Pub Date : 2024-01-03DOI: 10.1186/s41021-023-00291-4
Linyuan Feng, Yang Yang, Zhenhua Lin, Minghua Cui, Aihua Jin, Aili Cui
Background: Non-SMC condensin I complex subunit D2 (NCAPD2) belongs to the chromosomal structural maintenance family. While the different contribution of NCAPD2 to chromosome in mitosis have been thoroughly investigated, much less is known about the expression of NCAPD2 in pan-cancer. Thus, we used a bioinformatics dataset to conduct a pan-cancer analysis of NCAPD2 to determine its regulatory role in tumors.
Methods: Multiple online databases were analyzed NCAPD2 gene expression, protein level, patient survival and functional enrichment in pan-cancer. Genetic alteration and tumor stemness of NCAPD2 were analyzed using cBioPortal and SangerBox. The GSCA and CellMiner were used to explore the relationship between NCAPD2 and drug sensitivity. The diagnostic value of prognosis was evaluated by ROC curve. Subsequently, the immune infiltration level and immune subtype of NCAPD2 in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were analyzed using TIMER1 and TISIDB.
Results: NCAPD2 gene expression was significantly higher in most cancers and associated with clinical stage and poor prognosis. Genomic heterogeneity of NCAPD2 promoted the occurrence and development of tumors. GO enrichment analysis suggested NCAPD2 might be involved in DNA repair and immune response. NCAPD2 was involved in immune infiltration of LUAD and LUSC. ROC curves showed that NCAPD2 has important prognosis diagnostic value in LUAD and LUSC. Moreover, NCAPD2 was drug sensitive to topotecan, which may be an optimize immunotherapy.
Conclusions: It was found that NCAPD2 was overexpressed in pan-cancers, which was associated with poor outcomes. Importantly, NCAPD2 could be a diagnostic marker and an immune related biomarker for LUAD and LUSC.
{"title":"NCPAD2 is a favorable predictor of prognostic and immunotherapeutic biomarker for multiple cancer types including lung cancer.","authors":"Linyuan Feng, Yang Yang, Zhenhua Lin, Minghua Cui, Aihua Jin, Aili Cui","doi":"10.1186/s41021-023-00291-4","DOIUrl":"10.1186/s41021-023-00291-4","url":null,"abstract":"<p><strong>Background: </strong>Non-SMC condensin I complex subunit D2 (NCAPD2) belongs to the chromosomal structural maintenance family. While the different contribution of NCAPD2 to chromosome in mitosis have been thoroughly investigated, much less is known about the expression of NCAPD2 in pan-cancer. Thus, we used a bioinformatics dataset to conduct a pan-cancer analysis of NCAPD2 to determine its regulatory role in tumors.</p><p><strong>Methods: </strong>Multiple online databases were analyzed NCAPD2 gene expression, protein level, patient survival and functional enrichment in pan-cancer. Genetic alteration and tumor stemness of NCAPD2 were analyzed using cBioPortal and SangerBox. The GSCA and CellMiner were used to explore the relationship between NCAPD2 and drug sensitivity. The diagnostic value of prognosis was evaluated by ROC curve. Subsequently, the immune infiltration level and immune subtype of NCAPD2 in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were analyzed using TIMER1 and TISIDB.</p><p><strong>Results: </strong>NCAPD2 gene expression was significantly higher in most cancers and associated with clinical stage and poor prognosis. Genomic heterogeneity of NCAPD2 promoted the occurrence and development of tumors. GO enrichment analysis suggested NCAPD2 might be involved in DNA repair and immune response. NCAPD2 was involved in immune infiltration of LUAD and LUSC. ROC curves showed that NCAPD2 has important prognosis diagnostic value in LUAD and LUSC. Moreover, NCAPD2 was drug sensitive to topotecan, which may be an optimize immunotherapy.</p><p><strong>Conclusions: </strong>It was found that NCAPD2 was overexpressed in pan-cancers, which was associated with poor outcomes. Importantly, NCAPD2 could be a diagnostic marker and an immune related biomarker for LUAD and LUSC.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"46 1","pages":"2"},"PeriodicalIF":2.7,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139086497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.1186/s41021-023-00293-2
Sankalan Dey, Sarmistha Sen Raychaudhuri
Background: Selenium (Se) is an essential micronutrient for humans, but its deficiency as well as toxicity affects large number of people worldwide. Plantago ovata, a commercially important medicinal plant, is mainly cultivated in western regions of India, where elevated levels of Se have been found in soil. Thus, we evaluated the potential of Se biofortification in P. ovata via phytoremediation and its effect on the bioactive composition.
