Pub Date : 2022-11-01DOI: 10.1080/08977194.2022.2126317
Hussein Kadhem Al-Hakeim, Qasim Jasim Al-Kaabi, Michael Maes
Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
{"title":"High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus.","authors":"Hussein Kadhem Al-Hakeim, Qasim Jasim Al-Kaabi, Michael Maes","doi":"10.1080/08977194.2022.2126317","DOIUrl":"https://doi.org/10.1080/08977194.2022.2126317","url":null,"abstract":"<p><p>Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":"40 5-6","pages":"240-253"},"PeriodicalIF":1.8,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10785957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study explored the impacts of matrine on hepatocellular carcinoma (HCC) cell growth, metastasis, epithelial-mesenchymal transition (EMT), and stemness through regulating the microRNA (miR)-299-3p/phosphoglycerate mutase 1 (PGAM1) axis. The association between miR-299-3p expression with the prognosis of HCC patients was studied. miR-299-3p and PGAM1 sequences were transfected into matrine-treated HCC cells, and cell proliferation, invasion, apoptosis, and stemness were detected, as well as protein expression of EMT- and stemness-related makers. The targeting relationship between miR-299-3p and PGAM1 was identified. Matrine elevated miR-299-3p expression, repressed proliferation, invasion, and anti-apoptosis of HCC cells, and constrained EMT and stemness in vitro. PGAM1 was a target of miR-299-3p. Repression of PGAM1 rescued the effects of miR-299-3p downregulation on HCC cells. Matrine stimulates HCC cell apoptosis and represses the process of EMT and stemness through the miR-299-3p/PGAM1 axis.
{"title":"Matrine induces hepatocellular carcinoma apoptosis and represses EMT and stemness through microRNA-299-3p/PGAM1 axis.","authors":"BaoLin Wang, HuiHai Wang, Qin Zhao, Fei Lu, ZhenZhuang Yan, Fang Zhou, QingLun Su","doi":"10.1080/08977194.2022.2113073","DOIUrl":"https://doi.org/10.1080/08977194.2022.2113073","url":null,"abstract":"<p><p>This study explored the impacts of matrine on hepatocellular carcinoma (HCC) cell growth, metastasis, epithelial-mesenchymal transition (EMT), and stemness through regulating the microRNA <i>(miR)-299-3p</i>/<i>phosphoglycerate mutase 1</i> (<i>PGAM1</i>) axis. The association between <i>miR-299-3p</i> expression with the prognosis of HCC patients was studied. <i>miR-299-3p</i> and <i>PGAM1</i> sequences were transfected into matrine-treated HCC cells, and cell proliferation, invasion, apoptosis, and stemness were detected, as well as protein expression of EMT- and stemness-related makers. The targeting relationship between <i>miR-299-3p</i> and <i>PGAM1</i> was identified. Matrine elevated <i>miR-299-3p</i> expression, repressed proliferation, invasion, and anti-apoptosis of HCC cells, and constrained EMT and stemness <i>in vitro</i>. <i>PGAM1</i> was a target of <i>miR-299-3p</i>. Repression of <i>PGAM1</i> rescued the effects of <i>miR-299-3p</i> downregulation on HCC cells. Matrine stimulates HCC cell apoptosis and represses the process of EMT and stemness through the <i>miR-299-3p</i>/<i>PGAM1</i> axis.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":"40 5-6","pages":"200-211"},"PeriodicalIF":1.8,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10793795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Methanolic crude extract of Scoparia dulcis (CESD) was orally administered to female mice during the early gestation (day 4-day 8) at a dose of 500mg/kg/day. It induces embryo resorption and morphological changes of fetal maternal tissue. Histomorphology was studied by routine hematoxylin eosin stain. In situ immunofluorescence localization of IGF-II using Texas red showed an ordered expression of the growth factor in the maternal decidual cells, trophoblast cells and the embryo. Western blot analysis showed a gradual increase of IGF-II from D4 to D8 of control females. In contrast, the CESD-treated females showed resorption of embryo on D8 with disorganized in situ expression and lowered IGF-II in fetal maternal tissue. The phytocompounds present in the CESD could modulate either the ER or IGF-II receptors causing reduced IGF-II expression in the target tissues which lead to the failure of embryonic growth during periimplantation.
