Martin R. Kurek, Kimberly P. Wickland, Natalie A. Nichols, Amy M. McKenna, Steven M. Anderson, Mark M. Dornblaser, Nikaan Koupaei-Abyazani, Brett A. Poulin, Sheel Bansal, Jason B. Fellman, Gregory K. Druschel, Emily S. Bernhardt, Robert G. M. Spencer
Wetlands are integral to the global carbon cycle, serving as both a source and a sink for organic carbon. Their potential for carbon storage will likely change in the coming decades in response to higher temperatures and variable precipitation patterns. We characterized the dissolved organic carbon (DOC) and dissolved organic matter (DOM) composition from 12 different wetland sites across the USA spanning gradients in climate, landcover, sampling depth, and hydroperiod for comparison to DOM in other inland waters. Using absorption spectroscopy, parallel factor analysis modeling, and ultra-high resolution mass spectroscopy, we identified differences in DOM sourcing and processing by geographic site. Wetland DOM composition was driven primarily by differences in landcover where forested sites contained greater aromatic and oxygenated DOM content compared to grassland/herbaceous sites which were more aliphatic and enriched in N and S molecular formulae. Furthermore, surface and porewater DOM was also influenced by properties such as soil type, organic matter content, and precipitation. Surface water DOM was relatively enriched in oxygenated higher molecular weight formulae representing HUPHigh O/C compounds than porewaters, whose DOM composition suggests abiotic sulfurization from dissolved inorganic sulfide. Finally, we identified a group of persistent molecular formulae (3,489) present across all sites and sampling depths (i.e., the signature of wetland DOM) that are likely important for riverine-to-coastal DOM transport. As anthropogenic disturbances continue to impact temperate wetlands, this study highlights drivers of DOM composition fundamental for understanding how wetland organic carbon will change, and thus its role in biogeochemical cycling.
湿地是全球碳循环不可或缺的一部分,既是有机碳的源,也是有机碳的汇。由于气温升高和降水模式多变,湿地的碳储存潜力在未来几十年可能会发生变化。我们研究了美国 12 个不同湿地的溶解有机碳 (DOC) 和溶解有机物 (DOM) 的组成特征,这些特征跨越了气候、土地覆盖、采样深度和水文周期的梯度,可与其他内陆水域的 DOM 进行比较。利用吸收光谱、并行因子分析建模和超高分辨率质谱,我们确定了不同地理位置 DOM 来源和处理过程的差异。湿地 DOM 的组成主要受土地覆盖差异的影响,森林覆盖区的芳香族和含氧 DOM 含量较高,而草地/草本覆盖区的芳香族和含氧 DOM 含量较低,且富含 N 和 S 分子式。此外,地表水和孔隙水 DOM 还受到土壤类型、有机质含量和降水等属性的影响。与孔隙水相比,地表水 DOM 相对富含代表 HUPHigh O/C 化合物的含氧高分子量分子式,其 DOM 组成表明溶解的无机硫化物产生了非生物硫化。最后,我们确定了一组存在于所有地点和采样深度的持久性分子式(3,489)(即湿地 DOM 的特征),这些分子式可能对河流到沿海的 DOM 运输非常重要。随着人为干扰对温带湿地的持续影响,本研究强调了DOM组成的驱动因素,这对了解湿地有机碳将如何变化及其在生物地球化学循环中的作用至关重要。
{"title":"Linking Dissolved Organic Matter Composition to Landscape Properties in Wetlands Across the United States of America","authors":"Martin R. Kurek, Kimberly P. Wickland, Natalie A. Nichols, Amy M. McKenna, Steven M. Anderson, Mark M. Dornblaser, Nikaan Koupaei-Abyazani, Brett A. Poulin, Sheel Bansal, Jason B. Fellman, Gregory K. Druschel, Emily S. Bernhardt, Robert G. M. Spencer","doi":"10.1029/2023GB007917","DOIUrl":"https://doi.org/10.1029/2023GB007917","url":null,"abstract":"<p>Wetlands are integral to the global carbon cycle, serving as both a source and a sink for organic carbon. Their potential for carbon storage will likely change in the coming decades in response to higher temperatures and variable precipitation patterns. We characterized the dissolved organic carbon (DOC) and dissolved organic matter (DOM) composition from 12 different wetland sites across the USA spanning gradients in climate, landcover, sampling depth, and hydroperiod for comparison to DOM in other inland waters. Using absorption spectroscopy, parallel factor analysis modeling, and ultra-high resolution mass spectroscopy, we identified differences in DOM sourcing and processing by geographic site. Wetland DOM composition was driven primarily by differences in landcover where forested sites contained greater aromatic and oxygenated DOM content compared to grassland/herbaceous sites which were more aliphatic and enriched in N and S molecular formulae. Furthermore, surface and porewater DOM was also influenced by properties such as soil type, organic matter content, and precipitation. Surface water DOM was relatively enriched in oxygenated higher molecular weight formulae representing HUP<sub>High O/C</sub> compounds than porewaters, whose DOM composition suggests abiotic sulfurization from dissolved inorganic sulfide. Finally, we identified a group of persistent molecular formulae (3,489) present across all sites and sampling depths (i.e., the signature of wetland DOM) that are likely important for riverine-to-coastal DOM transport. As anthropogenic disturbances continue to impact temperate wetlands, this study highlights drivers of DOM composition fundamental for understanding how wetland organic carbon will change, and thus its role in biogeochemical cycling.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 5","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140826150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shasha Li, Hongliang Li, Tiantian Tang, Shanlin Wang
Lithogenic materials such as terrigenous lithogenic particles (TLP) can efficiently promote the formation and sinking of mineral-associated marine organic matter, acting as important ballast and potentially playing an important role in the global carbon cycle. To assess the influence of TLP on fluxes of particulate organic carbon (POC) and other biogeochemical cycles, we construct TLP forcing fields based on global riverine suspended sediment data and then apply them to the Community Earth System Model, version 2 (CESM2) modified with the TLP ballasting effect term. Simulations forced by different concentrations of TLP transported in the surface ocean or along the bottom of continental shelves and slopes are conducted. When the TLP transports seaward along the bottom, simulated POC fluxes at 100 and 2,000 m decrease about 11% and 19%, respectively, for the global ocean, and about 9% and 12%, respectively, for the oceanic regions of continental margins. The initial abiotic ballast processes triggered by TLP input increase POC fluxes, causing additional removal and burial of dissolved iron in continental margins. This further enhances the accumulation of macronutrients in the upwelling regions and their advection transport to neighboring subtropical gyres, thus altering regional productivity when simulations reach quasi-equilibrium. When consider the impacts of TLP in simulations, the simulated POC flux exhibits an increase in subtropical gyres but a decrease in tropical Pacific and mid-high latitude regions. The present work highlights the importance of TLP in global biogeochemical cycles, suggesting that the amount of carbon sequestration might be overestimated without TLP in models.