Results: The results showed a significant alteration in various morphological and physiological parameters in a dose-dependent manner. The 10 µM Se dose improved seedling height, biomass and total chlorophyll content. There was a gradual increase in total Se content, with highest accumulation of 457.65 µg/g FW at 500 µM Se treatment. Se positively affected the antioxidative metabolism which was measured from the change in total antioxidant capacity, radical scavenging activity and Metallothionein 2 expression. Increasing levels of Se also affected the PAL activity, total polyphenol and flavonoid content. Caffeic acid, Coumaric acid and Rutin were found to be the most abundant phenolic compounds.
Conclusions: Low levels of selenium (below 50 µM) can successfully improve Se accumulation and elicit production of various polyphenols without hampering plant growth. Thus, Se fortification of P. ovata seedlings via phytoremediation appears to be a feasible and efficient way to enhance its nutraceutical value in dietary products.
背景:硒(Se)是人类必需的微量营养元素,但其缺乏和毒性影响着全世界的许多人。车前草是一种具有重要商业价值的药用植物,主要种植于印度西部地区,在那里的土壤中发现了较高的硒含量。因此,我们评估了通过植物修复对车前子进行硒生物强化的潜力及其对生物活性成分的影响:结果:结果表明,各种形态和生理参数都发生了明显的变化,且呈剂量依赖性。10 µM 的 Se 剂量提高了幼苗高度、生物量和总叶绿素含量。硒的总含量逐渐增加,在 500 µM 的硒处理中,硒的累积量最高,达到 457.65 µg/g FW。从总抗氧化能力、自由基清除活性和金属硫蛋白 2 表达量的变化可以看出,Se 对抗氧化代谢有积极影响。Se 浓度的增加也会影响 PAL 活性、总多酚和类黄酮含量。咖啡酸、香豆酸和芦丁是含量最高的酚类化合物:低浓度的硒(低于 50 µM)可以成功地提高硒的积累,并在不影响植物生长的情况下促进各种多酚的产生。因此,通过植物修复强化卵形金针菜幼苗的硒似乎是提高其在膳食产品中的营养保健价值的一种可行而有效的方法。
{"title":"Selenium biofortification improves bioactive composition and antioxidant status in Plantago ovata Forsk., a medicinal plant.","authors":"Sankalan Dey, Sarmistha Sen Raychaudhuri","doi":"10.1186/s41021-023-00293-2","DOIUrl":"10.1186/s41021-023-00293-2","url":null,"abstract":"<p><strong>Background: </strong>Selenium (Se) is an essential micronutrient for humans, but its deficiency as well as toxicity affects large number of people worldwide. Plantago ovata, a commercially important medicinal plant, is mainly cultivated in western regions of India, where elevated levels of Se have been found in soil. Thus, we evaluated the potential of Se biofortification in P. ovata via phytoremediation and its effect on the bioactive composition.</p><p><strong>Results: </strong>The results showed a significant alteration in various morphological and physiological parameters in a dose-dependent manner. The 10 µM Se dose improved seedling height, biomass and total chlorophyll content. There was a gradual increase in total Se content, with highest accumulation of 457.65 µg/g FW at 500 µM Se treatment. Se positively affected the antioxidative metabolism which was measured from the change in total antioxidant capacity, radical scavenging activity and Metallothionein 2 expression. Increasing levels of Se also affected the PAL activity, total polyphenol and flavonoid content. Caffeic acid, Coumaric acid and Rutin were found to be the most abundant phenolic compounds.</p><p><strong>Conclusions: </strong>Low levels of selenium (below 50 µM) can successfully improve Se accumulation and elicit production of various polyphenols without hampering plant growth. Thus, Se fortification of P. ovata seedlings via phytoremediation appears to be a feasible and efficient way to enhance its nutraceutical value in dietary products.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"45 1","pages":"38"},"PeriodicalIF":1.7,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138801469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.1186/s41021-023-00295-0
Shun Matsuda, Tsuyoshi Ikura, Tomonari Matsuda
Background: DNA damage response (DDR) and repair are vital for safeguarding genetic information and ensuring the survival and accurate transmission of genetic material. DNA damage, such as DNA double-strand breaks (DSBs), triggers a response where sensor proteins recognize DSBs. Information is transmitted to kinases, initiating a sequence resulting in the activation of the DNA damage response and recruitment of other DDR and repair proteins to the DSB site in a highly orderly sequence. Research has traditionally focused on individual protein functions and their order, with limited quantitative analysis, prompting this study's attempt at absolute quantification of DNA damage response and repair proteins and capturing changes in protein chromatin affinity after DNA damage through biochemical fractionation methods.
