Hai Chi, Linxia Sun, Na Li, Yue Zhan, Jinqu Guo, Lei Lei, David M Irwin, Guang Yang, Shixia Xu, Yang Liu
Dichromatic color vision is mediated by two cone visual pigments in many eutherian mammals. After reentry into the sea, early cetaceans lost their violet-sensitive visual pigment (short wavelength-sensitive 1) independently in the baleen and toothed whale ancestors and thus obtained only monochromatic cone vision. Subsequently, losses of the middle/long wavelength-sensitive (M/LWS) pigment have also been reported in multiple whale lineages, leading to rhodopsin (RH1)-mediated rod monochromatic vision. To further elucidate the phenotypic evolution of whale visual pigments, we assessed the spectral tuning of both M/LWS and RH1 from representative cetacean taxa. Interestingly, although the coding sequences for M/LWS are intact in both the pygmy right whale and the Baird's beaked whale, no spectral sensitivity was detected in vitro. Pseudogenization of other cone vision-related genes is observed in the pygmy right whale, suggesting a loss of cone-mediated vision. After ancestral sequence reconstructions, ancient M/LWS pigments from cetacean ancestors were resurrected and functionally measured. Spectral tuning of M/LWS from the baleen whale ancestor shows that it is green sensitive, with a 40-nm shift in sensitivity to a shorter wavelength. For the ancestor of sperm whales, although no spectral sensitivity could be recorded for its M/LWS pigment, a substantial sensitivity shift (20 to 30 nm) to a shorter wavelength may have also occurred before its functional inactivation. The parallel phenotypic evolution of M/LWS to shorter wavelength sensitivity might be visual adaptations in whales allowing more frequent deep-sea activities, although additional ecological differentiations may have led to their subsequent losses.
{"title":"Parallel Spectral Tuning of a Cone Visual Pigment Provides Evidence for Ancient Deep-Sea Adaptations in Cetaceans.","authors":"Hai Chi, Linxia Sun, Na Li, Yue Zhan, Jinqu Guo, Lei Lei, David M Irwin, Guang Yang, Shixia Xu, Yang Liu","doi":"10.1093/gbe/evae223","DOIUrl":"10.1093/gbe/evae223","url":null,"abstract":"<p><p>Dichromatic color vision is mediated by two cone visual pigments in many eutherian mammals. After reentry into the sea, early cetaceans lost their violet-sensitive visual pigment (short wavelength-sensitive 1) independently in the baleen and toothed whale ancestors and thus obtained only monochromatic cone vision. Subsequently, losses of the middle/long wavelength-sensitive (M/LWS) pigment have also been reported in multiple whale lineages, leading to rhodopsin (RH1)-mediated rod monochromatic vision. To further elucidate the phenotypic evolution of whale visual pigments, we assessed the spectral tuning of both M/LWS and RH1 from representative cetacean taxa. Interestingly, although the coding sequences for M/LWS are intact in both the pygmy right whale and the Baird's beaked whale, no spectral sensitivity was detected in vitro. Pseudogenization of other cone vision-related genes is observed in the pygmy right whale, suggesting a loss of cone-mediated vision. After ancestral sequence reconstructions, ancient M/LWS pigments from cetacean ancestors were resurrected and functionally measured. Spectral tuning of M/LWS from the baleen whale ancestor shows that it is green sensitive, with a 40-nm shift in sensitivity to a shorter wavelength. For the ancestor of sperm whales, although no spectral sensitivity could be recorded for its M/LWS pigment, a substantial sensitivity shift (20 to 30 nm) to a shorter wavelength may have also occurred before its functional inactivation. The parallel phenotypic evolution of M/LWS to shorter wavelength sensitivity might be visual adaptations in whales allowing more frequent deep-sea activities, although additional ecological differentiations may have led to their subsequent losses.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503649/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan-Hui Xu, Fang Suo, Xiao-Ran Zhang, Tong-Yang Du, Yu Hua, Guo-Song Jia, Jin-Xin Zheng, Li-Lin Du
Killer meiotic drivers are a class of selfish genetic elements that bias inheritance in their favor by destroying meiotic progeny that do not carry them. How killer meiotic drivers evolve is not well understood. In the fission yeast, Schizosaccharomyces pombe, the largest gene family, known as the wtf genes, is a killer meiotic driver family that causes intraspecific hybrid sterility. Here, we investigate how wtf genes evolve using long-read-based genome assemblies of 31 distinct S. pombe natural isolates, which encompass the known genetic diversity of S. pombe. Our analysis, involving nearly 1,000 wtf genes in these isolates, yields a comprehensive portrayal of the intraspecific diversity of wtf genes. Leveraging single-nucleotide polymorphisms in adjacent unique sequences, we pinpoint wtf gene-containing loci that have recently undergone gene conversion events and infer their ancestral state. These events include the revival of wtf pseudogenes, lending support to the notion that gene conversion plays a role in preserving this gene family from extinction. Moreover, our investigation reveals that solo long terminal repeats of retrotransposons, frequently found near wtf genes, can act as recombination arms, influencing the upstream regulatory sequences of wtf genes. Additionally, our exploration of the outer boundaries of wtf genes uncovers a previously unrecognized type of directly oriented repeats flanking wtf genes. These repeats may have facilitated the early expansion of the wtf gene family in S. pombe. Our findings enhance the understanding of the mechanisms influencing the evolution of this killer meiotic driver gene family.