{"title":"The Ballast Effect of Terrigenous Lithogenic Particles From Rivers and Its Influence on POC Fluxes in the Ocean","authors":"Shasha Li, Hongliang Li, Tiantian Tang, Shanlin Wang","doi":"10.1029/2024GB008155","DOIUrl":"https://doi.org/10.1029/2024GB008155","url":null,"abstract":"<p>Lithogenic materials such as terrigenous lithogenic particles (TLP) can efficiently promote the formation and sinking of mineral-associated marine organic matter, acting as important ballast and potentially playing an important role in the global carbon cycle. To assess the influence of TLP on fluxes of particulate organic carbon (POC) and other biogeochemical cycles, we construct TLP forcing fields based on global riverine suspended sediment data and then apply them to the Community Earth System Model, version 2 (CESM2) modified with the TLP ballasting effect term. Simulations forced by different concentrations of TLP transported in the surface ocean or along the bottom of continental shelves and slopes are conducted. When the TLP transports seaward along the bottom, simulated POC fluxes at 100 and 2,000 m decrease about 11% and 19%, respectively, for the global ocean, and about 9% and 12%, respectively, for the oceanic regions of continental margins. The initial abiotic ballast processes triggered by TLP input increase POC fluxes, causing additional removal and burial of dissolved iron in continental margins. This further enhances the accumulation of macronutrients in the upwelling regions and their advection transport to neighboring subtropical gyres, thus altering regional productivity when simulations reach quasi-equilibrium. When consider the impacts of TLP in simulations, the simulated POC flux exhibits an increase in subtropical gyres but a decrease in tropical Pacific and mid-high latitude regions. The present work highlights the importance of TLP in global biogeochemical cycles, suggesting that the amount of carbon sequestration might be overestimated without TLP in models.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 5","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140649542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Radiocarbon (14C) in corals can be used as a relatively high-sensitivity indicator of vertical and horizontal advection of water masses, which contributes to the understanding of ocean circulation. In this study, we reconstruct Kuroshio and Ryukyu current transport with a seasonal resolution Δ14C record spanning 1947–2009. This record covers the beginning of the atomic era and was obtained from a coral on Kikai Island in the south of Japan. The Kikai Δ14C curve features a newly discovered Δ14C spike in July 1955, a rapid increase after 1962, and a steady decrease after 1980. The spike in 1955 may directly reflect ocean current transport. The lack of periodicity in the Δ14C record suggests the existence of mesoscale eddies and the complexity of Kuroshio and Ryukyu current transport. In addition, comparing the high-resolution Δ14C of Kikai and Ishigaki islands, both situated along the path of the Kuroshio, reveals the influence of Pacific Decadal Oscillation and El Niño-Southern Oscillation on the Kuroshio and Ryukyu currents. This suggests that seasonally resolved Δ14C in corals along an ocean current can produce a long-term record of ocean mixing that responds to climate variability.