Results: To assess the intracellular levels of proteins involved in DDR and repair, multiple proteins associated with different functions were quantified in EPC2-hTERT cells. H2AX had the highest intracellular abundance (1.93 × 106 molecules/cell). The components of the MRN complex were present at the comparable levels: 6.89 × 104 (MRE11), 2.17 × 104 (RAD50), and 2.35 × 104 (NBS1) molecules/cell. MDC1 was present at 1.27 × 104 molecules/cell. The intracellular levels of ATM and ATR kinases were relatively low: 555 and 4860 molecules/cell, respectively. The levels of cellular proteins involved in NHEJ (53BP1: 3.03 × 104; XRCC5: 2.62 × 104; XRCC6: 5.05 × 105 molecules/cell) were more than an order of magnitude higher than that involved in HR (RAD51: 2500 molecules/cell). Furthermore, we analyzed the dynamics of MDC1 and γH2AX proteins in response to DNA damage induced by the unstable agent neocarzinostatin (NCS). Using cell biochemical fractionation, cells were collected and analyzed at different time points after NCS exposure. Results showed that γH2AX in chromatin fraction peaked at 1 h post-exposure and gradually decreased, while MDC1 translocated from the isotonic to the hypertonic fraction, peaking at 1 hour as well. The study suggests increased MDC1 affinity for chromatin through binding to γH2AX induced by DNA damage. The γH2AX-bound MDC1 (in the hypertonic fraction) to γH2AX ratio at 1 h post-exposure was 1:56.4, with lower MDC1 levels which may attributed to competition with other proteins.
Conclusions: The approach provided quantitative insights into protein dynamics in DNA damage response.
{"title":"Absolute quantification of DNA damage response proteins.","authors":"Shun Matsuda, Tsuyoshi Ikura, Tomonari Matsuda","doi":"10.1186/s41021-023-00295-0","DOIUrl":"10.1186/s41021-023-00295-0","url":null,"abstract":"<p><strong>Background: </strong>DNA damage response (DDR) and repair are vital for safeguarding genetic information and ensuring the survival and accurate transmission of genetic material. DNA damage, such as DNA double-strand breaks (DSBs), triggers a response where sensor proteins recognize DSBs. Information is transmitted to kinases, initiating a sequence resulting in the activation of the DNA damage response and recruitment of other DDR and repair proteins to the DSB site in a highly orderly sequence. Research has traditionally focused on individual protein functions and their order, with limited quantitative analysis, prompting this study's attempt at absolute quantification of DNA damage response and repair proteins and capturing changes in protein chromatin affinity after DNA damage through biochemical fractionation methods.</p><p><strong>Results: </strong>To assess the intracellular levels of proteins involved in DDR and repair, multiple proteins associated with different functions were quantified in EPC2-hTERT cells. H2AX had the highest intracellular abundance (1.93 × 10<sup>6</sup> molecules/cell). The components of the MRN complex were present at the comparable levels: 6.89 × 10<sup>4</sup> (MRE11), 2.17 × 10<sup>4</sup> (RAD50), and 2.35 × 10<sup>4</sup> (NBS1) molecules/cell. MDC1 was present at 1.27 × 10<sup>4</sup> molecules/cell. The intracellular levels of ATM and ATR kinases were relatively low: 555 and 4860 molecules/cell, respectively. The levels of cellular proteins involved in NHEJ (53BP1: 3.03 × 10<sup>4</sup>; XRCC5: 2.62 × 10<sup>4</sup>; XRCC6: 5.05 × 10<sup>5</sup> molecules/cell) were more than an order of magnitude higher than that involved in HR (RAD51: 2500 molecules/cell). Furthermore, we analyzed the dynamics of MDC1 and γH2AX proteins in response to DNA damage induced by the unstable agent neocarzinostatin (NCS). Using cell biochemical fractionation, cells were collected and analyzed at different time points after NCS exposure. Results showed that γH2AX in chromatin fraction peaked at 1 h post-exposure and gradually decreased, while MDC1 translocated from the isotonic to the hypertonic fraction, peaking at 1 hour as well. The study suggests increased MDC1 affinity for chromatin through binding to γH2AX induced by DNA damage. The γH2AX-bound MDC1 (in the hypertonic fraction) to γH2AX ratio at 1 h post-exposure was 1:56.4, with lower MDC1 levels which may attributed to competition with other proteins.