{"title":"Evolutionary Modes of wtf Meiotic Driver Genes in Schizosaccharomyces pombe.","authors":"Yan-Hui Xu, Fang Suo, Xiao-Ran Zhang, Tong-Yang Du, Yu Hua, Guo-Song Jia, Jin-Xin Zheng, Li-Lin Du","doi":"10.1093/gbe/evae221","DOIUrl":"10.1093/gbe/evae221","url":null,"abstract":"<p><p>Killer meiotic drivers are a class of selfish genetic elements that bias inheritance in their favor by destroying meiotic progeny that do not carry them. How killer meiotic drivers evolve is not well understood. In the fission yeast, Schizosaccharomyces pombe, the largest gene family, known as the wtf genes, is a killer meiotic driver family that causes intraspecific hybrid sterility. Here, we investigate how wtf genes evolve using long-read-based genome assemblies of 31 distinct S. pombe natural isolates, which encompass the known genetic diversity of S. pombe. Our analysis, involving nearly 1,000 wtf genes in these isolates, yields a comprehensive portrayal of the intraspecific diversity of wtf genes. Leveraging single-nucleotide polymorphisms in adjacent unique sequences, we pinpoint wtf gene-containing loci that have recently undergone gene conversion events and infer their ancestral state. These events include the revival of wtf pseudogenes, lending support to the notion that gene conversion plays a role in preserving this gene family from extinction. Moreover, our investigation reveals that solo long terminal repeats of retrotransposons, frequently found near wtf genes, can act as recombination arms, influencing the upstream regulatory sequences of wtf genes. Additionally, our exploration of the outer boundaries of wtf genes uncovers a previously unrecognized type of directly oriented repeats flanking wtf genes. These repeats may have facilitated the early expansion of the wtf gene family in S. pombe. Our findings enhance the understanding of the mechanisms influencing the evolution of this killer meiotic driver gene family.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497594/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziyuan Dai, Haoning Wang, Juan Xu, Xiang Lu, Ping Ni, Shixing Yang, Quan Shen, Xiaochun Wang, Wang Li, Xiaolong Wang, Chenglin Zhou, Wen Zhang, Tongling Shan
Amid global health concerns and the constant threat of zoonotic diseases, this study delves into the diversity of circular replicase-encoding single-stranded DNA (CRESS-DNA) viruses within Chinese wild bird populations. Employing viral metagenomics to tackle the challenge of "viral dark matter," the research collected and analyzed 3,404 cloacal swab specimens across 26 bird families. Metagenomic analysis uncovered a rich viral landscape, with 67.48% of reads classified as viral dark matter, spanning multiple taxonomic levels. Notably, certain viral families exhibited host-specific abundance patterns, with Galliformes displaying the highest diversity. Diversity analysis categorized samples into distinct groups, revealing significant differences in viral community structure, particularly noting higher diversity in terrestrial birds compared to songbirds and unique diversity in migratory birds versus perching birds. The identification of ten novel Circoviridae viruses, seven Smacoviridae viruses, and 167 Genomoviridae viruses, along with 100 unclassified CRESS-DNA viruses, underscores the expansion of knowledge on avian-associated circular DNA viruses. Phylogenetic and structural analyses of Rep proteins offered insights into evolutionary relationships and potential functional variations among CRESS-DNA viruses. In conclusion, this study significantly enhances our understanding of the avian virome, shedding light on the intricate relationships between viral communities and host characteristics in Chinese wild bird populations. The diverse array of CRESS-DNA viruses discovered opens avenues for future research into viral evolution, spread factors, and potential ecosystem impacts.