{"title":"Anthropocene North Western Pacific Oceanography Recorded as Seasonal-Resolution Radiocarbon in Coral From Kikai Island, Japan","authors":"Yuning Zeng, Yusuke Yokoyama, Shoko Hirabayashi, Yosuke Miyairi, Atsushi Suzuki, Takahiro Aze, Yuta Kawakubo","doi":"10.1029/2023GB007927","DOIUrl":"https://doi.org/10.1029/2023GB007927","url":null,"abstract":"<p>Radiocarbon (<sup>14</sup>C) in corals can be used as a relatively high-sensitivity indicator of vertical and horizontal advection of water masses, which contributes to the understanding of ocean circulation. In this study, we reconstruct Kuroshio and Ryukyu current transport with a seasonal resolution Δ<sup>14</sup>C record spanning 1947–2009. This record covers the beginning of the atomic era and was obtained from a coral on Kikai Island in the south of Japan. The Kikai Δ<sup>14</sup>C curve features a newly discovered Δ<sup>14</sup>C spike in July 1955, a rapid increase after 1962, and a steady decrease after 1980. The spike in 1955 may directly reflect ocean current transport. The lack of periodicity in the Δ<sup>14</sup>C record suggests the existence of mesoscale eddies and the complexity of Kuroshio and Ryukyu current transport. In addition, comparing the high-resolution Δ<sup>14</sup>C of Kikai and Ishigaki islands, both situated along the path of the Kuroshio, reveals the influence of Pacific Decadal Oscillation and El Niño-Southern Oscillation on the Kuroshio and Ryukyu currents. This suggests that seasonally resolved Δ<sup>14</sup>C in corals along an ocean current can produce a long-term record of ocean mixing that responds to climate variability.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007927","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fiz F. Pérez, M. Becker, N. Goris, M. Gehlen, M. López-Mozos, J. Tjiputra, A. Olsen, J. D. Müller, I. E. Huertas, T. T. T. Chau, V. Cainzos, A. Velo, G. Benard, J. Hauck, N. Gruber, Rik Wanninkhof
As part of the second phase of the Regional Carbon Cycle Assessment and Processes project (RECCAP2), we present an assessment of the carbon cycle of the Atlantic Ocean, including the Mediterranean Sea, between 1985 and 2018 using global ocean biogeochemical models (GOBMs) and estimates based on surface ocean carbon dioxide (CO2) partial pressure (pCO2 products) and ocean interior dissolved inorganic carbon observations. Estimates of the basin-wide long-term mean net annual CO2 uptake based on GOBMs and pCO2 products are in reasonable agreement (−0.47 ± 0.15 PgC yr−1 and −0.36 ± 0.06 PgC yr−1, respectively), with the higher uptake in the GOBM-based estimates likely being a consequence of a deficit in the representation of natural outgassing of land derived carbon. In the GOBMs, the CO2 uptake increases with time at rates close to what one would expect from the atmospheric CO2 increase, but pCO2 products estimate a rate twice as fast. The largest disagreement in the CO2 flux between GOBMs and pCO2 products is found north of 50°N, coinciding with the largest disagreement in the seasonal cycle and interannual variability. The mean accumulation rate of anthropogenic CO2 (Cant) over 1994–2007 in the Atlantic Ocean is 0.52 ± 0.11 PgC yr−1 according to the GOBMs, 28% ± 20% lower than that derived from observations. Around 70% of this Cant is taken up from the atmosphere, while the remainder is imported from the Southern Ocean through lateral transport.
{"title":"An Assessment of CO2 Storage and Sea-Air Fluxes for the Atlantic Ocean and Mediterranean Sea Between 1985 and 2018","authors":"Fiz F. Pérez, M. Becker, N. Goris, M. Gehlen, M. López-Mozos, J. Tjiputra, A. Olsen, J. D. Müller, I. E. Huertas, T. T. T. Chau, V. Cainzos, A. Velo, G. Benard, J. Hauck, N. Gruber, Rik Wanninkhof","doi":"10.1029/2023GB007862","DOIUrl":"https://doi.org/10.1029/2023GB007862","url":null,"abstract":"<p>As part of the second phase of the Regional Carbon Cycle Assessment and Processes project (RECCAP2), we present an assessment of the carbon cycle of the Atlantic Ocean, including the Mediterranean Sea, between 1985 and 2018 using global ocean biogeochemical models (GOBMs) and estimates based on surface ocean carbon dioxide (CO<sub>2</sub>) partial pressure (pCO<sub>2</sub> products) and ocean interior dissolved inorganic carbon observations. Estimates of the basin-wide long-term mean net annual CO<sub>2</sub> uptake based on GOBMs and pCO<sub>2</sub> products are in reasonable agreement (−0.47 ± 0.15 PgC yr<sup>−1</sup> and −0.36 ± 0.06 PgC yr<sup>−1</sup>, respectively), with the higher uptake in the GOBM-based estimates likely being a consequence of a deficit in the representation of natural outgassing of land derived carbon. In the GOBMs, the CO<sub>2</sub> uptake increases with time at rates close to what one would expect from the atmospheric CO<sub>2</sub> increase, but pCO<sub>2</sub> products estimate a rate twice as fast. The largest disagreement in the CO<sub>2</sub> flux between GOBMs and pCO<sub>2</sub> products is found north of 50°N, coinciding with the largest disagreement in the seasonal cycle and interannual variability. The mean accumulation rate of anthropogenic CO<sub>2</sub> (C<sub>ant</sub>) over 1994–2007 in the Atlantic Ocean is 0.52 ± 0.11 PgC yr<sup>−1</sup> according to the GOBMs, 28% ± 20% lower than that derived from observations. Around 70% of this C<sub>ant</sub> is taken up from the atmosphere, while the remainder is imported from the Southern Ocean through lateral transport.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007862","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140621369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierre Taillardat, Annika Linkhorst, Charles P. Deblois, Antonin Prijac, Laure Gandois, Alain Tremblay, Michelle Garneau
Peatlands store organic carbon available for decomposition and transfer to neighboring water bodies, which can ultimately generate carbon dioxide (CO2) and methane (CH4) emissions. The objective of this study was to clarify the biogeochemical functioning of open-water peatland pools and their influence on carbon budgets at the ecosystem and global scale. Continuously operated automated equipment and monthly manual measurements were used to describe the CO2 and CH4 dynamics in boreal ombrotrophic peatland pools and porewater (Québec, Canada) over the growing seasons 2019 and 2020. The peat porewater stable carbon isotope ratios (δ13C) for both CO2 (median δ13C-CO2: −3.8‰) and CH4 (median δ13C-CH4: −64.30‰) suggested that hydrogenotrophic methanogenesis was the predominant degradation pathway in peat. Open-water pools were supersaturated in CO2 and CH4 and received most of these dissolved carbon greenhouse gases (C-GHG) from peat porewater input. Throughout the growing season, higher CO2 concentrations and fluxes in pools were measured when the water table was low—suggesting a steady release of CO2 from deep peat porewater. Higher CH4 ebullition and diffusion occurred in August when bottom water and peat temperatures were the highest. While this study demonstrates that peatland pools are chimneys of CO2 and CH4 stored in peat, it also shows that the C-GHG concentrations and flux rates in peat pools are comparable to other aquatic systems of the same size. Although peatlands are often considered uniform entities, our study highlights their biogeochemical heterogeneity, which, if considered, substantially influences their net carbon balance with the atmosphere.
