首页 > 最新文献

Global Biogeochemical Cycles最新文献

英文 中文
Early Diagenetic Controls on Sedimentary Iodine Release and Iodine-To-Organic Carbon Ratios in the Paleo-Record 古生物记录中沉积碘释放和碘有机碳比率的早期断代控制因素
IF 5.2 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-02-04 DOI: 10.1029/2023GB007919
Florian Scholz, Dalton S. Hardisty, Andrew W. Dale

Iodine cycling in the ocean is closely linked to productivity, organic carbon export, and oxygenation. However, iodine sources and sinks at the seafloor are poorly constrained, which limits the applicability of iodine as a biogeochemical tracer. We present pore water and solid phase iodine data for sediment cores from the Peruvian continental margin, which cover a range of bottom water oxygen concentrations, organic carbon rain rates and sedimentation rates. By applying a numerical reaction-transport model, we evaluate how these parameters determine benthic iodine fluxes and sedimentary iodine-to-organic carbon ratios (I:Corg) in the paleo-record. Iodine is delivered to the sediment with organic material and released into the pore water as iodide (I) during early diagenesis. Under anoxic conditions in the bottom water, most of the iodine delivered is recycled, which can explain the presence of excess dissolved iodine in near-shore anoxic seawater. According to our model, the benthic I efflux in anoxic areas is mainly determined by the organic carbon rain rate. Under oxic conditions, pore water dissolved I is oxidized and precipitated at the sediment surface. Much of the precipitated iodine re-dissolves during early diagenesis and only a fraction is buried. Particulate iodine burial efficiency and I:Corg burial ratios do increase with bottom water oxygen. However, multiple combinations of bottom water oxygen, organic carbon rain rate and sedimentation rate can lead to identical I:Corg, which limits the utility of I:Corg as a quantitative oxygenation proxy. Our findings may help to better constrain the ocean's iodine mass balance, both today and in the geological past.

海洋中的碘循环与生产力、有机碳输出和含氧量密切相关。然而,海底的碘源和碘汇却很难确定,这限制了碘作为生物地球化学示踪剂的适用性。我们展示了秘鲁大陆边缘沉积岩芯的孔隙水和固相碘数据,这些数据涵盖了一定范围的底层水氧浓度、有机碳降雨率和沉积速率。通过应用数值反应-传输模型,我们评估了这些参数如何决定古记录中的底栖碘通量和沉积碘-有机碳比(I:Corg)。在早期成岩过程中,碘随有机物质进入沉积物,并以碘化物(I-)的形式释放到孔隙水中。在底层水缺氧的条件下,大部分输送的碘被回收,这可以解释近岸缺氧海水中存在过量溶解碘的原因。根据我们的模型,缺氧区域的底栖生物碘外流主要由有机碳雨速率决定。在缺氧条件下,孔隙水溶解的碘被氧化并沉淀在沉积物表面。大部分沉淀的碘在早期成岩过程中重新溶解,只有一部分被掩埋。颗粒碘埋藏效率和 I:Corg 埋藏比确实会随着底层水氧气的增加而增加。然而,底层水氧、有机碳降雨率和沉积速率的多种组合可导致相同的 I:Corg,这限制了 I:Corg 作为定量氧合替代物的效用。我们的发现可能有助于更好地制约海洋的碘质量平衡,无论是在今天还是在地质过去。
{"title":"Early Diagenetic Controls on Sedimentary Iodine Release and Iodine-To-Organic Carbon Ratios in the Paleo-Record","authors":"Florian Scholz,&nbsp;Dalton S. Hardisty,&nbsp;Andrew W. Dale","doi":"10.1029/2023GB007919","DOIUrl":"https://doi.org/10.1029/2023GB007919","url":null,"abstract":"<p>Iodine cycling in the ocean is closely linked to productivity, organic carbon export, and oxygenation. However, iodine sources and sinks at the seafloor are poorly constrained, which limits the applicability of iodine as a biogeochemical tracer. We present pore water and solid phase iodine data for sediment cores from the Peruvian continental margin, which cover a range of bottom water oxygen concentrations, organic carbon rain rates and sedimentation rates. By applying a numerical reaction-transport model, we evaluate how these parameters determine benthic iodine fluxes and sedimentary iodine-to-organic carbon ratios (I:C<sub>org</sub>) in the paleo-record. Iodine is delivered to the sediment with organic material and released into the pore water as iodide (I<sup>−</sup>) during early diagenesis. Under anoxic conditions in the bottom water, most of the iodine delivered is recycled, which can explain the presence of excess dissolved iodine in near-shore anoxic seawater. According to our model, the benthic I<sup>−</sup> efflux in anoxic areas is mainly determined by the organic carbon rain rate. Under oxic conditions, pore water dissolved I<sup>−</sup> is oxidized and precipitated at the sediment surface. Much of the precipitated iodine re-dissolves during early diagenesis and only a fraction is buried. Particulate iodine burial efficiency and I:C<sub>org</sub> burial ratios do increase with bottom water oxygen. However, multiple combinations of bottom water oxygen, organic carbon rain rate and sedimentation rate can lead to identical I:C<sub>org</sub>, which limits the utility of I:C<sub>org</sub> as a quantitative oxygenation proxy. Our findings may help to better constrain the ocean's iodine mass balance, both today and in the geological past.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007919","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139682926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Air-Sea CO2 Disequilibrium on Carbon Sequestration by the Ocean's Biological Pump 海气二氧化碳失衡对海洋生物泵碳封存的影响
IF 5.2 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-01-29 DOI: 10.1029/2023GB007880
Michael Nowicki, Tim DeVries, David A. Siegel

The ocean's biological carbon pump (BCP) affects the Earth's climate by sequestering CO2 away from the atmosphere for decades to millennia. One primary control on the amount of carbon sequestered by the biological pump is air-sea CO2 disequilibrium, which is controlled by the rate of air-sea CO2 exchange and the residence time of CO2 in surface waters. Here, we use a data-assimilated model of the soft tissue BCP to quantify carbon sequestration inventories and time scales from remineralization in the water column to equilibration with the atmosphere. We find that air-sea CO2 disequilibrium enhances the global biogenic carbon inventory by ∼35% and its sequestration time by ∼70 years compared to identical calculations made assuming instantaneous air-sea CO2 exchange. Locally, the greatest enhancement occurs in the subpolar Southern Ocean, where air-sea disequilibrium increases sequestration times by up to 600 years and the biogenic dissolved inorganic carbon inventory by >100% in the upper ocean. Contrastingly, in deep-water formation regions of the North Atlantic and Antarctic margins, where biological production creates undersaturated surface waters which are subducted before fully equilibrating with the atmosphere, air-sea CO2 disequilibrium decreases the depth-integrated sequestration inventory by up to ∼150%. The global enhancement of carbon sequestration by air-sea disequilibrium is particularly important for carbon respired in deep waters that upwell in the Southern Ocean. These results highlight the importance of accounting for air-sea CO2 disequilibrium when evaluating carbon sequestration by the biological pump and for assessing the efficacy of ocean-based CO2 removal methods.