{"title":"Unveiling the Virome of Wild Birds: Exploring CRESS-DNA Viral Dark Matter.","authors":"Ziyuan Dai, Haoning Wang, Juan Xu, Xiang Lu, Ping Ni, Shixing Yang, Quan Shen, Xiaochun Wang, Wang Li, Xiaolong Wang, Chenglin Zhou, Wen Zhang, Tongling Shan","doi":"10.1093/gbe/evae206","DOIUrl":"10.1093/gbe/evae206","url":null,"abstract":"<p><p>Amid global health concerns and the constant threat of zoonotic diseases, this study delves into the diversity of circular replicase-encoding single-stranded DNA (CRESS-DNA) viruses within Chinese wild bird populations. Employing viral metagenomics to tackle the challenge of \"viral dark matter,\" the research collected and analyzed 3,404 cloacal swab specimens across 26 bird families. Metagenomic analysis uncovered a rich viral landscape, with 67.48% of reads classified as viral dark matter, spanning multiple taxonomic levels. Notably, certain viral families exhibited host-specific abundance patterns, with Galliformes displaying the highest diversity. Diversity analysis categorized samples into distinct groups, revealing significant differences in viral community structure, particularly noting higher diversity in terrestrial birds compared to songbirds and unique diversity in migratory birds versus perching birds. The identification of ten novel Circoviridae viruses, seven Smacoviridae viruses, and 167 Genomoviridae viruses, along with 100 unclassified CRESS-DNA viruses, underscores the expansion of knowledge on avian-associated circular DNA viruses. Phylogenetic and structural analyses of Rep proteins offered insights into evolutionary relationships and potential functional variations among CRESS-DNA viruses. In conclusion, this study significantly enhances our understanding of the avian virome, shedding light on the intricate relationships between viral communities and host characteristics in Chinese wild bird populations. The diverse array of CRESS-DNA viruses discovered opens avenues for future research into viral evolution, spread factors, and potential ecosystem impacts.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463337/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rosa Celia Poquita-Du, Jürgen Otte, Anjuli Calchera, Imke Schmitt
The green algal genus Trebouxia is the most frequently encountered photobiont of the lichen symbiosis. The single-celled symbionts have a worldwide distribution, including all continents and climate zones. The vast, largely undescribed, diversity of Trebouxia lineages is currently grouped into four phylogenetic clades (A, C, I, and S), based on a multilocus phylogeny. Genomes are still scarce, however, and it is unclear how the phylogenetic diversity, the broad ecological tolerances, and the ability to form symbioses with many different fungal host species are reflected in genome-wide differences. Here, we generated PacBio-based de novo genomes of six Trebouxia lineages belonging to the Clades A and S, isolated from lichen individuals of the genus Umbilicaria. Sequences belonging to Clade S have been reported in a previous study, but were reassembled and reanalyzed here. Genome sizes ranged between 63.08 and 73.88 Mb. Repeat content accounted for 9% to 16% of the genome sequences. Based on RNA evidence, we predicted 14,109 to 16,701 gene models per genome, of which 5,203 belonged to a core set of gene families shared by all 6 lineages. Between 121 and 454, gene families are specific to each lineage. About 53% of the genes could be functionally annotated. The presence of biosynthetic gene clusters (6 to 17 per genome) suggests that Trebouxia algae are able to synthesize alkaloids, saccharides, terpenes, NRPSs, and T3PKSs. Phylogenomic comparisons of the six strains indicate prevalent gene gain during Trebouxia evolution. Some of the gene families that exhibited significant evolutionary changes (i.e. gene expansion and contraction) are associated with metabolic processes linked to protein phosphorylation, which is known to have a role in photosynthesis regulation, particularly under changing light conditions. Overall, there is substantial genomic divergence within the algal genus Trebouxia, which may contribute to the genus' large ecological amplitude concerning fungal host diversity and climatic niches.