泥炭地储存的有机碳可用于分解并转移到邻近水体,最终会产生二氧化碳(CO2)和甲烷(CH4)排放。本研究的目的是阐明开放水域泥炭地池的生物地球化学功能及其对生态系统和全球尺度碳预算的影响。在2019年和2020年的生长季节,利用连续运行的自动化设备和每月的人工测量来描述北方互养泥炭地水池和孔隙水(加拿大魁北克省)的二氧化碳和甲烷动态。泥炭孔隙水中二氧化碳(δ13C-CO2 中位数:-3.8‰)和甲烷(δ13C-CH4 中位数:-64.30‰)的稳定碳同位素比(δ13C)表明,养氢型甲烷生成是泥炭中最主要的降解途径。开放水池中的 CO2 和 CH4 处于过饱和状态,这些溶解的碳温室气体(C-GHG)大部分来自泥炭孔隙水输入。在整个生长季节,当地下水位较低时,在水池中测量到的二氧化碳浓度和通量较高,这表明二氧化碳从深层泥炭孔隙水中稳定释放。八月份底层水和泥炭温度最高时,CH4逸出量和扩散量较高。这项研究表明泥炭地水池是泥炭中储存的二氧化碳和甲烷的烟囱,同时也表明泥炭水池中的碳-温室气体浓度和通量速率与其他相同大小的水生系统相当。虽然泥炭地通常被认为是统一的实体,但我们的研究突出了其生物地球化学异质性,如果考虑到这一点,则会对其与大气的净碳平衡产生重大影响。
{"title":"A Carbon Source in a Carbon Sink: Carbon Dioxide and Methane Dynamics in Open-Water Peatland Pools","authors":"Pierre Taillardat, Annika Linkhorst, Charles P. Deblois, Antonin Prijac, Laure Gandois, Alain Tremblay, Michelle Garneau","doi":"10.1029/2023GB007909","DOIUrl":"https://doi.org/10.1029/2023GB007909","url":null,"abstract":"<p>Peatlands store organic carbon available for decomposition and transfer to neighboring water bodies, which can ultimately generate carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) emissions. The objective of this study was to clarify the biogeochemical functioning of open-water peatland pools and their influence on carbon budgets at the ecosystem and global scale. Continuously operated automated equipment and monthly manual measurements were used to describe the CO<sub>2</sub> and CH<sub>4</sub> dynamics in boreal ombrotrophic peatland pools and porewater (Québec, Canada) over the growing seasons 2019 and 2020. The peat porewater stable carbon isotope ratios (δ<sup>13</sup>C) for both CO<sub>2</sub> (median δ<sup>13</sup>C-CO<sub>2</sub>: −3.8‰) and CH<sub>4</sub> (median δ<sup>13</sup>C-CH<sub>4</sub>: −64.30‰) suggested that hydrogenotrophic methanogenesis was the predominant degradation pathway in peat. Open-water pools were supersaturated in CO<sub>2</sub> and CH<sub>4</sub> and received most of these dissolved carbon greenhouse gases (C-GHG) from peat porewater input. Throughout the growing season, higher CO<sub>2</sub> concentrations and fluxes in pools were measured when the water table was low—suggesting a steady release of CO<sub>2</sub> from deep peat porewater. Higher CH<sub>4</sub> ebullition and diffusion occurred in August when bottom water and peat temperatures were the highest. While this study demonstrates that peatland pools are chimneys of CO<sub>2</sub> and CH<sub>4</sub> stored in peat, it also shows that the C-GHG concentrations and flux rates in peat pools are comparable to other aquatic systems of the same size. Although peatlands are often considered uniform entities, our study highlights their biogeochemical heterogeneity, which, if considered, substantially influences their net carbon balance with the atmosphere.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007909","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Paradis, Markus Diesing, Hannah Gies, Negar Haghipour, Lena Narman, Clayton Magill, Thomas Wagner, Valier V. Galy, Pengfei Hou, Meixun Zhao, Jung-Hyun Kim, Kyung-Hoon Shin, Baozhi Lin, Zhifei Liu, Martin G. Wiesner, Karl Stattegger, Jianfang Chen, Jingjing Zhang, Timothy I. Eglinton
As major sites of carbon burial and remineralization, continental margins are key components of the global carbon cycle. However, heterogeneous sources of organic matter (OM) and depositional environments lead to complex spatial patterns in sedimentary organic carbon (OC) content and composition. To better constrain the processes that control OM cycling, we focus on the East Asian marginal seas as a model system, where we compiled extensive data on the OC content, bulk isotopic composition (δ13C and Δ14C), total nitrogen, and mineral surface area of surficial sediments from previous studies and new measurements. We developed a spatial machine learning modeling framework to predict the spatial distribution of these parameters and identify regions where sediments with similar geochemical signatures drape the seafloor (i.e., “isodrapes”). We demonstrate that both provenance (44%–77%) and hydrodynamic processes (22%–53%) govern the fate of OM in this margin. Hydrodynamic processes can either promote the degradation of OM in mobile mud-belts or preserve it in stable mud-deposits. The distinct isotopic composition of OC sources from marine productivity and individual rivers regulates the age and reactivity of OM deposited on the sea-floor. The East Asian marginal seas can be separated into three main isodrapes: hydrodynamically energetic shelves with coarser-grained sediment depleted in OC, OM-enriched mud deposits, and a deep basin with fine-grained sediments and aged OC affected by long oxygen exposure times and petrogenic input from rivers. This study confirms that both hydrodynamic processes and provenance should be accounted for to understand the fate of OC in continental margins.