海洋的生物碳泵(BCP)可将二氧化碳从大气中封存数十年至数千年,从而影响地球的气候。控制生物碳泵固碳量的一个主要因素是海气二氧化碳失衡,而海气二氧化碳交换率和二氧化碳在表层水的停留时间控制着海气二氧化碳失衡。在这里,我们利用软组织 BCP 的数据同化模型来量化固碳库存以及从水体再矿化到与大气平衡的时间尺度。我们发现,与假定海气二氧化碳瞬时交换的相同计算结果相比,海气二氧化碳失衡会使全球生物碳库存增加 35%,固碳时间增加 70 年。在南大洋次极地,海气不平衡使封存时间延长了600年,上层海洋的生物源溶解无机碳库存增加了100%。与此相反,在北大西洋和南极边缘的深水形成区域,生物生产造成表层水饱和度不足,在与大气完全平衡之前被俯冲,海气二氧化碳不平衡使深度综合固碳存量减少达150%。海气不平衡对全球固碳的增强作用,对于南大洋上涌的深海水域的碳呼吸尤为重要。这些结果突显了在评估生物泵固碳和评估海洋二氧化碳去除方法的有效性时考虑海气二氧化碳不平衡的重要性。
{"title":"The Influence of Air-Sea CO2 Disequilibrium on Carbon Sequestration by the Ocean's Biological Pump","authors":"Michael Nowicki,&nbsp;Tim DeVries,&nbsp;David A. Siegel","doi":"10.1029/2023GB007880","DOIUrl":"10.1029/2023GB007880","url":null,"abstract":"<p>The ocean's biological carbon pump (BCP) affects the Earth's climate by sequestering CO<sub>2</sub> away from the atmosphere for decades to millennia. One primary control on the amount of carbon sequestered by the biological pump is air-sea CO<sub>2</sub> disequilibrium, which is controlled by the rate of air-sea CO<sub>2</sub> exchange and the residence time of CO<sub>2</sub> in surface waters. Here, we use a data-assimilated model of the soft tissue BCP to quantify carbon sequestration inventories and time scales from remineralization in the water column to equilibration with the atmosphere. We find that air-sea CO<sub>2</sub> disequilibrium enhances the global biogenic carbon inventory by ∼35% and its sequestration time by ∼70 years compared to identical calculations made assuming instantaneous air-sea CO<sub>2</sub> exchange. Locally, the greatest enhancement occurs in the subpolar Southern Ocean, where air-sea disequilibrium increases sequestration times by up to 600 years and the biogenic dissolved inorganic carbon inventory by &gt;100% in the upper ocean. Contrastingly, in deep-water formation regions of the North Atlantic and Antarctic margins, where biological production creates undersaturated surface waters which are subducted before fully equilibrating with the atmosphere, air-sea CO<sub>2</sub> disequilibrium decreases the depth-integrated sequestration inventory by up to ∼150%. The global enhancement of carbon sequestration by air-sea disequilibrium is particularly important for carbon respired in deep waters that upwell in the Southern Ocean. These results highlight the importance of accounting for air-sea CO<sub>2</sub> disequilibrium when evaluating carbon sequestration by the biological pump and for assessing the efficacy of ocean-based CO<sub>2</sub> removal methods.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 2","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007880","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Synthesis of Global Coastal Ocean Greenhouse Gas Fluxes 全球沿海海洋温室气体通量综述
IF 5.2 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-01-20 DOI: 10.1029/2023GB007803
L. Resplandy, A. Hogikyan, J. D. Müller, R. G. Najjar, H. W. Bange, D. Bianchi, T. Weber, W.-J. Cai, S. C. Doney, K. Fennel, M. Gehlen, J. Hauck, F. Lacroix, P. Landschützer, C. Le Quéré, A. Roobaert, J. Schwinger, S. Berthet, L. Bopp, T. T. T. Chau, M. Dai, N. Gruber, T. Ilyina, A. Kock, M. Manizza, Z. Lachkar, G. G. Laruelle, E. Liao, I. D. Lima, C. Nissen, C. Rödenbeck, R. Séférian, K. Toyama, H. Tsujino, P. Regnier

The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year−1, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year−1 in observational product and +0.54 PgCO2-e year−1 in model median) and CH4 (+0.21 PgCO2-e year−1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%–60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.

沿岸海洋通过吸收二氧化碳(CO2)和释放一氧化二氮(N2O)和甲烷(CH4),来调节大气中温室气体的浓度。在 "区域碳循环评估和过程"(RECCAP2)的第二阶段,我们利用全球间隙观测产品和海洋生 物地球化学模式,对全球沿岸海洋的 CO2、N2O 和 CH4 通量进行了量化。在观测产品和模式中,全球沿岸海域都是 CO2 的净吸收汇,但在模式中,全球沿岸海域净吸收量的中位数比观测产品大 60%(-0.72 PgC 年-1,1998-2018 年,沿岸海域延伸到离岸 300 公里或等深线 1000 米,面积为 7700 万平方公里)。我们将这一模式-结果差异的大部分原因归结于中高纬度海面二氧化碳分压的季节性,在那里模式模拟了更强的冬季二氧化碳吸收。在过去几十年中,沿岸海洋的二氧化碳吸收汇有所增加,但现有的基于时间分辨率 的观测产品和模式显示,这种增加的幅度存在很大差异。全球沿岸海洋是一氧化二氮(观测产品中值为+0.70 PgCO2-e-年-1,模式中值为+0.54 PgCO2-e-年-1)和甲烷(观测产品中值为+0.21 PgCO2-e-年-1)的主要来源,在净辐射平衡中抵消了沿岸二氧化碳吸收量的很大一部分(按二氧化碳当量计算为 30%-60%),这突出了在研究沿岸海洋对气候的影响时考虑这三种温室气体的重要性。
{"title":"A Synthesis of Global Coastal Ocean Greenhouse Gas Fluxes","authors":"L. Resplandy,&nbsp;A. Hogikyan,&nbsp;J. D. Müller,&nbsp;R. G. Najjar,&nbsp;H. W. Bange,&nbsp;D. Bianchi,&nbsp;T. Weber,&nbsp;W.-J. Cai,&nbsp;S. C. Doney,&nbsp;K. Fennel,&nbsp;M. Gehlen,&nbsp;J. Hauck,&nbsp;F. Lacroix,&nbsp;P. Landschützer,&nbsp;C. Le Quéré,&nbsp;A. Roobaert,&nbsp;J. Schwinger,&nbsp;S. Berthet,&nbsp;L. Bopp,&nbsp;T. T. T. Chau,&nbsp;M. Dai,&nbsp;N. Gruber,&nbsp;T. Ilyina,&nbsp;A. Kock,&nbsp;M. Manizza,&nbsp;Z. Lachkar,&nbsp;G. G. Laruelle,&nbsp;E. Liao,&nbsp;I. D. Lima,&nbsp;C. Nissen,&nbsp;C. Rödenbeck,&nbsp;R. Séférian,&nbsp;K. Toyama,&nbsp;H. Tsujino,&nbsp;P. Regnier","doi":"10.1029/2023GB007803","DOIUrl":"https://doi.org/10.1029/2023GB007803","url":null,"abstract":"<p>The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO<sub>2</sub>) and releasing nitrous oxide (N<sub>2</sub>O) and methane (CH<sub>4</sub>). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO<sub>2</sub>, N<sub>2</sub>O and CH<sub>4</sub> using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO<sub>2</sub> in both observational products and models, but the magnitude of the median net global coastal uptake is ∼60% larger in models (−0.72 vs. −0.44 PgC year<sup>−1</sup>, 1998–2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km<sup>2</sup>). We attribute most of this model-product difference to the seasonality in sea surface CO<sub>2</sub> partial pressure at mid- and high-latitudes, where models simulate stronger winter CO<sub>2</sub> uptake. The coastal ocean CO<sub>2</sub> sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N<sub>2</sub>O (+0.70 PgCO<sub>2</sub>-e year<sup>−1</sup> in observational product and +0.54 PgCO<sub>2</sub>-e year<sup>−1</sup> in model median) and CH<sub>4</sub> (+0.21 PgCO<sub>2</sub>-e year<sup>−1</sup> in observational product), which offsets a substantial proportion of the coastal CO<sub>2</sub> uptake in the net radiative balance (30%–60% in CO<sub>2</sub>-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007803","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139504618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cycling Rates of Particulate Organic Carbon Along the GEOTRACES Pacific Meridional Transect GP15 GEOTRACES 太平洋经向横断面 GP15 上颗粒有机碳的循环速率
IF 5.2 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-01-16 DOI: 10.1029/2023GB007940
Vinícius J. Amaral, Phoebe J. Lam, Olivier Marchal, Jennifer A. Kenyon