{"title":"Genome-Wide Comparisons Reveal Extensive Divergence Within the Lichen Photobiont Genus, Trebouxia.","authors":"Rosa Celia Poquita-Du, Jürgen Otte, Anjuli Calchera, Imke Schmitt","doi":"10.1093/gbe/evae219","DOIUrl":"10.1093/gbe/evae219","url":null,"abstract":"<p><p>The green algal genus Trebouxia is the most frequently encountered photobiont of the lichen symbiosis. The single-celled symbionts have a worldwide distribution, including all continents and climate zones. The vast, largely undescribed, diversity of Trebouxia lineages is currently grouped into four phylogenetic clades (A, C, I, and S), based on a multilocus phylogeny. Genomes are still scarce, however, and it is unclear how the phylogenetic diversity, the broad ecological tolerances, and the ability to form symbioses with many different fungal host species are reflected in genome-wide differences. Here, we generated PacBio-based de novo genomes of six Trebouxia lineages belonging to the Clades A and S, isolated from lichen individuals of the genus Umbilicaria. Sequences belonging to Clade S have been reported in a previous study, but were reassembled and reanalyzed here. Genome sizes ranged between 63.08 and 73.88 Mb. Repeat content accounted for 9% to 16% of the genome sequences. Based on RNA evidence, we predicted 14,109 to 16,701 gene models per genome, of which 5,203 belonged to a core set of gene families shared by all 6 lineages. Between 121 and 454, gene families are specific to each lineage. About 53% of the genes could be functionally annotated. The presence of biosynthetic gene clusters (6 to 17 per genome) suggests that Trebouxia algae are able to synthesize alkaloids, saccharides, terpenes, NRPSs, and T3PKSs. Phylogenomic comparisons of the six strains indicate prevalent gene gain during Trebouxia evolution. Some of the gene families that exhibited significant evolutionary changes (i.e. gene expansion and contraction) are associated with metabolic processes linked to protein phosphorylation, which is known to have a role in photosynthesis regulation, particularly under changing light conditions. Overall, there is substantial genomic divergence within the algal genus Trebouxia, which may contribute to the genus' large ecological amplitude concerning fungal host diversity and climatic niches.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"16 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523091/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna Orteu, Shane A McCarthy, Emily A Hornett, Matthew R Gemmell, Louise A Reynolds, Ian A Warren, Ian J Gordon, Gregory D D Hurst, Richard Durbin, Simon H Martin, Chris D Jiggins
Moths and butterflies (Lepidoptera) have a heterogametic sex chromosome system with females carrying ZW chromosomes and males ZZ. The lack of W chromosomes in early-diverging lepidopteran lineages has led to the suggestion of an ancestral Z0 system in this clade and a B chromosome origin of the W. This contrasts with the canonical model of W chromosome evolution in which the W would have originated from the same homologous autosomal pair as the Z chromosome. Despite the distinct models proposed, the rapid evolution of the W chromosome has hindered the elucidation of its origin. Here, we present high-quality, chromosome-level genome assemblies of 2 Hypolimnas species (Hypolimnas misippus and Hypolimnas bolina) and use the H. misippus assembly to explore the evolution of W chromosomes in butterflies and moths. We show that in H. misippus, the W chromosome has higher similarity to the Z chromosome than any other chromosome, which could suggest a possible origin from the same homologous autosome pair as the Z chromosome. However, using genome assemblies of closely related species (ditrysian lineages) containing assembled W chromosomes, we present contrasting evidence suggesting that the W chromosome might have evolved from a B chromosome instead. Crucially, by using a synteny analysis to infer homology, we show that W chromosomes are likely to share a common evolutionary origin in Lepidoptera. This study highlights the difficulty of studying the evolution of W chromosomes and contributes to better understanding its evolutionary origins.
飞蛾和蝴蝶(鳞翅目)具有异源性染色体系统,雌性携带 ZW 染色体,雄性携带 ZZ 染色体。这与 W 染色体进化的典型模式不同,后者认为 W 染色体起源于与 Z 染色体相同的同源常染色体对。尽管提出了不同的模式,但 W 染色体的快速进化阻碍了对其起源的阐明。在本文中,我们展示了 2 个蝶类物种(Hypolimnas misippus 和 Hypolimnas bolina)的高质量染色体组水平的基因组组装,并利用 H. misippus 的组装探讨了 W 染色体在蝴蝶和蛾类中的进化。我们的研究表明,在 H. misippus 中,W 染色体与 Z 染色体的相似度高于其他任何染色体,这表明 W 染色体可能起源于与 Z 染色体相同的同源自体对。然而,我们利用含有已组装好的 W 染色体的近缘物种(双子叶植物系)的基因组组装,提出了相反的证据,表明 W 染色体可能是由 B 染色体进化而来的。重要的是,通过使用同源分析来推断同源性,我们表明 W 染色体很可能与鳞翅目昆虫有着共同的进化起源。这项研究凸显了研究 W 染色体进化的难度,有助于更好地了解其进化起源。
{"title":"The Hypolimnas misippus Genome Supports a Common Origin of the W Chromosome in Lepidoptera.","authors":"Anna Orteu, Shane A McCarthy, Emily A Hornett, Matthew R Gemmell, Louise A Reynolds, Ian A Warren, Ian J Gordon, Gregory D D Hurst, Richard Durbin, Simon H Martin, Chris D Jiggins","doi":"10.1093/gbe/evae215","DOIUrl":"10.1093/gbe/evae215","url":null,"abstract":"<p><p>Moths and butterflies (Lepidoptera) have a heterogametic sex chromosome system with females carrying ZW chromosomes and males ZZ. The lack of W chromosomes in early-diverging lepidopteran lineages has led to the suggestion of an ancestral Z0 system in this clade and a B chromosome origin of the W. This contrasts with the canonical model of W chromosome evolution in which the W would have originated from the same homologous autosomal pair as the Z chromosome. Despite the distinct models proposed, the