作为碳埋藏和再矿化的主要场所,大陆边缘是全球碳循环的关键组成部分。然而,有机质(OM)的不同来源和沉积环境导致了沉积有机碳(OC)含量和组成的复杂空间模式。为了更好地制约控制 OM 循环的过程,我们将东亚边缘海作为一个模型系统,通过以往的研究和新的测量,汇编了有关表层沉积物的 OC 含量、体同位素组成(δ13C 和 δ14C)、总氮和矿物表面积的大量数据。我们开发了一个空间机器学习建模框架来预测这些参数的空间分布,并确定具有相似地球化学特征的沉积物在海底的分布区域(即 "等垂线")。我们证明,在这一边缘地带,来源(44%-77%)和流体动力学过程(22%-53%)都控制着 OM 的命运。水动力过程既可以促进移动泥带中 OM 的降解,也可以将其保存在稳定的泥沉积物中。海洋生产力和各条河流所产生的 OC 源的不同同位素组成调节着沉积在海底的 OM 的年龄和反应活性。东亚边缘海可分为三个主要等距层:具有水动力活力的陆架,其沉积物粒度较粗,OC 含量贫乏;富含 OM 的泥质沉积;深海盆地,其沉积物粒度较细,OC 受长氧暴露时间和河流岩石化输入的影响而老化。这项研究证实,要了解大陆边缘 OC 的命运,必须考虑水动力过程和来源。
{"title":"Unraveling Environmental Forces Shaping Surface Sediment Geochemical “Isodrapes” in the East Asian Marginal Seas","authors":"Sarah Paradis, Markus Diesing, Hannah Gies, Negar Haghipour, Lena Narman, Clayton Magill, Thomas Wagner, Valier V. Galy, Pengfei Hou, Meixun Zhao, Jung-Hyun Kim, Kyung-Hoon Shin, Baozhi Lin, Zhifei Liu, Martin G. Wiesner, Karl Stattegger, Jianfang Chen, Jingjing Zhang, Timothy I. Eglinton","doi":"10.1029/2023GB007839","DOIUrl":"https://doi.org/10.1029/2023GB007839","url":null,"abstract":"<p>As major sites of carbon burial and remineralization, continental margins are key components of the global carbon cycle. However, heterogeneous sources of organic matter (OM) and depositional environments lead to complex spatial patterns in sedimentary organic carbon (OC) content and composition. To better constrain the processes that control OM cycling, we focus on the East Asian marginal seas as a model system, where we compiled extensive data on the OC content, bulk isotopic composition (δ<sup>13</sup>C and Δ<sup>14</sup>C), total nitrogen, and mineral surface area of surficial sediments from previous studies and new measurements. We developed a spatial machine learning modeling framework to predict the spatial distribution of these parameters and identify regions where sediments with similar geochemical signatures drape the seafloor (i.e., <i>“isodrapes”</i>). We demonstrate that both provenance (44%–77%) and hydrodynamic processes (22%–53%) govern the fate of OM in this margin. Hydrodynamic processes can either promote the degradation of OM in mobile mud-belts or preserve it in stable mud-deposits. The distinct isotopic composition of OC sources from marine productivity and individual rivers regulates the age and reactivity of OM deposited on the sea-floor. The East Asian marginal seas can be separated into three main <i>isodrapes</i>: hydrodynamically energetic shelves with coarser-grained sediment depleted in OC, OM-enriched mud deposits, and a deep basin with fine-grained sediments and aged OC affected by long oxygen exposure times and petrogenic input from rivers. This study confirms that both hydrodynamic processes and provenance should be accounted for to understand the fate of OC in continental margins.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007839","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yolandi Ernst, Sally Archibald, Heiko Balzter, Frederic Chevallier, Philippe Ciais, Carlos Gonzalez Fischer, Benjamin Gaubert, Thomas Higginbottom, Steven Higgins, Shakirudeen Lawal, Fabrice Lacroix, Ronny Lauerwald, Mauro Lourenco, Carola Martens, Anteneh G. Mengistu, Lutz Merbold, Edward Mitchard, Mthokozisi Moyo, Hannah Nguyen, Michael O’Sullivan, Pedro Rodríguez-Veiga, Thais Rosan, Judith Rosentreter, Casey Ryan, Simon Scheiter, Stephen Sitch, Nicola Stevens, Torbern Tagesson, Hanqin Tian, Mengjia Wang, Joel S. Woon, Bo Zheng, Yong Zhou, Robert J. Scholes
As part of the REgional Carbon Cycle Assessment and Processes Phase 2 (RECCAP2) project, we developed a comprehensive African Greenhouse gases (GHG) budget covering 2000 to 2019 (RECCAP1 and RECCAP2 time periods), and assessed uncertainties and trends over time. We compared bottom-up process-based models, data-driven remotely sensed products, and national GHG inventories with top-down atmospheric inversions, accounting also for lateral fluxes. We incorporated emission estimates derived from novel methodologies for termites, herbivores, and fire, which are particularly important in Africa. We further constrained global woody biomass change products with high-quality regional observations. During the RECCAP2 period, Africa's carbon sink capacity is decreasing, with net ecosystem exchange switching from a small sink of −0.61 ± 0.58 PgC yr−1 in RECCAP1 to a small source in RECCAP2 at 0.16 (−0.52/1.36) PgC yr−1. Net CO2 emissions estimated from bottom-up approaches were 1.6 (−0.9/5.8) PgCO2 yr−1, net CH4 were 77 (56.4/93.9) TgCH4 yr−1 and net N2O were 2.9 (1.4/4.9) TgN2O yr−1. Top-down atmospheric inversions showed similar trends. Land Use Change emissions increased, representing one of the largest contributions at 1.7 (0.8/2.7) PgCO2eq yr−1 to the African GHG budget and almost similar to emissions from fossil fuels at 1.74 (1.53/1.96) PgCO2eq yr−1, which also increased from RECCAP1. Additionally, wildfire emissions decreased, while fuelwood burning increased. For most component fluxes, uncertainty is large, highlighting the need for increased efforts to address Africa-specific data gaps. However, for RECCAP2, we improved our overall understanding of many of the important components of the African GHG budget that will assist to inform climate policy and action.