Understanding particle cycling processes in the ocean is critical for predicting the response of the biological carbon pump to external perturbations. Here, measurements of particulate organic carbon (POC) concentration in two size fractions (1–51 and >51 μm) from GEOTRACES Pacific meridional transect GP15 are combined with a POC cycling model to estimate rates of POC production, (dis)aggregation, sinking, remineralization, and vertical transport mediated by migrating zooplankton, in the euphotic zone (EZ) and upper mesopelagic zone (UMZ) of distinct environments. We find coherent variations in POC cycling parameters and fluxes throughout the transect. Thus, the settling speed of POC in the >51 μm fraction increased with depth in the UMZ, presumably due to higher particle densities at depth. The settling flux of total POC (>1 μm) out of the EZ was positively correlated with primary production integrated over the EZ; the highest export occurred in the subarctic gyre while the lowest occurred in the subtropical gyres. The ratio of POC settling flux to integrated primary production was low (<5%) along GP15, which suggests an efficient recycling of POC in the EZ in all trophic regimes. Specific rates of POC remineralization did not show clear variations with temperature or dissolved oxygen concentration, that is, POC recycling was apparently controlled by other factors such as microbial colonization and substrate lability. Particle cohesiveness, as approximated by the second-order rate constant for particle aggregation, was negatively correlated with trophic regime: particles appeared more cohesive in low-productivity regions than in high-productivity regions.

了解海洋中的颗粒循环过程对于预测生物碳泵对外部扰动的反应至关重要。在此,我们将 GEOTRACES 太平洋经向横断面 GP15 中两个粒径分段(1-51 和 51 μm)的颗粒有机碳(POC)浓度测量结果与 POC 循环模型相结合,估算了在不同环境的极光带(EZ)和上中层带(UMZ)中,由洄游浮游动物介导的 POC 生成、(解)聚集、下沉、再矿化和垂直传输的速率。我们发现,在整个横断面上,POC 循环参数和通量的变化是一致的。因此,在 UMZ,51 μm 部分的 POC 的沉降速度随深度增加而增加,这可能是由于深度的颗粒密度较高。总 POC(>1 μm)流出 EZ 的沉降通量与 EZ 上的综合初级生产力呈正相关;亚北极涡旋的出口量最高,而亚热带涡旋的出口量最低。GP15 沿线的 POC 沉降通量与综合初级生产力的比率很低(5%),这表明在所有营养系统中,POC 在 EZ 中都得到了有效的循环利用。POC 再矿化的具体速率并不随温度或溶解氧浓度的变化而明显变化,也就是说,POC 的再循环显然受微生物定殖和底质易变性等其他因素的控制。用颗粒聚集的二阶速率常数近似表示的颗粒凝聚力与营养状态呈负相关:低生产力区域的颗粒比高生产力区域的颗粒更有凝聚力。
{"title":"Cycling Rates of Particulate Organic Carbon Along the GEOTRACES Pacific Meridional Transect GP15","authors":"Vinícius J. Amaral,&nbsp;Phoebe J. Lam,&nbsp;Olivier Marchal,&nbsp;Jennifer A. Kenyon","doi":"10.1029/2023GB007940","DOIUrl":"https://doi.org/10.1029/2023GB007940","url":null,"abstract":"<p>Understanding particle cycling processes in the ocean is critical for predicting the response of the biological carbon pump to external perturbations. Here, measurements of particulate organic carbon (POC) concentration in two size fractions (1–51 and &gt;51 μm) from GEOTRACES Pacific meridional transect GP15 are combined with a POC cycling model to estimate rates of POC production, (dis)aggregation, sinking, remineralization, and vertical transport mediated by migrating zooplankton, in the euphotic zone (EZ) and upper mesopelagic zone (UMZ) of distinct environments. We find coherent variations in POC cycling parameters and fluxes throughout the transect. Thus, the settling speed of POC in the &gt;51 μm fraction increased with depth in the UMZ, presumably due to higher particle densities at depth. The settling flux of total POC (&gt;1 μm) out of the EZ was positively correlated with primary production integrated over the EZ; the highest export occurred in the subarctic gyre while the lowest occurred in the subtropical gyres. The ratio of POC settling flux to integrated primary production was low (&lt;5%) along GP15, which suggests an efficient recycling of POC in the EZ in all trophic regimes. Specific rates of POC remineralization did not show clear variations with temperature or dissolved oxygen concentration, that is, POC recycling was apparently controlled by other factors such as microbial colonization and substrate lability. Particle cohesiveness, as approximated by the second-order rate constant for particle aggregation, was negatively correlated with trophic regime: particles appeared more cohesive in low-productivity regions than in high-productivity regions.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007940","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139473873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Circum-Antarctic Plankton Isoscape: Carbon Export Potential Across the Summertime Southern Ocean 环南极浮游生物景观:整个夏季南大洋的碳输出潜力
IF 5.2 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-01-12 DOI: 10.1029/2023GB007808
Luca Stirnimann, Thomas G. Bornman, Heather J. Forrer, Joshua Mirkin, Thomas J. Ryan-Keogh, Raquel F. Flynn, Rosemary A. Dorrington, Hans M. Verheye, Sarah E. Fawcett