rapid evolution of the W chromosome has hindered the elucidation of its origin. Here, we present high-quality, chromosome-level genome assemblies of 2 Hypolimnas species (Hypolimnas misippus and Hypolimnas bolina) and use the H. misippus assembly to explore the evolution of W chromosomes in butterflies and moths. We show that in H. misippus, the W chromosome has higher similarity to the Z chromosome than any other chromosome, which could suggest a possible origin from the same homologous autosome pair as the Z chromosome. However, using genome assemblies of closely related species (ditrysian lineages) containing assembled W chromosomes, we present contrasting evidence suggesting that the W chromosome might have evolved from a B chromosome instead. Crucially, by using a synteny analysis to infer homology, we show that W chromosomes are likely to share a common evolutionary origin in Lepidoptera. This study highlights the difficulty of studying the evolution of W chromosomes and contributes to better understanding its evolutionary origins.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"16 10","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523094/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Felix Langschied, Nicola Bordin, Salvatore Cosentino, Diego Fuentes-Palacios, Natasha Glover, Michael Hiller, Yanhui Hu, Jaime Huerta-Cepas, Luis Pedro Coelho, Wataru Iwasaki, Sina Majidian, Saioa Manzano-Morales, Emma Persson, Thomas A Richards, Toni Gabaldón, Erik Sonnhammer, Paul D Thomas, Christophe Dessimoz, Ingo Ebersberger
The era of biodiversity genomics is characterized by large-scale genome sequencing efforts that aim to represent each living taxon with an assembled genome. Generating knowledge from this wealth of data has not kept up with this pace. We here discuss major challenges to integrating these novel genomes into a comprehensive functional and evolutionary network spanning the tree of life. In summary, the expanding datasets create a need for scalable gene annotation methods. To trace gene function across species, new methods must seek to increase the resolution of ortholog analyses, e.g. by extending analyses to the protein domain level and by accounting for alternative splicing. Additionally, the scope of orthology prediction should be pushed beyond well-investigated proteomes. This demands the development of specialized methods for the identification of orthologs to short proteins and noncoding RNAs and for the functional characterization of novel gene families. Furthermore, protein structures predicted by machine learning are now readily available, but this new information is yet to be integrated with orthology-based analyses. Finally, an increasing focus should be placed on making orthology assignments adhere to the findable, accessible, interoperable, and reusable (FAIR) principles. This fosters green bioinformatics by avoiding redundant computations and helps integrating diverse scientific communities sharing the need for comparative genetics and genomics information. It should also help with communicating orthology-related concepts in a format that is accessible to the public, to counteract existing misinformation about evolution.
{"title":"Quest for Orthologs in the Era of Biodiversity Genomics.","authors":"Felix Langschied, Nicola Bordin, Salvatore Cosentino, Diego Fuentes-Palacios, Natasha Glover, Michael Hiller, Yanhui Hu, Jaime Huerta-Cepas, Luis Pedro Coelho, Wataru Iwasaki, Sina Majidian, Saioa Manzano-Morales, Emma Persson, Thomas A Richards, Toni Gabaldón, Erik Sonnhammer, Paul D Thomas, Christophe Dessimoz, Ingo Ebersberger","doi":"10.1093/gbe/evae224","DOIUrl":"10.1093/gbe/evae224","url":null,"abstract":"<p><p>The era of biodiversity genomics is characterized by large-scale genome sequencing efforts that aim to represent each living taxon with an assembled genome. Generating knowledge from this wealth of data has not kept up with this pace. We here discuss major challenges to integrating these novel genomes into a comprehensive functional and evolutionary network spanning the tree of life. In summary, the expanding datasets create a need for scalable gene annotation methods. To trace gene function across species, new methods must seek to increase the resolution of ortholog analyses, e.g. by extending analyses to the protein domain level and by accounting for alternative splicing. Additionally, the scope of orthology prediction should be pushed beyond well-investigated proteomes. This demands the development of specialized methods for the identification of orthologs to short proteins and noncoding RNAs and for the functional characterization of novel gene families. Furthermore, protein structures predicted by machine learning are now readily available, but this new information is yet to be integrated with orthology-based analyses. Finally, an increasing focus should be placed on making orthology assignments adhere to the findable, accessible, interoperable, and reusable (FAIR) principles. This fosters green bioinformatics by avoiding redundant computations and helps integrating diverse scientific communities sharing the need for comparative genetics and genomics information. It should also help with communicating orthology-related concepts in a format that is accessible to the public, to counteract existing misinformation about evolution.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142463299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helen R Horkan, Nikolay Popgeorgiev, Michel Vervoort, Eve Gazave, Gabriel Krasovec