{"title":"Embryonic growth retardation and altered expression of IGF-II is reciprocal induced by phytocompounds during early gestation in mice.","authors":"Khamhee Wangsa, Krishnakshi Misra, Upasa Gowala, Indira Sarma, Purba Jyoti Saikia, Hirendra Nath Sarma","doi":"10.1080/08977194.2022.2129018","DOIUrl":"https://doi.org/10.1080/08977194.2022.2129018","url":null,"abstract":"<p><p>Methanolic crude extract of <i>Scoparia dulcis</i> (CESD) was orally administered to female mice during the early gestation (day 4-day 8) at a dose of 500<b> </b>mg/kg/day. It induces embryo resorption and morphological changes of fetal maternal tissue. Histomorphology was studied by routine hematoxylin eosin stain. In situ immunofluorescence localization of IGF-II using Texas red showed an ordered expression of the growth factor in the maternal decidual cells, trophoblast cells and the embryo. Western blot analysis showed a gradual increase of IGF-II from D4 to D8 of control females. In contrast, the CESD-treated females showed resorption of embryo on D8 with disorganized in situ expression and lowered IGF-II in fetal maternal tissue. The phytocompounds present in the CESD could modulate either the ER or IGF-II receptors causing reduced IGF-II expression in the target tissues which lead to the failure of embryonic growth during periimplantation.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":"40 5-6","pages":"254-271"},"PeriodicalIF":1.8,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10785965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1080/08977194.2022.2113394
Jing Lin, Xiaochun Wu
The present study aimed to explore the effects of antifibrotic agent halofuginone on uterine leiomyomas (ULs) cells. The survival of the uterine smooth muscle (UtSMC) cells and UL ELT3 cells were measured. Flow cytometry was used to assess the cell cycle distribution and apoptosis. Effects of halofuginone on the state of AKT/mTOR pathway were evaluated. Xenograft animal model was applied to explore the effects of halofuginone in vivo. Halofuginone inhibited the proliferation of ELT3 cells dose-dependently without obvious influence on UtSMC cells. Halofuginone suppressed cell cycle progression and promoted apoptosis of ELT3 cells dose-dependently. Also, p-AKT/AKT and p-p70S6/p70S6 were significantly lowered after treatment with 20 nM halofuginone. Additionally, halofuginone reduced ELT3 tumor growth in xenograft tumor animal model. The present study illustrates that halofuginone inhibits cell proliferation of ULs with low side effects on normal smooth muscle cells, and AKT/mTOR signaling pathway was inactivated meanwhile.
{"title":"Halofuginone inhibits cell proliferation and AKT/mTORC1 signaling in uterine leiomyoma cells.","authors":"Jing Lin, Xiaochun Wu","doi":"10.1080/08977194.2022.2113394","DOIUrl":"https://doi.org/10.1080/08977194.2022.2113394","url":null,"abstract":"<p><p>The present study aimed to explore the effects of antifibrotic agent halofuginone on uterine leiomyomas (ULs) cells. The survival of the uterine smooth muscle (UtSMC) cells and UL ELT3 cells were measured. Flow cytometry was used to assess the cell cycle distribution and apoptosis. Effects of halofuginone on the state of AKT/mTOR pathway were evaluated. Xenograft animal model was applied to explore the effects of halofuginone <i>in vivo</i>. Halofuginone inhibited the proliferation of ELT3 cells dose-dependently without obvious influence on UtSMC cells. Halofuginone suppressed cell cycle progression and promoted apoptosis of ELT3 cells dose-dependently. Also, p-AKT/AKT and p-p70S6/p70S6 were significantly lowered after treatment with 20 nM halofuginone. Additionally, halofuginone reduced ELT3 tumor growth in xenograft tumor animal model. The present study illustrates that halofuginone inhibits cell proliferation of ULs with low side effects on normal smooth muscle cells, and AKT/mTOR signaling pathway was inactivated meanwhile.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":"40 5-6","pages":"212-220"},"PeriodicalIF":1.8,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10796660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-11-01DOI: 10.1080/08977194.2022.2118119