The Southern Ocean accounts for ∼30% of the ocean's CO2 sink, partly due to its biological pump that transfers surface-produced organic carbon to deeper waters. To estimate large-scale Southern Ocean carbon export potential and characterize its drivers, we measured the carbon and nitrogen isotope ratios of surface suspended particulate matter (δ13CSPM, δ15NSPM) for samples collected in summer 2016/2017 during the Antarctic Circumnavigation Expedition (364 stations). Concurrent measurements of phytoplankton community composition revealed the dominance of large diatoms in the Antarctic and nano-phytoplankton (mainly haptophytes) in open Subantarctic waters. As expected, δ13CSPM was strongly dependent on pCO2, with local deviations in this relationship explained by phytoplankton community dynamics. δ15NSPM reflected the nitrogen sources consumed by phytoplankton, with higher inferred nitrate (versus recycled ammonium) dependence generally coinciding with higher micro-phytoplankton abundances. Using δ15NSPM and a two-endmember isotope mixing model, we quantified the extent of nitrate- versus ammonium-supported growth, which yields a measure of carbon export potential. We estimate that across the Southern Ocean, 41 ± 29% of the surface-produced organic carbon was potentially exported below the seasonal mixed layer during the growth season, with maximum export potential (50%–99%) occurring in the Antarctic Circumpolar Current's southern Boundary Zone and near the (Sub)Antarctic islands, reaching a minimum in the Subtropical Zone (<33%). Alongside iron, phytoplankton community composition emerged as an important driver of the Southern Ocean's biological pump, with large diatoms dominating regions characterized by high nitrate dependence and elevated carbon export potential and smaller, mainly non-diatom taxa proliferating in waters where recycled ammonium supported most productivity.

南大洋占海洋二氧化碳汇的 30%,部分原因是其生物泵将表层产生的有机碳转移到深海。为了估算南大洋大尺度碳输出潜力并确定其驱动因素,我们测量了南极环北极考察(364 站)期间于 2016/2017 年夏季采集的样品中表层悬浮颗粒物质的碳和氮同位素比(δ13CSPM、δ15NSPM)。同时进行的浮游植物群落组成测量显示,南极地区以大型硅藻为主,亚南极开阔水域以纳米浮游植物(主要是七彩藻)为主。正如预期的那样,δ13CSPM 与 pCO2 密切相关,浮游植物群落动态可解释这种关系的局部偏差。δ15NSPM反映了浮游植物消耗的氮源,推断出的硝酸盐(相对于循环铵)依赖性较高,一般与较高的微型浮游植物丰度相吻合。利用δ15NSPM 和双成员同位素混合模型,我们量化了硝酸盐与氨支持的生长程度,从而得出了碳输出潜力的衡量标准。我们估计,在整个南大洋,41 ± 29% 的表层产生的有机碳有可能在生长季节出口到季节性混合层以下,最大出口潜力(50%-99%)出现在南极环极洋流的南部边界区和(亚)南极岛屿附近,在亚热带区达到最小值(33%)。除了铁之外,浮游植物群落组成也是南大洋生物泵的重要驱动力,大型硅藻在硝酸盐依赖性高、碳输出潜力大的区域占主导地位,而在循环铵支持大部分生产力的水域,小型、主要是非硅藻类群大量繁殖。
{"title":"A Circum-Antarctic Plankton Isoscape: Carbon Export Potential Across the Summertime Southern Ocean","authors":"Luca Stirnimann,&nbsp;Thomas G. Bornman,&nbsp;Heather J. Forrer,&nbsp;Joshua Mirkin,&nbsp;Thomas J. Ryan-Keogh,&nbsp;Raquel F. Flynn,&nbsp;Rosemary A. Dorrington,&nbsp;Hans M. Verheye,&nbsp;Sarah E. Fawcett","doi":"10.1029/2023GB007808","DOIUrl":"https://doi.org/10.1029/2023GB007808","url":null,"abstract":"<p>The Southern Ocean accounts for ∼30% of the ocean's CO<sub>2</sub> sink, partly due to its biological pump that transfers surface-produced organic carbon to deeper waters. To estimate large-scale Southern Ocean carbon export potential and characterize its drivers, we measured the carbon and nitrogen isotope ratios of surface suspended particulate matter (δ<sup>13</sup>C<sub>SPM</sub>, δ<sup>15</sup>N<sub>SPM</sub>) for samples collected in summer 2016/2017 during the Antarctic Circumnavigation Expedition (364 stations). Concurrent measurements of phytoplankton community composition revealed the dominance of large diatoms in the Antarctic and nano-phytoplankton (mainly haptophytes) in open Subantarctic waters. As expected, δ<sup>13</sup>C<sub>SPM</sub> was strongly dependent on pCO<sub>2</sub>, with local deviations in this relationship explained by phytoplankton community dynamics. δ<sup>15</sup>N<sub>SPM</sub> reflected the nitrogen sources consumed by phytoplankton, with higher inferred nitrate (versus recycled ammonium) dependence generally coinciding with higher micro-phytoplankton abundances. Using δ<sup>15</sup>N<sub>SPM</sub> and a two-endmember isotope mixing model, we quantified the extent of nitrate- versus ammonium-supported growth, which yields a measure of carbon export potential. We estimate that across the Southern Ocean, 41 ± 29% of the surface-produced organic carbon was potentially exported below the seasonal mixed layer during the growth season, with maximum export potential (50%–99%) occurring in the Antarctic Circumpolar Current's southern Boundary Zone and near the (Sub)Antarctic islands, reaching a minimum in the Subtropical Zone (&lt;33%). Alongside iron, phytoplankton community composition emerged as an important driver of the Southern Ocean's biological pump, with large diatoms dominating regions characterized by high nitrate dependence and elevated carbon export potential and smaller, mainly non-diatom taxa proliferating in waters where recycled ammonium supported most productivity.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007808","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139435279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drivers of Air-Sea CO2 Flux in the Subantarctic Zone Revealed by Time Series Observations 时间序列观测揭示的亚南极区海气二氧化碳通量的驱动因素
IF 5.2 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-01-12 DOI: 10.1029/2023GB007766
Xiang Yang, Cathryn A. Wynn-Edwards, Peter G. Strutton, Elizabeth H. Shadwick