{"title":"The African Regional Greenhouse Gases Budget (2010–2019)","authors":"Yolandi Ernst, Sally Archibald, Heiko Balzter, Frederic Chevallier, Philippe Ciais, Carlos Gonzalez Fischer, Benjamin Gaubert, Thomas Higginbottom, Steven Higgins, Shakirudeen Lawal, Fabrice Lacroix, Ronny Lauerwald, Mauro Lourenco, Carola Martens, Anteneh G. Mengistu, Lutz Merbold, Edward Mitchard, Mthokozisi Moyo, Hannah Nguyen, Michael O’Sullivan, Pedro Rodríguez-Veiga, Thais Rosan, Judith Rosentreter, Casey Ryan, Simon Scheiter, Stephen Sitch, Nicola Stevens, Torbern Tagesson, Hanqin Tian, Mengjia Wang, Joel S. Woon, Bo Zheng, Yong Zhou, Robert J. Scholes","doi":"10.1029/2023GB008016","DOIUrl":"https://doi.org/10.1029/2023GB008016","url":null,"abstract":"<p>As part of the REgional Carbon Cycle Assessment and Processes Phase 2 (RECCAP2) project, we developed a comprehensive African Greenhouse gases (GHG) budget covering 2000 to 2019 (RECCAP1 and RECCAP2 time periods), and assessed uncertainties and trends over time. We compared bottom-up process-based models, data-driven remotely sensed products, and national GHG inventories with top-down atmospheric inversions, accounting also for lateral fluxes. We incorporated emission estimates derived from novel methodologies for termites, herbivores, and fire, which are particularly important in Africa. We further constrained global woody biomass change products with high-quality regional observations. During the RECCAP2 period, Africa's carbon sink capacity is decreasing, with net ecosystem exchange switching from a small sink of −0.61 ± 0.58 PgC yr<sup>−1</sup> in RECCAP1 to a small source in RECCAP2 at 0.16 (−0.52/1.36) PgC yr<sup>−1</sup>. Net CO<sub>2</sub> emissions estimated from bottom-up approaches were 1.6 (−0.9/5.8) PgCO<sub>2</sub> yr<sup>−1</sup>, net CH<sub>4</sub> were 77 (56.4/93.9) TgCH<sub>4</sub> yr<sup>−1</sup> and net N<sub>2</sub>O were 2.9 (1.4/4.9) TgN<sub>2</sub>O yr<sup>−1</sup>. Top-down atmospheric inversions showed similar trends. Land Use Change emissions increased, representing one of the largest contributions at 1.7 (0.8/2.7) PgCO<sub>2</sub>eq yr<sup>−1</sup> to the African GHG budget and almost similar to emissions from fossil fuels at 1.74 (1.53/1.96) PgCO<sub>2</sub>eq yr<sup>−1</sup>, which also increased from RECCAP1. Additionally, wildfire emissions decreased, while fuelwood burning increased. For most component fluxes, uncertainty is large, highlighting the need for increased efforts to address Africa-specific data gaps. However, for RECCAP2, we improved our overall understanding of many of the important components of the African GHG budget that will assist to inform climate policy and action.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB008016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Li, Genxu Wang, Shouqin Sun, Shan Lin, Peng Huang, Jinwang Xiao, Linmao Guo, Jinlong Li, Chunlin Song
Comprehensive seasonal observation is essential for accurately quantifying methane (CH4) emissions from ponds and lakes in permafrost regions. Although CH4 emissions during ice thaw are important and highly variable in high-latitude freshwater ponds and lakes (north of ∼50°N), their contribution is seldom included in estimates of aquatic-atmospheric CH4 exchange across different alpine ecosystems. Here, we characterized annual CH4 emissions, including emissions during ice thaw, from ponds and lakes across four alpine vegetation zones in the Qinghai-Tibet Plateau (QTP) permafrost region. We observed significant spatial variability in annual CH4 emission rates (8.44−421.05 mmol m−2 yr−1), CH4 emission rates during ice thaw (0.26−144.39 mmol m−2 yr−1), and the contribution of CH4 emissions during ice thaw to annual emissions (3−33%) across different vegetation zones. Dissolved oxygen concentration under ice, along with substrate availability and water salinity, played critical roles in influencing CH4 flux during ice thaw. We estimated annual CH4 emissions from ponds and lakes in the QTP permafrost region as 0.04 (0.03−0.05) Tg CH4 yr−1 (median (first quartile−third quartile)), with approximately 20% occurring during ice thaw. Notably, the average areal CH4 emission rate from ponds and lakes in the QTP permafrost region amounts to only 8% of that from high-latitude waterbodies, primarily due to the dominance of large saline lakes with lower CH4 emission rates in the alpine permafrost region. Our findings emphasize the significance of incorporating comprehensive seasonal observation of CH4 emissions across different vegetation zones in better predicting CH4 emissions from alpine ponds and lakes.