Apoptosis is the main form of regulated cell death in metazoans. Apoptotic pathways are well characterized in nematodes, flies, and mammals, leading to a vision of the conservation of apoptotic pathways in metazoans. However, we recently showed that intrinsic apoptosis is in fact divergent among metazoans. In addition, extrinsic apoptosis is poorly studied in non-mammalian animals, making its evolution unclear. Consequently, our understanding of apoptotic signaling pathways evolution is a black box which must be illuminated by extending research to new biological systems. Lophotrochozoans are a major clade of metazoans which, despite their considerable biological diversity and key phylogenetic position as sister group of ecdysozoans (i.e. flies and nematodes), are poorly explored, especially regarding apoptosis mechanisms. Traditionally, each apoptotic signaling pathway was considered to rely on a specific initiator caspase, associated with an activator. To shed light on apoptosis evolution in animals, we explored the evolutionary history of initiator caspases, caspase activators, and the BCL-2 family (which control mitochondrial apoptotic pathway) in lophotrochozoans using phylogenetic analysis and protein interaction predictions. We discovered a diversification of initiator caspases in molluscs, annelids, and brachiopods, and the loss of key extrinsic apoptosis components in platyhelminths, along with the emergence of a clade-specific caspase with an ankyrin pro-domain. Taken together, our data show a specific history of apoptotic actors' evolution in lophotrochozoans, further demonstrating the appearance of distinct apoptotic signaling pathways during metazoan evolution.
{"title":"Evolution of Apoptotic Signaling Pathways Within Lophotrochozoans.","authors":"Helen R Horkan, Nikolay Popgeorgiev, Michel Vervoort, Eve Gazave, Gabriel Krasovec","doi":"10.1093/gbe/evae204","DOIUrl":"10.1093/gbe/evae204","url":null,"abstract":"<p><p>Apoptosis is the main form of regulated cell death in metazoans. Apoptotic pathways are well characterized in nematodes, flies, and mammals, leading to a vision of the conservation of apoptotic pathways in metazoans. However, we recently showed that intrinsic apoptosis is in fact divergent among metazoans. In addition, extrinsic apoptosis is poorly studied in non-mammalian animals, making its evolution unclear. Consequently, our understanding of apoptotic signaling pathways evolution is a black box which must be illuminated by extending research to new biological systems. Lophotrochozoans are a major clade of metazoans which, despite their considerable biological diversity and key phylogenetic position as sister group of ecdysozoans (i.e. flies and nematodes), are poorly explored, especially regarding apoptosis mechanisms. Traditionally, each apoptotic signaling pathway was considered to rely on a specific initiator caspase, associated with an activator. To shed light on apoptosis evolution in animals, we explored the evolutionary history of initiator caspases, caspase activators, and the BCL-2 family (which control mitochondrial apoptotic pathway) in lophotrochozoans using phylogenetic analysis and protein interaction predictions. We discovered a diversification of initiator caspases in molluscs, annelids, and brachiopods, and the loss of key extrinsic apoptosis components in platyhelminths, along with the emergence of a clade-specific caspase with an ankyrin pro-domain. Taken together, our data show a specific history of apoptotic actors' evolution in lophotrochozoans, further demonstrating the appearance of distinct apoptotic signaling pathways during metazoan evolution.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gus Waneka, Braden Pate, J Grey Monroe, Daniel B Sloan
Intragenomic mutation rates can vary dramatically due to transcription-associated mutagenesis or transcription-coupled repair, which vary based on local epigenomic modifications that are nonuniformly distributed across genomes. One feature associated with decreased mutation is higher expression level, which depends on environmental cues. To understand the magnitude of expression-dependent mutation rate variation, we perturbed expression through a heat treatment in Arabidopsis thaliana. We quantified gene expression to identify differentially expressed genes, which we then targeted for mutation detection using duplex sequencing. This approach provided a highly accurate measurement of the frequency of rare somatic mutations in vegetative plant tissues, which has been a recent source of uncertainty. Somatic mutations in plants may be useful for understanding drivers of DNA damage and repair in the germline since plants experience late germline segregation and both somatic and germline cells share common repair machinery. We included mutant lines lacking mismatch repair (MMR) and base excision repair (BER) capabilities to understand how repair mechanisms may drive biased mutation accumulation. We found wild-type (WT) and BER mutant mutation frequencies to be very low (mean variant frequency 1.8 × 10-8 and 2.6 × 10-8, respectively), while MMR mutant frequencies were significantly elevated (1.13 × 10-6). Interestingly, in the MMR mutant lines, there was no difference in the somatic mutation frequencies between temperature treatments or between highly versus lowly expressed genes. The extremely low somatic variant frequencies in WT plants indicate that larger datasets will be needed to address fundamental evolutionary questions about whether environmental change leads to gene-specific changes in mutation rate.