The subantarctic zone is an important region in the Southern Ocean with respect to its influence on air-sea CO2 exchange and the global ocean carbon cycle. However, understanding of the magnitude and drivers of the flux are still being refined. Using observations from the Southern Ocean Time Series (SOTS) station (∼47°S, 142°E) and auxiliary data, we developed a multiple linear regression model to compute the sea surface partial pressure of CO2 (pCO2) over the past two decades. The mean amplitude of the pCO2 seasonal cycle between 2004 and 2021 was 44 μatm (range 30–54 μatm). Summer minima ranged from 310 to 370 μatm and winter maxima were near equilibrium with the atmosphere. The non-thermal (i.e., biological processes and mixing) contribution to the seasonal variability in pCO2 was several times larger than the thermal contribution. The SOTS region acted as a net carbon sink at annual time scales, with mean magnitude of 6.0 mmol m−2 d−1. The positive phase of the Southern Annular Mode (SAM) increased ocean carbon uptake primarily through an increase in wind speed at zero time lag. Increased surface pCO2 was correlated with a positive SAM with a lag of 4 months, mainly due to reduced biological uptake and increased mixing. During the autotrophic season, pCO2 was predominantly impacted by primary productivity, whereas water mass movement, inferred by temperature and salinity anomalies, had a larger impact on the heterotrophic season. In general, mesoscale processes such as eddies and frontal movement impact the local biogeochemical features more than the SAM.

就其对海气二氧化碳交换和全球海洋碳循环的影响而言,亚南极区是南大洋的一个重要区域。然而,人们对这一通量的大小和驱动因素的认识仍在不断完善。利用南大洋时间序列(SOTS)站(47°S∼142°E)的观测数据和辅助数据,我们建立了多元线性回归模型,计算了过去二十年的海面二氧化碳分压(pCO2)。2004 年至 2021 年期间,pCO2 季节周期的平均振幅为 44 μatm(范围为 30-54 μatm)。夏季最小值为 310 至 370 μatm,冬季最大值接近大气平衡。对 pCO2 季节变化的非热贡献(即生物过程和混合)是热贡献的数倍。在年时间尺度上,SOTS 区域是一个净碳汇,平均量级为 6.0 mmol m-2 d-1。南环流模式(SAM)的正相主要通过零时差风速的增加来增加海洋碳吸收。地表 pCO2 的增加与正南环流模式相关,时滞为 4 个月,主要原因是生物吸收减少和混合增加。在自养季节,pCO2 主要受初级生产力的影响,而根据温度和盐度异常推断的水体运动对异养季节的影响较大。一般来说,漩涡和锋面运动等中尺度过程对当地生物地球化学特征的影响大于海洋表面特征。
{"title":"Drivers of Air-Sea CO2 Flux in the Subantarctic Zone Revealed by Time Series Observations","authors":"Xiang Yang,&nbsp;Cathryn A. Wynn-Edwards,&nbsp;Peter G. Strutton,&nbsp;Elizabeth H. Shadwick","doi":"10.1029/2023GB007766","DOIUrl":"https://doi.org/10.1029/2023GB007766","url":null,"abstract":"<p>The subantarctic zone is an important region in the Southern Ocean with respect to its influence on air-sea CO<sub>2</sub> exchange and the global ocean carbon cycle. However, understanding of the magnitude and drivers of the flux are still being refined. Using observations from the Southern Ocean Time Series (SOTS) station (∼47°S, 142°E) and auxiliary data, we developed a multiple linear regression model to compute the sea surface partial pressure of CO<sub>2</sub> (pCO<sub>2</sub>) over the past two decades. The mean amplitude of the pCO<sub>2</sub> seasonal cycle between 2004 and 2021 was 44 μatm (range 30–54 μatm). Summer minima ranged from 310 to 370 μatm and winter maxima were near equilibrium with the atmosphere. The non-thermal (i.e., biological processes and mixing) contribution to the seasonal variability in pCO<sub>2</sub> was several times larger than the thermal contribution. The SOTS region acted as a net carbon sink at annual time scales, with mean magnitude of 6.0 mmol m<sup>−2</sup> d<sup>−1</sup>. The positive phase of the Southern Annular Mode (SAM) increased ocean carbon uptake primarily through an increase in wind speed at zero time lag. Increased surface pCO<sub>2</sub> was correlated with a positive SAM with a lag of 4 months, mainly due to reduced biological uptake and increased mixing. During the autotrophic season, pCO<sub>2</sub> was predominantly impacted by primary productivity, whereas water mass movement, inferred by temperature and salinity anomalies, had a larger impact on the heterotrophic season. In general, mesoscale processes such as eddies and frontal movement impact the local biogeochemical features more than the SAM.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007766","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139435278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Coastal Yedoma Deposits and Continental Shelf Sediments in the Arctic Ocean Silicon Cycle 沿海耶多玛沉积和大陆架沉积在北冰洋硅循环中的作用
IF 5.2 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2024-01-09 DOI: 10.1029/2023GB007746
Nicholas E. Ray, Jannik Martens, Marco Ajmar, Tommaso Tesi, Evgeniy Yakushev, Ivan Gangnus, Jens Strauss, Lutz Schirrmeister, Igor Semiletov, Birgit Wild

The availability of silicon (Si) in the ocean plays an important role in regulating biogeochemical and ecological processes. The Si budget of the Arctic Ocean appears balanced, with inputs equivalent to outputs, though it is unclear how a changing climate might aggravate this balance. In this study, we focus on Si cycling in Arctic coastal areas and continental shelf sediments to better constrain the Arctic Ocean Si budget. We provide the first estimate of amorphous Si (ASi) loading from erosion of coastal Yedoma deposits (30–90 Gmol yr−1), demonstrating comparable rates to particulate Si loading from rivers (10–90 Gmol yr−1). We found a positive relationship between surface sediment ASi and organic matter content on continental shelves. Combining these values with published Arctic shelf sediment properties and burial rates we estimate 70 Gmol Si yr−1 is buried on Arctic continental shelves, equivalent to 4.5% of all Si inputs to the Arctic Ocean. Sediment dissolved Si fluxes increased with distance from river mouths along cruise transects of shelf regions influenced by major rivers in the Laptev and East Siberian seas. On an annual basis, we estimate that Arctic shelf sediments recycle approximately up to twice as much DSi (680 Gmol Si) as is loaded from rivers (340–500 Gmol Si).

