacts of hydrous manganese oxide on the retention and lability of dissolved organic matter","authors":"Jason W. Stuckey, Christopher Goodwin, Jian Wang, Louis A. Kaplan, Prian Vidal-Esquivel, Thomas P. Beebe Jr., Donald L. Sparks","doi":"10.1186/s12932-018-0051-x","DOIUrl":"https://doi.org/10.1186/s12932-018-0051-x","url":null,"abstract":"<p>Minerals constitute a primary ecosystem control on organic C decomposition in soils, and therefore on greenhouse gas fluxes to the atmosphere. Secondary minerals, in particular, Fe and Al (oxyhydr)oxides—collectively referred to as “oxides” hereafter—are prominent protectors of organic C against microbial decomposition through sorption and complexation reactions. However, the impacts of Mn oxides on organic C retention and lability in soils are poorly understood. Here we show that hydrous Mn oxide (HMO), a poorly crystalline δ-MnO<sub>2</sub>, has a greater maximum sorption capacity for dissolved organic matter (DOM) derived from a deciduous forest composite O<sub>i</sub>, O<sub>e</sub>, and O<sub>a</sub> horizon leachate (“O horizon leachate” hereafter) than does goethite under acidic (pH 5) conditions. Nonetheless, goethite has a stronger sorption capacity for DOM at low initial C:(Mn or Fe) molar ratios compared to HMO, probably due to ligand exchange with carboxylate groups as revealed by attenuated total reflectance-Fourier transform infrared spectroscopy. X-ray photoelectron spectroscopy and scanning transmission X-ray microscopy–near-edge X-ray absorption fine structure spectroscopy coupled with Mn mass balance calculations reveal that DOM sorption onto HMO induces partial Mn reductive dissolution and Mn reduction of the residual HMO. X-ray photoelectron spectroscopy further shows increasing Mn(II) concentrations are correlated with increasing oxidized C (C=O) content (r?=?0.78, P?<?0.0006) on the DOM–HMO complexes. We posit that DOM is the more probable reductant of HMO, as Mn(II)-induced HMO dissolution does not alter the Mn speciation of the residual HMO at pH 5. At a lower C loading (2?×?10<sup>2</sup>?μg?C?m<sup>?2</sup>), DOM desorption—assessed by 0.1?M NaH<sub>2</sub>PO<sub>4</sub> extraction—is lower for HMO than for goethite, whereas the extent of desorption is the same at a higher C loading (4?×?10<sup>2</sup>?μg?C?m<sup>?2</sup>). No significant differences are observed in the impacts of HMO and goethite on the biodegradability of the DOM remaining in solution after DOM sorption reaches steady state. Overall, HMO shows a relatively strong capacity to sorb DOM and resist phosphate-induced desorption, but DOM–HMO complexes may be more vulnerable to reductive dissolution than DOM–goethite complexes.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0051-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4824897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-02-03DOI: 10.1186/s12932-018-0049-4
Tyler D. Sowers, Jason W. Stuckey, Donald L. Sparks
Sequestration of organic carbon (OC) in environmental systems is critical to mitigating climate change. Organo-mineral associations, especially those with iron (Fe) oxides, drive the chemistry of OC sequestration and stability in soils. Short-range-ordered Fe oxides, such as ferrihydrite, demonstrate a high affinity for OC in binary systems. Calcium commonly co-associates with OC and Fe oxides in soils, though the bonding mechanism (e.g., cation bridging) and implications of the co-association for OC sequestration remain unresolved. We explored the effect of calcium (Ca2+) on the sorption of dissolved OC to 2-line ferrihydrite. Sorption experiments were conducted between leaf litter-extractable OC and ferrihydrite at pH 4 to 9 with different initial C/Fe molar ratios and Ca2+ concentrations. The extent of OC sorption to ferrihydrite in the presence of Ca2+ increased across all tested pH values, especially at pH ≥?7. Sorbed OC concentration at pH 9 increased from 8.72?±?0.16 to 13.3?±?0.20?mmol OC g?1 ferrihydrite between treatments of no added Ca2+ and 30?mM Ca2+ addition. Batch experiments were paired with spectroscopic studies to probe the speciation of sorbed OC and elucidate the sorption mechanism. ATR-FTIR spectroscopy analysis revealed that carboxylic functional moieties were the primary sorbed OC species that were preferentially bound to ferrihydrite and suggested an increase in Fe-carboxylate ligand exchange in the presence of Ca at pH 9. Results from batch to spectroscopic experiments provide significant evidence for the enhancement of dissolved OC sequestration to 2-line ferrihydrite and suggest the formation of Fe–Ca-OC ternary complexes. Findings of this research will inform modeling of environmental C cycling and have the potential to influence strategies for managing land to minimize OM stabilization.