</p><p><strong>Conclusions: </strong>The approach provided quantitative insights into protein dynamics in DNA damage response.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"45 1","pages":"37"},"PeriodicalIF":1.7,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138801449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-13DOI: 10.1186/s41021-023-00294-1
Masayuki Mishima, Kei-Ichi Sugiyama
Background: Middle size peptides (MSPs) have emerged as a promising new pharmaceutical modality. We are seeking the best way to assess the non-clinical safety of MSPs.
Consideration: The requirements for assessing the genotoxicity of pharmaceuticals differ between small molecule drugs and biotherapeutics. Genotoxicity tests are necessary for small molecule drugs but not for biotherapeutics. MSPs, however, share similarities with both small molecule drugs and biotherapeutics. Here, we describe important points to consider in assessing the genotoxicity of MSP drugs. The current standard of genotoxicity assessment for small molecules may not be entirely appropriate for MSP drugs. MSP drugs need genotoxicity assessment mostly according to the current standard of small molecule drugs.
Conclusion: We propose a few modifications to the standard test battery of genotoxicity tests, specifically, the inclusion of an in vitro gene mutation test using mammalian cells, and exclusion of (Q)SAR assessment on MSP-related impurities.
{"title":"Considerations for the genotoxicity assessment of middle size peptide drugs containing non-canonical amino acid residues.","authors":"Masayuki Mishima, Kei-Ichi Sugiyama","doi":"10.1186/s41021-023-00294-1","DOIUrl":"https://doi.org/10.1186/s41021-023-00294-1","url":null,"abstract":"<p><strong>Background: </strong>Middle size peptides (MSPs) have emerged as a promising new pharmaceutical modality. We are seeking the best way to assess the non-clinical safety of MSPs.</p><p><strong>Consideration: </strong>The requirements for assessing the genotoxicity of pharmaceuticals differ between small molecule drugs and biotherapeutics. Genotoxicity tests are necessary for small molecule drugs but not for biotherapeutics. MSPs, however, share similarities with both small molecule drugs and biotherapeutics. Here, we describe important points to consider in assessing the genotoxicity of MSP drugs. The current standard of genotoxicity assessment for small molecules may not be entirely appropriate for MSP drugs. MSP drugs need genotoxicity assessment mostly according to the current standard of small molecule drugs.</p><p><strong>Conclusion: </strong>We propose a few modifications to the standard test battery of genotoxicity tests, specifically, the inclusion of an in vitro gene mutation test using mammalian cells, and exclusion of (Q)SAR assessment on MSP-related impurities.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"45 1","pages":"36"},"PeriodicalIF":1.7,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138801461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Carcinogenic risk assessment studies have been repeatedly improved and are still being debated to find a goal. Evaluation might be changed if new approaches would be applied to some chemicals which means that new approaches may change the final assessment. In this paper, the risk assessment of a chemical, in particular the proper carcinogenicity, is examined using the long-banned food additive, 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide, AF-2, as a case study.