海洋中硅(Si)的供应在调节生物地球化学和生态过程中发挥着重要作用。北冰洋的硅预算似乎是平衡的,输入与输出相当,但目前还不清楚不断变化的气候会如何加剧这种平衡。在这项研究中,我们重点研究了北冰洋沿岸地区和大陆架沉积物中的硅循环,以更好地制约北冰洋的硅预算。我们首次估算了沿海叶多玛沉积物侵蚀产生的无定形硅(ASi)负荷(30-90 Gmol yr-1),其速率与河流产生的颗粒硅负荷(10-90 Gmol yr-1)相当。我们发现大陆架表层沉积物 ASi 与有机物含量之间存在正相关关系。将这些值与已公布的北极大陆架沉积物特性和埋藏率相结合,我们估计每年有 70 Gmol Si 埋藏在北极大陆架上,相当于北冰洋所有硅输入量的 4.5%。在拉普捷夫海和东西伯利亚海受主要河流影响的大陆架区域,沿巡航横断面沉积物溶解硅通量随距离河口的距离增加而增加。据我们估计,北极陆架沉积物每年回收的溶解硅(680 Gmol Si)大约是来自河流的溶解硅(340-500 Gmol Si)的两倍。
{"title":"The Role of Coastal Yedoma Deposits and Continental Shelf Sediments in the Arctic Ocean Silicon Cycle","authors":"Nicholas E. Ray,&nbsp;Jannik Martens,&nbsp;Marco Ajmar,&nbsp;Tommaso Tesi,&nbsp;Evgeniy Yakushev,&nbsp;Ivan Gangnus,&nbsp;Jens Strauss,&nbsp;Lutz Schirrmeister,&nbsp;Igor Semiletov,&nbsp;Birgit Wild","doi":"10.1029/2023GB007746","DOIUrl":"https://doi.org/10.1029/2023GB007746","url":null,"abstract":"<p>The availability of silicon (Si) in the ocean plays an important role in regulating biogeochemical and ecological processes. The Si budget of the Arctic Ocean appears balanced, with inputs equivalent to outputs, though it is unclear how a changing climate might aggravate this balance. In this study, we focus on Si cycling in Arctic coastal areas and continental shelf sediments to better constrain the Arctic Ocean Si budget. We provide the first estimate of amorphous Si (ASi) loading from erosion of coastal Yedoma deposits (30–90 Gmol yr<sup>−1</sup>), demonstrating comparable rates to particulate Si loading from rivers (10–90 Gmol yr<sup>−1</sup>). We found a positive relationship between surface sediment ASi and organic matter content on continental shelves. Combining these values with published Arctic shelf sediment properties and burial rates we estimate 70 Gmol Si yr<sup>−1</sup> is buried on Arctic continental shelves, equivalent to 4.5% of all Si inputs to the Arctic Ocean. Sediment dissolved Si fluxes increased with distance from river mouths along cruise transects of shelf regions influenced by major rivers in the Laptev and East Siberian seas. On an annual basis, we estimate that Arctic shelf sediments recycle approximately up to twice as much DSi (680 Gmol Si) as is loaded from rivers (340–500 Gmol Si).</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 1","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007746","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coral Reef Carbonate Chemistry Reveals Interannual, Seasonal, and Spatial Impacts on Ocean Acidification Off Florida 珊瑚礁碳酸盐化学揭示佛罗里达近海海洋酸化的年际、季节和空间影响
IF 5.2 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-12-26 DOI: 10.1029/2023GB007789
A. M. Palacio-Castro, I. C. Enochs, N. Besemer, A. Boyd, M. Jankulak, G. Kolodziej, H. K. Hirsh, A. E. Webb, E. K. Towle, C. Kelble, I. Smith, D. P. Manzello

Ocean acidification (OA) threatens coral reef persistence by decreasing calcification and accelerating the dissolution of reef frameworks. The carbonate chemistry of coastal areas where many reefs exist is strongly influenced by the metabolic activity of the underlying benthic community, contributing to high spatiotemporal variability. While characterizing this variability is difficult, it has important implications for the progression of OA and the persistence of the ecosystems. Here, we characterized the carbonate chemistry at 38 permanent stations located along 10 inshore-offshore transects spanning 250 km of the Florida Coral Reef (FCR), which encompass four major biogeographic regions (Biscayne Bay, Upper Keys, Middle Keys, and Lower Keys) and four shelf zones (inshore, mid-channel, offshore, and oceanic). Data have been collected since 2010, with approximately bi-monthly periodicity starting in 2015. Increasing OA, driven by increasing DIC, was detected in the mid-channel, offshore, and oceanic zones in every biogeographic region. In the inshore zone, however, increasing TA counteracted any measurable OA trend. Strong seasonal variability occurred at inshore sites and included periods of both exacerbated and mitigated OA. Seasonality was region-dependent, with greater variability in the Lower and Middle Keys. Elevated pH and aragonite saturation states (ΩAr) were observed in the Upper and Middle Keys, which could favor reef habitat persistence in these regions. Offshore reefs in the FCR could be more susceptible to global OA by experiencing open-ocean-like water chemistry conditions. By contrast, higher seasonal variability at inshore reefs could offer a temporary OA refuge during periods of enhanced primary production.