{"title":"Methane Emissions From the Qinghai-Tibet Plateau Ponds and Lakes: Roles of Ice Thaw and Vegetation Zone","authors":"Yang Li, Genxu Wang, Shouqin Sun, Shan Lin, Peng Huang, Jinwang Xiao, Linmao Guo, Jinlong Li, Chunlin Song","doi":"10.1029/2024GB008106","DOIUrl":"https://doi.org/10.1029/2024GB008106","url":null,"abstract":"<p>Comprehensive seasonal observation is essential for accurately quantifying methane (CH<sub>4</sub>) emissions from ponds and lakes in permafrost regions. Although CH<sub>4</sub> emissions during ice thaw are important and highly variable in high-latitude freshwater ponds and lakes (north of ∼50°N), their contribution is seldom included in estimates of aquatic-atmospheric CH<sub>4</sub> exchange across different alpine ecosystems. Here, we characterized annual CH<sub>4</sub> emissions, including emissions during ice thaw, from ponds and lakes across four alpine vegetation zones in the Qinghai-Tibet Plateau (QTP) permafrost region. We observed significant spatial variability in annual CH<sub>4</sub> emission rates (8.44−421.05 mmol m<sup>−2</sup> yr<sup>−1</sup>), CH<sub>4</sub> emission rates during ice thaw (0.26−144.39 mmol m<sup>−2</sup> yr<sup>−1</sup>), and the contribution of CH<sub>4</sub> emissions during ice thaw to annual emissions (3−33%) across different vegetation zones. Dissolved oxygen concentration under ice, along with substrate availability and water salinity, played critical roles in influencing CH<sub>4</sub> flux during ice thaw. We estimated annual CH<sub>4</sub> emissions from ponds and lakes in the QTP permafrost region as 0.04 (0.03−0.05) Tg CH<sub>4</sub> yr<sup>−1</sup> (median (first quartile−third quartile)), with approximately 20% occurring during ice thaw. Notably, the average areal CH<sub>4</sub> emission rate from ponds and lakes in the QTP permafrost region amounts to only 8% of that from high-latitude waterbodies, primarily due to the dominance of large saline lakes with lower CH<sub>4</sub> emission rates in the alpine permafrost region. Our findings emphasize the significance of incorporating comprehensive seasonal observation of CH<sub>4</sub> emissions across different vegetation zones in better predicting CH<sub>4</sub> emissions from alpine ponds and lakes.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Justine Ramage, McKenzie Kuhn, Anna-Maria Virkkala, Carolina Voigt, Maija E. Marushchak, Ana Bastos, Christina Biasi, Josep G. Canadell, Philippe Ciais, Efrèn López-Blanco, Susan M. Natali, David Olefeldt, Stefano Potter, Benjamin Poulter, Brendan M. Rogers, Edward A. G. Schuur, Claire Treat, Merritt R. Turetsky, Jennifer Watts, Gustaf Hugelius
The northern permafrost region has been projected to shift from a net sink to a net source of carbon under global warming. However, estimates of the contemporary net greenhouse gas (GHG) balance and budgets of the permafrost region remain highly uncertain. Here, we construct the first comprehensive bottom-up budgets of CO2, CH4, and N2O across the terrestrial permafrost region using databases of more than 1000 in situ flux measurements and a land cover-based ecosystem flux upscaling approach for the period 2000–2020. Estimates indicate that the permafrost region emitted a mean annual flux of 12 (−606, 661) Tg CO2–C yr−1, 38 (22, 53) Tg CH4–C yr−1, and 0.67 (0.07, 1.3) Tg N2O–N yr−1 to the atmosphere throughout the period. Thus, the region was a net source of CH4 and N2O, while the CO2 balance was near neutral within its large uncertainties. Undisturbed terrestrial ecosystems had a CO2 sink of −340 (−836, 156) Tg CO2–C yr−1. Vertical emissions from fire disturbances and inland waters largely offset the sink in vegetated ecosystems. When including lateral fluxes for a complete GHG budget, the permafrost region was a net source of C and N, releasing 144 (−506, 826) Tg C yr−1 and 3 (2, 5) Tg N yr−1. Large uncertainty ranges in these estimates point to a need for further expansion of monitoring networks, continued data synthesis efforts, and better integration of field observations, remote sensing data, and ecosystem models to constrain the contemporary net GHG budgets of the permafrost region and track their future trajectory.