Results: First, Ames tests were carried out using strains TA1535, TA100, TA1538, and TA98 and their nitroreductase-deficient strains YG7127, YG7128, YG7129, and YG7130. The results showed that mutagenic activity was reduced by about 50% in the nitroreductase-deficient strains, indicating that part of the mutagenic activity shown in Ames test was due to bacterial metabolism. Second, in vivo genotoxicity tests were conducted, including the one that had not been developed in 1970's. Both a micronucleus test and a gene mutation assay using transgenic mice were negative. Third, assuming it is a genotoxic carcinogen, the virtual safety dose of 550 μg/day was calculated from the TD50 in rats with a probability of 10-5.
Conclusion: AF-2 has been shown to be carcinogenic to rodents and has previously been indicated to be genotoxic in vitro. However, the present in vivo genotoxicity study, it was negative in the forestomach, a target organ for cancer, particularly in the gene mutation assay in transgenic mice. Considering the daily intake of AF-2 in the 1970s and its virtually safety dose, the carcinogenic risk of AF-2 could be considered acceptable.
{"title":"Carcinogenic risk of food additive AF-2 banned in Japan: a case study on reassessment of genotoxicity.","authors":"Masami Yamada, Takayoshi Suzuki, Arihiro Kohara, Masamitsu Honma","doi":"10.1186/s41021-023-00292-3","DOIUrl":"10.1186/s41021-023-00292-3","url":null,"abstract":"<p><strong>Background: </strong>Carcinogenic risk assessment studies have been repeatedly improved and are still being debated to find a goal. Evaluation might be changed if new approaches would be applied to some chemicals which means that new approaches may change the final assessment. In this paper, the risk assessment of a chemical, in particular the proper carcinogenicity, is examined using the long-banned food additive, 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide, AF-2, as a case study.</p><p><strong>Results: </strong>First, Ames tests were carried out using strains TA1535, TA100, TA1538, and TA98 and their nitroreductase-deficient strains YG7127, YG7128, YG7129, and YG7130. The results showed that mutagenic activity was reduced by about 50% in the nitroreductase-deficient strains, indicating that part of the mutagenic activity shown in Ames test was due to bacterial metabolism. Second, in vivo genotoxicity tests were conducted, including the one that had not been developed in 1970's. Both a micronucleus test and a gene mutation assay using transgenic mice were negative. Third, assuming it is a genotoxic carcinogen, the virtual safety dose of 550 μg/day was calculated from the TD<sub>50</sub> in rats with a probability of 10<sup>-5</sup>.</p><p><strong>Conclusion: </strong>AF-2 has been shown to be carcinogenic to rodents and has previously been indicated to be genotoxic in vitro. However, the present in vivo genotoxicity study, it was negative in the forestomach, a target organ for cancer, particularly in the gene mutation assay in transgenic mice. Considering the daily intake of AF-2 in the 1970s and its virtually safety dose, the carcinogenic risk of AF-2 could be considered acceptable.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"45 1","pages":"33"},"PeriodicalIF":1.7,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138487320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1186/s41021-023-00287-0
T. Tsukioki, Seema A. Khan, Tadahiko Shien
{"title":"Current status and challenges of breast cancer prevention~DNA methylation would lead to groundbreaking progress in breast cancer prevention~","authors":"T. Tsukioki, Seema A. Khan, Tadahiko Shien","doi":"10.1186/s41021-023-00287-0","DOIUrl":"https://doi.org/10.1186/s41021-023-00287-0","url":null,"abstract":"","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":" 50","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138612463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-01DOI: 10.1186/s41021-023-00290-5
N. Kamaludin, Firdaus Kamarulzaman, Rozaini Abdullah, Kok Meng Chan, Salmaan H. Inayat-Hussain
{"title":"The Malaysian Society of Toxicology: from establishment to evolution, a promising future!","authors":"N. Kamaludin, Firdaus Kamarulzaman, Rozaini Abdullah, Kok Meng Chan, Salmaan H. Inayat-Hussain","doi":"10.1186/s41021-023-00290-5","DOIUrl":"https://doi.org/10.1186/s41021-023-00290-5","url":null,"abstract":"","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"101 38","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138609158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-27DOI: 10.1186/s41021-023-00289-y
Omali Y El-Khawaga, Mohammed F Al-Azzawy, Afaf M ElSaid, Sherif Refaat, Aliaa N El-Dawa
Background: Non-Small Cell Lung Cancer displays several genetic mutations including epidermal growth factor receptor. This study's objective was to determine if the EGFR exon19 rs121913438 and exon21 rs121434568 variations play a role in NSCLC susceptibility.