海洋酸化(OA)会降低钙化程度,加速珊瑚礁框架的溶解,从而威胁珊瑚礁的存续。许多珊瑚礁所在的沿海地区的碳酸盐化学性质受到底栖生物群落新陈代谢活动的强烈影响,从而导致高度的时空变异性。虽然描述这种变化很困难,但它对 OA 的进展和生态系统的持续性有重要影响。在此,我们对位于佛罗里达珊瑚礁(FCR)横跨 250 千米的 10 个近岸-近岸横断面上的 38 个永久性站点的碳酸盐化学特征进行了描述,这些站点包括四个主要生物地理区域(比斯坎湾、上礁群、中礁群和下礁群)和四个陆架区(近岸、中通道、近岸和大洋区)。数据自 2010 年开始收集,从 2015 年开始大约每两个月收集一次。在每个生物地理区域的中层通道、近海和大洋区,都检测到由 DIC 增加驱动的 OA 增加。然而,在近岸区域,TA 的增加抵消了任何可测量的 OA 趋势。近岸地点出现了强烈的季节性变化,包括 OA 加剧期和 OA 减缓期。季节性与地区有关,下礁和中礁地区的变化更大。在上礁和中礁观察到 pH 值和文石饱和状态(ΩAr)升高,这可能有利于这些地区珊瑚礁生境的持续存在。渔业资源保护区的近海珊瑚礁可能更容易受到全球 OA 的影响,因为它们经历了类似于公海的水化学条件。相比之下,近岸珊瑚礁较高的季节性变化可能会在初级生产力增强期间提供一个临时的 OA 庇护所。
{"title":"Coral Reef Carbonate Chemistry Reveals Interannual, Seasonal, and Spatial Impacts on Ocean Acidification Off Florida","authors":"A. M. Palacio-Castro,&nbsp;I. C. Enochs,&nbsp;N. Besemer,&nbsp;A. Boyd,&nbsp;M. Jankulak,&nbsp;G. Kolodziej,&nbsp;H. K. Hirsh,&nbsp;A. E. Webb,&nbsp;E. K. Towle,&nbsp;C. Kelble,&nbsp;I. Smith,&nbsp;D. P. Manzello","doi":"10.1029/2023GB007789","DOIUrl":"https://doi.org/10.1029/2023GB007789","url":null,"abstract":"<p>Ocean acidification (OA) threatens coral reef persistence by decreasing calcification and accelerating the dissolution of reef frameworks. The carbonate chemistry of coastal areas where many reefs exist is strongly influenced by the metabolic activity of the underlying benthic community, contributing to high spatiotemporal variability. While characterizing this variability is difficult, it has important implications for the progression of OA and the persistence of the ecosystems. Here, we characterized the carbonate chemistry at 38 permanent stations located along 10 inshore-offshore transects spanning 250 km of the Florida Coral Reef (FCR), which encompass four major biogeographic regions (Biscayne Bay, Upper Keys, Middle Keys, and Lower Keys) and four shelf zones (inshore, mid-channel, offshore, and oceanic). Data have been collected since 2010, with approximately bi-monthly periodicity starting in 2015. Increasing OA, driven by increasing DIC, was detected in the mid-channel, offshore, and oceanic zones in every biogeographic region. In the inshore zone, however, increasing TA counteracted any measurable OA trend. Strong seasonal variability occurred at inshore sites and included periods of both exacerbated and mitigated OA. Seasonality was region-dependent, with greater variability in the Lower and Middle Keys. Elevated pH and aragonite saturation states (Ω<sub>Ar</sub>) were observed in the Upper and Middle Keys, which could favor reef habitat persistence in these regions. Offshore reefs in the FCR could be more susceptible to global OA by experiencing open-ocean-like water chemistry conditions. By contrast, higher seasonal variability at inshore reefs could offer a temporary OA refuge during periods of enhanced primary production.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"37 12","pages":""},"PeriodicalIF":5.2,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139047281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climatic Changes in North Atlantic O2 Amplified by Temperature Sensitivity of Phytoplankton Growth 浮游植物生长的温度敏感性放大了北大西洋氧气的气候变化
IF 5.2 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-12-22 DOI: 10.1029/2023GB007930
A. Margolskee, T. Ito, M. Long, C. Deutsch

Ocean warming is associated with a decline in the global oxygen (O2) inventory, but the ratio of O2 loss to heat gain is poorly understood. We analyzed historical variability in temperature (T), O2, and nitrate NO3 $left(mathrm{N}{mathrm{O}}_{3}^{-}right)$ in hydrographic observations and model simulations of the North Atlantic, a relatively well-sampled region that is important for deep ocean ventilation. Multidecadal fluctuations of O2 concentrations in subpolar thermocline waters (100–700 m) are correlated with changes in their heat content, with a slope 35% steeper than that expected from thermal solubility. Variations of O2 in excess of the solubility effect are correlated with observed decadal changes in NO3 $mathrm{N}{mathrm{O}}_{3}^{-}$ in the surface layer (0–50 m), which declines by ∼1 mmol N m−3 per degree of temperature anomaly. Enhanced biologically mediated drawdown of nutrients from the photic zone and associated respiration in deeper water account for the additional depletion of thermocline O2 during warm years. In model simulations, increased nutrient consumption in warm periods is driven by an early start of the phytoplankton growing season and faster phytoplankton growth rates at higher temperatures. Our results highlight a role for phytoplankton T-dependent growth rates in amplifying ocean O2 loss.

海洋变暖与全球氧气(O2)存量的减少有关,但人们对氧气损失与热量增加的比例知之甚少。我们分析了北大西洋水文观测和模型模拟中温度(T)、氧气和硝酸盐 NO3-$left(mathrm{N}{mathrm{O}}_{3}^{-}right)$的历史变化,北大西洋是一个取样相对较好的区域,对深海通气非常重要。亚极地温跃层水域(100-700 米)氧气浓度的十年波动与其热含量的变化相关,其斜率比热溶解度的预期斜率陡峭 35%。超过溶解度效应的 O2 变化与观测到的表层(0-50 米)NO3-$mathrm{N}{mathrm{O}}_{3}^{-}$ 的十年变化相关,温度每异常 1 度,NO3-$mathrm{N}{mathrm{O}}_{3}^{-}$ 下降 1 mmol N m-3 。在温暖年份,生物介导的光照区营养物质减少和深层水的相关呼吸作用增强,造成了热层 O2 的额外消耗。在模型模拟中,浮游植物生长季节提前开始以及浮游植物在较高温度下更快的生长速度推动了温暖时期营养物质消耗的增加。我们的研究结果突出表明,浮游植物的生长速度与温度有关,在放大海洋氧气损失方面发挥了作用。
{"title":"Climatic Changes in North Atlantic O2 Amplified by Temperature Sensitivity of Phytoplankton Growth","authors":"A. Margolskee,&nbsp;T. Ito,&nbsp;M. Long,&nbsp;C. Deutsch","doi":"10.1029/2023GB007930","DOIUrl":"10.1029/2023GB007930","url":null,"abstract":"<p>Ocean warming is associated with a decline in the global oxygen (O<sub>2</sub>) inventory, but the ratio of O<sub>2</sub> loss to heat gain is poorly understood. We analyzed historical variability in temperature (<i>T</i>), O<sub>2</sub>, and nitrate <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mfenced>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <msubsup>\u0000 <mi>O</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 </mfenced>\u0000 </mrow>\u0000 <annotation> $left(mathrm{N}{mathrm{O}}_{3}^{-}right)$</annotation>\u0000 </semantics></math> in hydrographic observations and model simulations of the North Atlantic, a relatively well-sampled region that is important for deep ocean ventilation. Multidecadal fluctuations of O<sub>2</sub> concentrations in subpolar thermocline waters (100–700 m) are correlated with changes in their heat content, with a slope 35% steeper than that expected from thermal solubility. Variations of O<sub>2</sub> in excess of the solubility effect are correlated with observed decadal changes in <math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <msubsup>\u0000 <mi>O</mi>\u0000 <mn>3</mn>\u0000 <mo>−</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> $mathrm{N}{mathrm{O}}_{3}^{-}$</annotation>\u0000 </semantics></math> in the surface layer (0–50 m), which declines by ∼1 mmol N m<sup>−3</sup> per degree of temperature anomaly. Enhanced biologically mediated drawdown of nutrients from the photic zone and associated respiration in deeper water account for the additional depletion of thermocline O<sub>2</sub> during warm years. In model simulations, increased nutrient consumption in warm periods is driven by an early start of the phytoplankton growing season and faster phytoplankton growth rates at higher temperatures. Our results highlight a role for phytoplankton <i>T</i>-dependent growth rates in amplifying ocean O<sub>2</sub> loss.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"37 12","pages":""},"PeriodicalIF":5.2,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007930","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139029916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations 根据飞机和卫星观测估计的非洲热带二氧化碳中性交换量
IF 5.2 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES Pub Date : 2023-12-21 DOI: 10.1029/2023GB007804
Benjamin Gaubert, Britton B. Stephens, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Rebecca Buchholz, Abhishek Chatterjee, Frédéric Chevallier, Róisín Commane, Noel Cressie, Feng Deng, Nicole Jacobs, Matthew S. Johnson, Shamil S. Maksyutov, Kathryn McKain, Junjie Liu, Zhiqiang Liu, Eric Morgan, Chris O’Dell, Sajeev Philip, Eric Ray, David Schimel, Andrew Schuh, Thomas E. Taylor, Brad Weir, Dave van Wees, Steven C. Wofsy, Andrew Zammit-Mangion, Ning Zeng