{"title":"The synergistic effect of calcium on organic carbon sequestration to ferrihydrite","authors":"Tyler D. Sowers, Jason W. Stuckey, Donald L. Sparks","doi":"10.1186/s12932-018-0049-4","DOIUrl":"https://doi.org/10.1186/s12932-018-0049-4","url":null,"abstract":"<p>Sequestration of organic carbon (OC) in environmental systems is critical to mitigating climate change. Organo-mineral associations, especially those with iron (Fe) oxides, drive the chemistry of OC sequestration and stability in soils. Short-range-ordered Fe oxides, such as ferrihydrite, demonstrate a high affinity for OC in binary systems. Calcium commonly co-associates with OC and Fe oxides in soils, though the bonding mechanism (e.g., cation bridging) and implications of the co-association for OC sequestration remain unresolved. We explored the effect of calcium (Ca<sup>2+</sup>) on the sorption of dissolved OC to 2-line ferrihydrite. Sorption experiments were conducted between leaf litter-extractable OC and ferrihydrite at pH 4 to 9 with different initial C/Fe molar ratios and Ca<sup>2+</sup> concentrations. The extent of OC sorption to ferrihydrite in the presence of Ca<sup>2+</sup> increased across all tested pH values, especially at pH ≥?7. Sorbed OC concentration at pH 9 increased from 8.72?±?0.16 to 13.3?±?0.20?mmol OC g<sup>?1</sup> ferrihydrite between treatments of no added Ca<sup>2+</sup> and 30?mM Ca<sup>2+</sup> addition. Batch experiments were paired with spectroscopic studies to probe the speciation of sorbed OC and elucidate the sorption mechanism. ATR-FTIR spectroscopy analysis revealed that carboxylic functional moieties were the primary sorbed OC species that were preferentially bound to ferrihydrite and suggested an increase in Fe-carboxylate ligand exchange in the presence of Ca at pH 9. Results from batch to spectroscopic experiments provide significant evidence for the enhancement of dissolved OC sequestration to 2-line ferrihydrite and suggest the formation of Fe–Ca-OC ternary complexes. Findings of this research will inform modeling of environmental C cycling and have the potential to influence strategies for managing land to minimize OM stabilization.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0049-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4115723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-25DOI: 10.1186/s12932-018-0048-5
Ying Zhu, Jingjing Liu, Omanjana Goswami, Ashaki A. Rouff, Evert J. Elzinga
We studied the effects of humic substances (HS) on the sorption of Fe(II) onto Al-oxide and clay sorbents at pH 7.5 with a combination of batch kinetic experiments and synchrotron Fe K-edge EXAFS analyses. Fe(II) sorption was monitored over the course of 4?months in anoxic clay and Al-oxide suspensions amended with variable HS types (humic acid, HA; or fulvic acid, FA) and levels (0, 1, and 4 wt%), and with differing Fe(II) and HS addition sequences (co-sorption and pre-coated experiments, where Fe(II) sorbate was added alongside and after HS addition, respectively). In the Al-oxide suspensions, the presence of HS slowed down the kinetics of Fe(II) sorption, but had limited, if any, effect on the equilibrium aqueous Fe(II) concentrations. EXAFS analyses revealed precipitation of Fe(II)–Al(III)-layered double hydroxide (LDH) phases as the main mode of Fe(II) sorption in both the HA-containing and HA-free systems. These results demonstrate that HS slow down Fe(II) precipitation in the Al-oxide suspensions, but do not affect the composition or stability of the secondary Fe(II)–Al(III)-LDH phases formed. Interference of HS with the precipitation of Fe(II)–Al(III)-LDH was attributed to the formation organo-Al complexes HS limiting the availability of Al for incorporation into secondary layered Fe(II)-hydroxides. In the clay systems, the presence of HA caused a change in the main Fe(II) sorption product from Fe(II)–Al(III)-LDH to a Fe(II)-phyllosilicate containing little structural Al. This was attributed to complexation of Al by HA, in combination with the presence of dissolved Si in the clay suspension enabling phyllosilicate precipitation. The change in Fe(II) precipitation mechanism did not affect the rate of Fe(II) sorption at the lower HA level, suggesting that the inhibition of Fe(II)–Al(III)-LDH formation in this system was countered by enhanced Fe(II)-phyllosilicate precipitation. Reduced rates of Fe(II) sorption at the higher HA level were attributed to surface masking or poisoning by HA of secondary Fe(II) mineral growth at or near the clay surface. Our results suggest that HS play an important role in controlling the kinetics and products of Fe(II) precipitation in reducing soils, with effects modulated by soil mineralogy, HS content, and HS properties. Further work is needed to assess the importance of layered Fe(II) hydroxides in natural reducing environments.