Methods: Case-control research was done at the Mansoura university oncology center including 124 NSCLC patients, and 124 healthy volunteers. blood was used to obtain genomic DNA. ARMS-PCR was used to genotype single-nucleotide polymorphisms.
Results: Molecular study for EGFR exon 19 del. showed NSCLC cases were significantly associated with a higher proportion of heterozygous WD, WD + DD dominant genotypes, and mutant D allele, (p < 0.05 for each), with a risk to develop NSCLC. also, NSCLC cases were significantly associated with a higher proportion of heterozygous TG, TG + GG dominant genotype, G mutant allele, (p < 0.05 for each), with a risk to develop LC (OR > 1 for each). regarding the two EGFR mutations, TTF1 staining was significantly associated with WD + DD genotypes for EGFR exon 19 del But not EGFR exon 21. No substantial differences were found among all studied cases with CK7 or napsin A Tumor cytochemistry.
Conclusions: The WD heterozygous genotype and D allele in exon 19 del. mutation as well as the TG heterozygous and G allele in exon 21 substitution mutation in EGFR gene are strongly associated with the development of advanced-NSCLC in the Egyptians.
{"title":"Detection of EGFR gene polymorphisms in non-small cell lung cancer Egyptian patients: a case-control study.","authors":"Omali Y El-Khawaga, Mohammed F Al-Azzawy, Afaf M ElSaid, Sherif Refaat, Aliaa N El-Dawa","doi":"10.1186/s41021-023-00289-y","DOIUrl":"10.1186/s41021-023-00289-y","url":null,"abstract":"<p><strong>Background: </strong>Non-Small Cell Lung Cancer displays several genetic mutations including epidermal growth factor receptor. This study's objective was to determine if the EGFR exon19 rs121913438 and exon21 rs121434568 variations play a role in NSCLC susceptibility.</p><p><strong>Methods: </strong>Case-control research was done at the Mansoura university oncology center including 124 NSCLC patients, and 124 healthy volunteers. blood was used to obtain genomic DNA. ARMS-PCR was used to genotype single-nucleotide polymorphisms.</p><p><strong>Results: </strong>Molecular study for EGFR exon 19 del. showed NSCLC cases were significantly associated with a higher proportion of heterozygous WD, WD + DD dominant genotypes, and mutant D allele, (p < 0.05 for each), with a risk to develop NSCLC. also, NSCLC cases were significantly associated with a higher proportion of heterozygous TG, TG + GG dominant genotype, G mutant allele, (p < 0.05 for each), with a risk to develop LC (OR > 1 for each). regarding the two EGFR mutations, TTF1 staining was significantly associated with WD + DD genotypes for EGFR exon 19 del But not EGFR exon 21. No substantial differences were found among all studied cases with CK7 or napsin A Tumor cytochemistry.</p><p><strong>Conclusions: </strong>The WD heterozygous genotype and D allele in exon 19 del. mutation as well as the TG heterozygous and G allele in exon 21 substitution mutation in EGFR gene are strongly associated with the development of advanced-NSCLC in the Egyptians.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"45 1","pages":"32"},"PeriodicalIF":1.7,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680232/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138440615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-23DOI: 10.1186/s41021-023-00286-1
Siti Soleha Ab Dullah, Mohd Redzwan Sabran, Ab Hamid Hasiah, Rozaini Abdullah