Tropical lands play an important role in the global carbon cycle yet their contribution remains uncertain owing to sparse observations. Satellite observations of atmospheric carbon dioxide (CO2) have greatly increased spatial coverage over tropical regions, providing the potential for improved estimates of terrestrial fluxes. Despite this advancement, the spread among satellite-based and in-situ atmospheric CO2 flux inversions over northern tropical Africa (NTA), spanning 0–24°N, remains large. Satellite-based estimates of an annual source of 0.8–1.45 PgC yr−1 challenge our understanding of tropical and global carbon cycling. Here, we compare posterior mole fractions from the suite of inversions participating in the Orbiting Carbon Observatory 2 (OCO-2) Version 10 Model Intercomparison Project (v10 MIP) with independent in-situ airborne observations made over the tropical Atlantic Ocean by the National Aeronautics and Space Administration (NASA) Atmospheric Tomography (ATom) mission during four seasons. We develop emergent constraints on tropical African CO2 fluxes using flux-concentration relationships defined by the model suite. We find an annual flux of 0.14 ± 0.39 PgC yr−1 (mean and standard deviation) for NTA, 2016–2018. The satellite-based flux bias suggests a potential positive concentration bias in OCO-2 B10 and earlier version retrievals over land in NTA during the dry season. Nevertheless, the OCO-2 observations provide improved flux estimates relative to the in situ observing network at other times of year, indicating stronger uptake in NTA during the wet season than the in-situ inversion estimates.

热带陆地在全球碳循环中发挥着重要作用,但由于观测稀少,其贡献仍不确定。对大气二氧化碳(CO2)的卫星观测大大增加了对热带地区的空间覆盖,为改进对陆地通量的估计提供了可能。尽管取得了这一进展,但在北纬 0-24 度的热带非洲北部(NTA),基于卫星的大气二氧化碳通量反演和原位大气二氧化碳通量反演之间的差异仍然很大。根据卫星估算,每年的碳源为 0.8-1.45 PgC/yr-1,这对我们了解热带和全球碳循环提出了挑战。在这里,我们将参与轨道碳观测站 2(OCO-2)第 10 版模型相互比较项目(v10 MIP)的一系列反演得出的后验摩尔分数与美国国家航空航天局(NASA)大气层析成像(ATom)任务在热带大西洋上空四个季节进行的独立原位机载观测结果进行了比较。我们利用模型套件定义的通量-浓度关系,对非洲热带地区的二氧化碳通量提出了新的约束条件。我们发现,2016-2018 年 NTA 的年通量为 0.14 ± 0.39 PgC yr-1(平均值和标准偏差)。基于卫星的通量偏差表明,在旱季期间,OCO-2 B10 和早期版本对 NTA 陆地上空的检索可能存在正浓度偏差。尽管如此,相对于一年中其他时间的原位观测网络,OCO-2 观测提供了更好的通量估算,表明与原位反演估算相比,NTA 在雨季的吸收能力更强。
{"title":"Neutral Tropical African CO2 Exchange Estimated From Aircraft and Satellite Observations","authors":"Benjamin Gaubert,&nbsp;Britton B. Stephens,&nbsp;David F. Baker,&nbsp;Sourish Basu,&nbsp;Michael Bertolacci,&nbsp;Kevin W. Bowman,&nbsp;Rebecca Buchholz,&nbsp;Abhishek Chatterjee,&nbsp;Frédéric Chevallier,&nbsp;Róisín Commane,&nbsp;Noel Cressie,&nbsp;Feng Deng,&nbsp;Nicole Jacobs,&nbsp;Matthew S. Johnson,&nbsp;Shamil S. Maksyutov,&nbsp;Kathryn McKain,&nbsp;Junjie Liu,&nbsp;Zhiqiang Liu,&nbsp;Eric Morgan,&nbsp;Chris O’Dell,&nbsp;Sajeev Philip,&nbsp;Eric Ray,&nbsp;David Schimel,&nbsp;Andrew Schuh,&nbsp;Thomas E. Taylor,&nbsp;Brad Weir,&nbsp;Dave van Wees,&nbsp;Steven C. Wofsy,&nbsp;Andrew Zammit-Mangion,&nbsp;Ning Zeng","doi":"10.1029/2023GB007804","DOIUrl":"10.1029/2023GB007804","url":null,"abstract":"<p>Tropical lands play an important role in the global carbon cycle yet their contribution remains uncertain owing to sparse observations. Satellite observations of atmospheric carbon dioxide (CO<sub>2</sub>) have greatly increased spatial coverage over tropical regions, providing the potential for improved estimates of terrestrial fluxes. Despite this advancement, the spread among satellite-based and in-situ atmospheric CO<sub>2</sub> flux inversions over northern tropical Africa (NTA), spanning 0–24°N, remains large. Satellite-based estimates of an annual source of 0.8–1.45 PgC yr<sup>−1</sup> challenge our understanding of tropical and global carbon cycling. Here, we compare posterior mole fractions from the suite of inversions participating in the Orbiting Carbon Observatory 2 (OCO-2) Version 10 Model Intercomparison Project (v10 MIP) with independent in-situ airborne observations made over the tropical Atlantic Ocean by the National Aeronautics and Space Administration (NASA) Atmospheric Tomography (ATom) mission during four seasons. We develop emergent constraints on tropical African CO<sub>2</sub> fluxes using flux-concentration relationships defined by the model suite. We find an annual flux of 0.14 ± 0.39 PgC yr<sup>−1</sup> (mean and standard deviation) for NTA, 2016–2018. The satellite-based flux bias suggests a potential positive concentration bias in OCO-2 B10 and earlier version retrievals over land in NTA during the dry season. Nevertheless, the OCO-2 observations provide improved flux estimates relative to the in situ observing network at other times of year, indicating stronger uptake in NTA during the wet season than the in-situ inversion estimates.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"37 12","pages":""},"PeriodicalIF":5.2,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138987208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Global Biogeochemical Cycles
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1