{"title":"The Net GHG Balance and Budget of the Permafrost Region (2000–2020) From Ecosystem Flux Upscaling","authors":"Justine Ramage, McKenzie Kuhn, Anna-Maria Virkkala, Carolina Voigt, Maija E. Marushchak, Ana Bastos, Christina Biasi, Josep G. Canadell, Philippe Ciais, Efrèn López-Blanco, Susan M. Natali, David Olefeldt, Stefano Potter, Benjamin Poulter, Brendan M. Rogers, Edward A. G. Schuur, Claire Treat, Merritt R. Turetsky, Jennifer Watts, Gustaf Hugelius","doi":"10.1029/2023GB007953","DOIUrl":"https://doi.org/10.1029/2023GB007953","url":null,"abstract":"<p>The northern permafrost region has been projected to shift from a net sink to a net source of carbon under global warming. However, estimates of the contemporary net greenhouse gas (GHG) balance and budgets of the permafrost region remain highly uncertain. Here, we construct the first comprehensive bottom-up budgets of CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O across the terrestrial permafrost region using databases of more than 1000 in situ flux measurements and a land cover-based ecosystem flux upscaling approach for the period 2000–2020. Estimates indicate that the permafrost region emitted a mean annual flux of 12 (−606, 661) Tg CO<sub>2</sub>–C yr<sup>−1</sup>, 38 (22, 53) Tg CH<sub>4</sub>–C yr<sup>−1</sup>, and 0.67 (0.07, 1.3) Tg N<sub>2</sub>O–N yr<sup>−1</sup> to the atmosphere throughout the period. Thus, the region was a net source of CH<sub>4</sub> and N<sub>2</sub>O, while the CO<sub>2</sub> balance was near neutral within its large uncertainties. Undisturbed terrestrial ecosystems had a CO<sub>2</sub> sink of −340 (−836, 156) Tg CO<sub>2</sub>–C yr<sup>−1</sup>. Vertical emissions from fire disturbances and inland waters largely offset the sink in vegetated ecosystems. When including lateral fluxes for a complete GHG budget, the permafrost region was a net source of C and N, releasing 144 (−506, 826) Tg C yr<sup>−1</sup> and 3 (2, 5) Tg N yr<sup>−1</sup>. Large uncertainty ranges in these estimates point to a need for further expansion of monitoring networks, continued data synthesis efforts, and better integration of field observations, remote sensing data, and ecosystem models to constrain the contemporary net GHG budgets of the permafrost region and track their future trajectory.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007953","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael R. Stukel, Moira Décima, Thomas B. Kelly, Michael R. Landry, Scott D. Nodder, Mark D. Ohman, Karen E. Selph, Natalia Yingling
Photosynthesis in the surface ocean and subsequent export of a fraction of this fixed carbon leads to carbon dioxide sequestration in the deep ocean. Ecological relationships among plankton functional groups and theoretical relationships between particle size and sinking rate suggest that carbon export from the euphotic zone is more efficient when communities are dominated by large organisms. However, this hypothesis has never been tested against measured size spectra spanning the >5 orders of magnitude found in plankton communities. Using data from five ocean regions (California Current Ecosystem, North Pacific subtropical gyre, Costa Rica Dome, Gulf of Mexico, and Southern Ocean subtropical front), we quantified carbon-based plankton size spectra from heterotrophic bacteria to metazoan zooplankton (size class cutoffs varied slightly between regions) and their relationship to net primary production and sinking particle flux. Slopes of the normalized biomass size spectra (NBSS) varied from −1.6 to −1.2 (median slope of −1.4 equates to large 1–10 mm organisms having a biomass equal to only 7.6% of the biomass in small 1–10 μm organisms). Net primary production was positively correlated with the NBSS slope, with a particularly strong relationship in the microbial portion of the size spectra. While organic carbon export co-varied with NBSS slope, we found only weak evidence that export efficiency is related to plankton community size spectra. Multi-variate statistical analysis suggested that properties of the NBSS added no explanatory power over chlorophyll, primary production, and temperature. Rather, the results suggest that both plankton size spectra and carbon export increase with increasing system productivity.
{"title":"Relationships Between Plankton Size Spectra, Net Primary Production, and the Biological Carbon Pump","authors":"Michael R. Stukel, Moira Décima, Thomas B. Kelly, Michael R. Landry, Scott D. Nodder, Mark D. Ohman, Karen E. Selph, Natalia Yingling","doi":"10.1029/2023GB007994","DOIUrl":"https://doi.org/10.1029/2023GB007994","url":null,"abstract":"<p>Photosynthesis in the surface ocean and subsequent export of a fraction of this fixed carbon leads to carbon dioxide sequestration in the deep ocean. Ecological relationships among plankton functional groups and theoretical relationships between particle size and sinking rate suggest that carbon export from the euphotic zone is more efficient when communities are dominated by large organisms. However, this hypothesis has never been tested against measured size spectra spanning the >5 orders of magnitude found in plankton communities. Using data from five ocean regions (California Current Ecosystem, North Pacific subtropical gyre, Costa Rica Dome, Gulf of Mexico, and Southern Ocean subtropical front), we quantified carbon-based plankton size spectra from heterotrophic bacteria to metazoan zooplankton (size class cutoffs varied slightly between regions) and their relationship to net primary production and sinking particle flux. Slopes of the normalized biomass size spectra (NBSS) varied from −1.6 to −1.2 (median slope of −1.4 equates to large 1–10 mm organisms having a biomass equal to only 7.6% of the biomass in small 1–10 μm organisms). Net primary production was positively correlated with the NBSS slope, with a particularly strong relationship in the microbial portion of the size spectra. While organic carbon export co-varied with NBSS slope, we found only weak evidence that export efficiency is related to plankton community size spectra. Multi-variate statistical analysis suggested that properties of the NBSS added no explanatory power over chlorophyll, primary production, and temperature. Rather, the results suggest that both plankton size spectra and carbon export increase with increasing system productivity.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 4","pages":""},"PeriodicalIF":5.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140333213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}