Aflatoxin B1 (AFB1) is a mycotoxin produced by several species of Aspergillus fungi which can cause liver cancer in animals and humans. This study aims to perform the risk assessment of AFB1 in herbal medicines and plant food supplements (PFS) in Malaysian market. A total of 31 herbal medicines and PFS were purchased through online platforms and over the counter using a targeted sampling strategy. Of 31 samples analysed using the ELISA method, 25 (80.6%) were contaminated with AFB1 at levels ranged from 0.275 to 13.941 μg/kg. The Benchmark Dose Lower Confidence level of 10 (BMDL10) of 63.46 ng/kg bw/day and the estimated dietary intake of the adult population ranged from 0.006 to 10.456 ng/kg bw/day were used to calculate the Margin of Exposure (MOE). The MOEs for 24 (96%) out of the 25 positive samples were lower than 10,000. The RISK21 matrix revealed that AFB1 exposure levels from herbal medicines and PFS differed greatly over the world. The calculated population risk of acquiring liver cancer from AFB1 exposure ranged from 0 to 0.261 cancers/100,000 populations/year and accounted for an estimated percentage of liver cancer incidence ranged from 0.002 to 4.149%. This study revealed a moderate risk of liver cancer attributable to AFB1 from herbal medicine and PFS among Malaysian populations and emphasised an urgency for risk management actions.
{"title":"Risk assessment of aflatoxin B<sub>1</sub> in herbal medicines and plant food supplements marketed in Malaysia using margin of exposure and RISK21 approaches.","authors":"Siti Soleha Ab Dullah, Mohd Redzwan Sabran, Ab Hamid Hasiah, Rozaini Abdullah","doi":"10.1186/s41021-023-00286-1","DOIUrl":"10.1186/s41021-023-00286-1","url":null,"abstract":"<p><p>Aflatoxin B<sub>1</sub> (AFB<sub>1</sub>) is a mycotoxin produced by several species of Aspergillus fungi which can cause liver cancer in animals and humans. This study aims to perform the risk assessment of AFB<sub>1</sub> in herbal medicines and plant food supplements (PFS) in Malaysian market. A total of 31 herbal medicines and PFS were purchased through online platforms and over the counter using a targeted sampling strategy. Of 31 samples analysed using the ELISA method, 25 (80.6%) were contaminated with AFB<sub>1</sub> at levels ranged from 0.275 to 13.941 μg/kg. The Benchmark Dose Lower Confidence level of 10 (BMDL<sub>10</sub>) of 63.46 ng/kg bw/day and the estimated dietary intake of the adult population ranged from 0.006 to 10.456 ng/kg bw/day were used to calculate the Margin of Exposure (MOE). The MOEs for 24 (96%) out of the 25 positive samples were lower than 10,000. The RISK21 matrix revealed that AFB<sub>1</sub> exposure levels from herbal medicines and PFS differed greatly over the world. The calculated population risk of acquiring liver cancer from AFB<sub>1</sub> exposure ranged from 0 to 0.261 cancers/100,000 populations/year and accounted for an estimated percentage of liver cancer incidence ranged from 0.002 to 4.149%. This study revealed a moderate risk of liver cancer attributable to AFB<sub>1</sub> from herbal medicine and PFS among Malaysian populations and emphasised an urgency for risk management actions.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"45 1","pages":"31"},"PeriodicalIF":1.7,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10666461/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138295012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Mutagenicity, the ability of chemical agents to cause mutations and potentially lead to cancer, is a critical aspect of substance safety assessment for protecting human health and the environment. Metabolic enzymes activate multiple mutagens in living organisms, thus in vivo animal models provide highly important information for evaluating mutagenicity in human. Rats are considered suitable models as they share a similar metabolic pathway with humans for processing toxic chemical and exhibit higher responsiveness to chemical carcinogens than mice. To assess mutagenicity in rats, transgenic rodents (TGRs) are widely used for in vivo gene mutation assays. However, such assays are labor-intensive and could only detect transgene mutations inserted into the genome. Therefore, introducing a technology to directly detect in vivo mutagenicity in rats would be necessary. The next-generation sequencing (NGS) based error-corrected sequencing technique is a promising approach for such purposes.