{"title":"Effects of humic substances on Fe(II) sorption onto aluminum oxide and clay","authors":"Ying Zhu, Jingjing Liu, Omanjana Goswami, Ashaki A. Rouff, Evert J. Elzinga","doi":"10.1186/s12932-018-0048-5","DOIUrl":"https://doi.org/10.1186/s12932-018-0048-5","url":null,"abstract":"<p>We studied the effects of humic substances (HS) on the sorption of Fe(II) onto Al-oxide and clay sorbents at pH 7.5 with a combination of batch kinetic experiments and synchrotron Fe <i>K</i>-edge EXAFS analyses. Fe(II) sorption was monitored over the course of 4?months in anoxic clay and Al-oxide suspensions amended with variable HS types (humic acid, HA; or fulvic acid, FA) and levels (0, 1, and 4 wt%), and with differing Fe(II) and HS addition sequences (co-sorption and pre-coated experiments, where Fe(II) sorbate was added alongside and after HS addition, respectively). In the Al-oxide suspensions, the presence of HS slowed down the kinetics of Fe(II) sorption, but had limited, if any, effect on the equilibrium aqueous Fe(II) concentrations. EXAFS analyses revealed precipitation of Fe(II)–Al(III)-layered double hydroxide (LDH) phases as the main mode of Fe(II) sorption in both the HA-containing and HA-free systems. These results demonstrate that HS slow down Fe(II) precipitation in the Al-oxide suspensions, but do not affect the composition or stability of the secondary Fe(II)–Al(III)-LDH phases formed. Interference of HS with the precipitation of Fe(II)–Al(III)-LDH was attributed to the formation organo-Al complexes HS limiting the availability of Al for incorporation into secondary layered Fe(II)-hydroxides. In the clay systems, the presence of HA caused a change in the main Fe(II) sorption product from Fe(II)–Al(III)-LDH to a Fe(II)-phyllosilicate containing little structural Al. This was attributed to complexation of Al by HA, in combination with the presence of dissolved Si in the clay suspension enabling phyllosilicate precipitation. The change in Fe(II) precipitation mechanism did not affect the rate of Fe(II) sorption at the lower HA level, suggesting that the inhibition of Fe(II)–Al(III)-LDH formation in this system was countered by enhanced Fe(II)-phyllosilicate precipitation. Reduced rates of Fe(II) sorption at the higher HA level were attributed to surface masking or poisoning by HA of secondary Fe(II) mineral growth at or near the clay surface. Our results suggest that HS play an important role in controlling the kinetics and products of Fe(II) precipitation in reducing soils, with effects modulated by soil mineralogy, HS content, and HS properties. Further work is needed to assess the importance of layered Fe(II) hydroxides in natural reducing environments.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-018-0048-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4965995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-01-16DOI: 10.1186/s12932-017-0047-y
Ray Kenny
The upper carbonate member of the Kaibab Formation in northern Arizona (USA) was subaerially exposed during the end Permian and contains fractured and zoned chert rubble lag deposits typical of karst topography. The karst chert rubble has secondary (authigenic) silica precipitates suitable for estimating continental weathering temperatures during the end Permian karst event. New oxygen and hydrogen isotope ratios of secondary silica precipitates in the residual rubble breccia: (1) yield continental palaeotemperature estimates between 17 and 22?°C; and, (2) indicate that meteoric water played a role in the crystallization history of the secondary silica. The continental palaeotemperatures presented herein are broadly consistent with a global mean temperature estimate of 18.2?°C for the latest Permian derived from published climate system models. Few data sets are presently available that allow even approximate quantitative estimates of regional continental palaeotemperatures. These data provide a basis for better understanding the end Permian palaeoclimate at a seasonally-tropical latitude along the western shoreline of Pangaea.
{"title":"A geochemical view into continental palaeotemperatures of the end-Permian using oxygen and hydrogen isotope composition of secondary silica in chert rubble breccia: Kaibab Formation, Grand Canyon (USA)","authors":"Ray Kenny","doi":"10.1186/s12932-017-0047-y","DOIUrl":"https://doi.org/10.1186/s12932-017-0047-y","url":null,"abstract":"<p>The upper carbonate member of the Kaibab Formation in northern Arizona (USA) was subaerially exposed during the end Permian and contains fractured and zoned chert rubble lag deposits typical of karst topography. The karst chert rubble has secondary (authigenic) silica precipitates suitable for estimating continental weathering temperatures during the end Permian karst event. New oxygen and hydrogen isotope ratios of secondary silica precipitates in the residual rubble breccia: (1) yield continental palaeotemperature estimates between 17 and 22?°C; and, (2) indicate that meteoric water played a role in the crystallization history of the secondary silica. The continental palaeotemperatures presented herein are broadly consistent with a global mean temperature estimate of 18.2?°C for the latest Permian derived from published climate system models. Few data sets are presently available that allow even approximate quantitative estimates of regional continental palaeotemperatures. These data provide a basis for better understanding the end Permian palaeoclimate at a seasonally-tropical latitude along the western shoreline of Pangaea.</p>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"19 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2018-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12932-017-0047-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4645751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}