{"title":"Exploring the Relationship Between Gene Expression and Low-Frequency Somatic Mutations in Arabidopsis with Duplex Sequencing.","authors":"Gus Waneka, Braden Pate, J Grey Monroe, Daniel B Sloan","doi":"10.1093/gbe/evae213","DOIUrl":"10.1093/gbe/evae213","url":null,"abstract":"<p><p>Intragenomic mutation rates can vary dramatically due to transcription-associated mutagenesis or transcription-coupled repair, which vary based on local epigenomic modifications that are nonuniformly distributed across genomes. One feature associated with decreased mutation is higher expression level, which depends on environmental cues. To understand the magnitude of expression-dependent mutation rate variation, we perturbed expression through a heat treatment in Arabidopsis thaliana. We quantified gene expression to identify differentially expressed genes, which we then targeted for mutation detection using duplex sequencing. This approach provided a highly accurate measurement of the frequency of rare somatic mutations in vegetative plant tissues, which has been a recent source of uncertainty. Somatic mutations in plants may be useful for understanding drivers of DNA damage and repair in the germline since plants experience late germline segregation and both somatic and germline cells share common repair machinery. We included mutant lines lacking mismatch repair (MMR) and base excision repair (BER) capabilities to understand how repair mechanisms may drive biased mutation accumulation. We found wild-type (WT) and BER mutant mutation frequencies to be very low (mean variant frequency 1.8 × 10-8 and 2.6 × 10-8, respectively), while MMR mutant frequencies were significantly elevated (1.13 × 10-6). Interestingly, in the MMR mutant lines, there was no difference in the somatic mutation frequencies between temperature treatments or between highly versus lowly expressed genes. The extremely low somatic variant frequencies in WT plants indicate that larger datasets will be needed to address fundamental evolutionary questions about whether environmental change leads to gene-specific changes in mutation rate.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489876/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philip C Bentz, John E Burrows, Sandra M Burrows, Eshchar Mizrachi, Zhengjie Liu, Jun-Bo Yang, Zichao Mao, Margot Popecki, Ole Seberg, Gitte Petersen, Jim Leebens-Mack
The genus Asparagus arose approximately 9–15 million years ago (Ma) and transitions from hermaphroditism to dioecy (separate sexes) occurred ∼3–4 Ma. Roughly 27% of extant Asparagus species are dioecious, while the remaining are bisexual with monoclinous flowers. As such, Asparagus is an ideal model taxon for studying early stages of dioecy and sex chromosome evolution in plants. Until now, however, understanding of diversification and shifts from hermaphroditism to dioecy in Asparagus has been hampered by the lack of robust species tree estimates for the genus. In this study, a genus-wide phylogenomic analysis including 1726 nuclear loci and comprehensive species sampling supports two independent origins of dioecy in Asparagus—first in a widely distributed Eurasian clade, then again in a clade restricted to the Mediterranean Basin. Modeling of ancestral biogeography indicates that both dioecy origins were associated with range expansion out of southern Africa. Our findings also revealed several bursts of diversification across the phylogeny, including an initial radiation in southern Africa that gave rise to 12 major clades in the genus, and more recent radiations that have resulted in paraphyly and polyphyly among closely related species, as expected given active speciation processes. Lastly, we report that the geographic origin of domesticated garden asparagus (Asparagus officinalis L.) was likely in western Asia near the Mediterranean Sea. The presented phylogenomic framework for Asparagus is foundational for ongoing genomic investigations of diversification and functional trait evolution in the genus and contributes to its utility for understanding the origin and early evolution of dioecy and sex chromosomes.