Results: We investigated the applicability of paired-end and complementary consensus sequencing (PECC-Seq), an error-corrected sequencing technique, for detecting in vivo mutagenicity in the rat liver samples. PECC-Seq allows for the direct detection of ultra-rare somatic mutations in the genomic DNA without being constrained by the genomic locus, tissue, or organism. We tested PECC-Seq feasibility in rats treated with diethylnitrosamine (DEN), a mutagenic compound. Interestingly, the mutation and mutant frequencies between PECC-Seq and the TGR assay displayed a promising correlation. Our results also demonstrated that PECC-Seq could successfully detect the A:T > T:A mutation in rat liver samples, consistent with the TGR assay. Furthermore, we calculated the trinucleotide mutation frequency and proved that PECC-Seq accurately identified the DEN treatment-induced mutational signatures.
Conclusions: Our study provides the first evidence of using PECC-Seq for in vivo mutagenicity detection in rat liver samples. This approach could provide a valuable alternative to conventional TGR assays as it is labor- and time-efficient and eliminates the need for transgenic rodents. Error-corrected sequencing techniques, such as PECC-Seq, represent promising approaches for enhancing mutagenicity assessment and advancing regulatory science.
{"title":"Detection of in vivo mutagenicity in rat liver samples using error-corrected sequencing techniques.","authors":"Kazuki Izawa, Masataka Tsuda, Takayoshi Suzuki, Masamitsu Honma, Kei-Ichi Sugiyama","doi":"10.1186/s41021-023-00288-z","DOIUrl":"10.1186/s41021-023-00288-z","url":null,"abstract":"<p><strong>Background: </strong>Mutagenicity, the ability of chemical agents to cause mutations and potentially lead to cancer, is a critical aspect of substance safety assessment for protecting human health and the environment. Metabolic enzymes activate multiple mutagens in living organisms, thus in vivo animal models provide highly important information for evaluating mutagenicity in human. Rats are considered suitable models as they share a similar metabolic pathway with humans for processing toxic chemical and exhibit higher responsiveness to chemical carcinogens than mice. To assess mutagenicity in rats, transgenic rodents (TGRs) are widely used for in vivo gene mutation assays. However, such assays are labor-intensive and could only detect transgene mutations inserted into the genome. Therefore, introducing a technology to directly detect in vivo mutagenicity in rats would be necessary. The next-generation sequencing (NGS) based error-corrected sequencing technique is a promising approach for such purposes.</p><p><strong>Results: </strong>We investigated the applicability of paired-end and complementary consensus sequencing (PECC-Seq), an error-corrected sequencing technique, for detecting in vivo mutagenicity in the rat liver samples. PECC-Seq allows for the direct detection of ultra-rare somatic mutations in the genomic DNA without being constrained by the genomic locus, tissue, or organism. We tested PECC-Seq feasibility in rats treated with diethylnitrosamine (DEN), a mutagenic compound. Interestingly, the mutation and mutant frequencies between PECC-Seq and the TGR assay displayed a promising correlation. Our results also demonstrated that PECC-Seq could successfully detect the A:T > T:A mutation in rat liver samples, consistent with the TGR assay. Furthermore, we calculated the trinucleotide mutation frequency and proved that PECC-Seq accurately identified the DEN treatment-induced mutational signatures.</p><p><strong>Conclusions: </strong>Our study provides the first evidence of using PECC-Seq for in vivo mutagenicity detection in rat liver samples. This approach could provide a valuable alternative to conventional TGR assays as it is labor- and time-efficient and eliminates the need for transgenic rodents. Error-corrected sequencing techniques, such as PECC-Seq, represent promising approaches for enhancing mutagenicity assessment and advancing regulatory science.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"45 1","pages":"30"},"PeriodicalIF":1.7,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138295011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}