{"title":"Bursts of rapid diversification, dispersals out of southern Africa, and two origins of dioecy punctuate the evolution of Asparagus","authors":"Philip C Bentz, John E Burrows, Sandra M Burrows, Eshchar Mizrachi, Zhengjie Liu, Jun-Bo Yang, Zichao Mao, Margot Popecki, Ole Seberg, Gitte Petersen, Jim Leebens-Mack","doi":"10.1093/gbe/evae200","DOIUrl":"https://doi.org/10.1093/gbe/evae200","url":null,"abstract":"The genus Asparagus arose approximately 9–15 million years ago (Ma) and transitions from hermaphroditism to dioecy (separate sexes) occurred ∼3–4 Ma. Roughly 27% of extant Asparagus species are dioecious, while the remaining are bisexual with monoclinous flowers. As such, Asparagus is an ideal model taxon for studying early stages of dioecy and sex chromosome evolution in plants. Until now, however, understanding of diversification and shifts from hermaphroditism to dioecy in Asparagus has been hampered by the lack of robust species tree estimates for the genus. In this study, a genus-wide phylogenomic analysis including 1726 nuclear loci and comprehensive species sampling supports two independent origins of dioecy in Asparagus—first in a widely distributed Eurasian clade, then again in a clade restricted to the Mediterranean Basin. Modeling of ancestral biogeography indicates that both dioecy origins were associated with range expansion out of southern Africa. Our findings also revealed several bursts of diversification across the phylogeny, including an initial radiation in southern Africa that gave rise to 12 major clades in the genus, and more recent radiations that have resulted in paraphyly and polyphyly among closely related species, as expected given active speciation processes. Lastly, we report that the geographic origin of domesticated garden asparagus (Asparagus officinalis L.) was likely in western Asia near the Mediterranean Sea. The presented phylogenomic framework for Asparagus is foundational for ongoing genomic investigations of diversification and functional trait evolution in the genus and contributes to its utility for understanding the origin and early evolution of dioecy and sex chromosomes.","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"45 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263373","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel R Hirst, Rhett M Rautsaw, Cameron M VanHorn, Marc A Beer, Preston J McDonald, Ramsés Alejandro Rosales-García, Bruno Rodriguez Lopez, Alexandra Rubio Rincón, Hector Franz-Chávez, Víctor Vásquez-Cruz, Alfonso Kelly-Hernández, Andrew Storfer, Miguel Borja, Gamaliel Castañeda-Gaytán, Paul B Frandsen, Christopher L Parkinson, Jason L Strickland, Mark J Margres
Understanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond Rattlesnake (Crotalus ruber) and used range-wide ‘omic data to estimate the degree to which neutral and adaptive evolutionary processes shaped venom evolution. We characterized population structure and found substantial genetic differentiation across two populations, each with distinct demographic histories. We identified significant differentiation in venom expression across age classes with substantially reduced but discernible differentiation across populations. We then used conditional redundancy analysis to test whether venom expression variation was best predicted by neutral divergence patterns or geographically-variable (a)biotic factors. Snake size was the most significant predictor of venom variation, with environment, prey availability, and neutral sequence variation also identified as significant factors, though to a lesser degree. By directly including neutrality in the model, our results confidently highlight the predominant, yet not singular, role of life history in shaping venom evolution.
{"title":"Where the ‘ruber’ meets the road: Using the genome of the Red Diamond Rattlesnake to unravel the evolutionary processes driving venom evolution","authors":"Samuel R Hirst, Rhett M Rautsaw, Cameron M VanHorn, Marc A Beer, Preston J McDonald, Ramsés Alejandro Rosales-García, Bruno Rodriguez Lopez, Alexandra Rubio Rincón, Hector Franz-Chávez, Víctor Vásquez-Cruz, Alfonso Kelly-Hernández, Andrew Storfer, Miguel Borja, Gamaliel Castañeda-Gaytán, Paul B Frandsen, Christopher L Parkinson, Jason L Strickland, Mark J Margres","doi":"10.1093/gbe/evae198","DOIUrl":"https://doi.org/10.1093/gbe/evae198","url":null,"abstract":"Understanding the proximate and ultimate causes of phenotypic variation is fundamental in evolutionary research, as such variation provides the substrate for selection to act upon. Although trait variation can arise due to selection, the importance of neutral processes is sometimes understudied. We presented the first reference-quality genome of the Red Diamond Rattlesnake (Crotalus ruber) and used range-wide ‘omic data to estimate the degree to which neutral and adaptive evolutionary processes shaped venom evolution. We characterized population structure and found substantial genetic differentiation across two populations, each with distinct demographic histories. We identified significant differentiation in venom expression across age classes with substantially reduced but discernible differentiation across populations. We then used conditional redundancy analysis to test whether venom expression variation was best predicted by neutral divergence patterns or geographically-variable (a)biotic factors. Snake size was the most significant predictor of venom variation, with environment, prey availability, and neutral sequence variation also identified as significant factors, though to a lesser degree. By directly including neutrality in the model, our results confidently highlight the predominant, yet not singular, role of life history in shaping venom evolution.","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"115 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}