Lingli Guo, Baohua Wei, Feng Pan, Hasi Wulan, Mi Cai
bFGF is a commonly used and reliable factor for improving chronic wound healing, and hSulf-1 expression is abundant in surrounding cells of chronic wound tissue and vascular endothelial cells, which can reverse the effect of bFGF and inhibit the signalling activity of cell proliferation. In this study, an adenovirus, Ad5F35ET1-bFGF-shSulf1, was designed for establishing the dual-gene modified vascular endothelial cells, which were used as the repair cells for skin chronic wound. Ad5F35ET1-bFGF-shSulf1 infected ECV304 cells in vitro and mediated the overexpression of bFGF and the knockdown of hSulf-1, which effectively activated the AKT and ERK signal transduction pathways, facilitate cell proliferation and migration, with the cell viability to 128.29% at 72 h after infection, compared to 66.65%, 73.74%, 87.63%, 103.14% in the blank control, Ad5F35ET1-EGFP-shNC, Ad5F35ET1-shSulf1, Ad5F35ET1-bFGF groups, respectively. In the rat ear skin injury model, the wound healing was significantly accelerated in the Ad5F35ET1-rbFGF-shrSulf1 group compared to the blank control group (p = 0.0046), Ad5F35ET1-EGFP-shNC group (p = 0.0245), Ad5F35ET1-shrSulf group (p = 0.0426), and Ad5F35ET1-rbFGF group (p = 0.2853). The results demonstrated that this strategy may be a candidate therapy for chronic injury repair.
{"title":"Effects of dual-gene modification on biological characteristics of vascular endothelial cells and their significance as reserving cells for chronic wound repair.","authors":"Lingli Guo, Baohua Wei, Feng Pan, Hasi Wulan, Mi Cai","doi":"10.1080/08977194.2022.2118119","DOIUrl":"https://doi.org/10.1080/08977194.2022.2118119","url":null,"abstract":"<p><p>bFGF is a commonly used and reliable factor for improving chronic wound healing, and hSulf-1 expression is abundant in surrounding cells of chronic wound tissue and vascular endothelial cells, which can reverse the effect of bFGF and inhibit the signalling activity of cell proliferation. In this study, an adenovirus, Ad5F35ET1-bFGF-shSulf1, was designed for establishing the dual-gene modified vascular endothelial cells, which were used as the repair cells for skin chronic wound. Ad5F35ET1-bFGF-shSulf1 infected ECV304 cells in vitro and mediated the overexpression of bFGF and the knockdown of hSulf-1, which effectively activated the AKT and ERK signal transduction pathways, facilitate cell proliferation and migration, with the cell viability to 128.29% at 72 h after infection, compared to 66.65%, 73.74%, 87.63%, 103.14% in the blank control, Ad5F35ET1-EGFP-shNC, Ad5F35ET1-shSulf1, Ad5F35ET1-bFGF groups, respectively. In the rat ear skin injury model, the wound healing was significantly accelerated in the Ad5F35ET1-rbFGF-shrSulf1 group compared to the blank control group (<i>p</i> = 0.0046), Ad5F35ET1-EGFP-shNC group (<i>p</i> = 0.0245), Ad5F35ET1-shrSulf group (<i>p</i> = 0.0426), and Ad5F35ET1-rbFGF group (<i>p</i> = 0.2853). The results demonstrated that this strategy may be a candidate therapy for chronic injury repair.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":"40 5-6","pages":"221-230"},"PeriodicalIF":1.8,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10798112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ovarian cancer (OC) is clinically important because it is diagnosed late and has metastasis when it is diagnosed. Mortality risk increases 2.75 times in the presence of lymph node (LN) metastasis. During metastasis, many molecules including BMPs originated from stroma, and tumor cells participate through transcription factors and integrins for cytoskeleton regulation during cell migration. We hypothesized an inverse correlation between BMP2 and BMP7 along with changes in ZEB2, and integrin α5β1 in high-grade OCs in relation to LN metastasis. The BMP2 immunoreactivity was strong along with strong ZEB2 and weak integrins' immunoreactivity in samples with LN metastasis. Strong immunoreactivity of BMP7 was accompanied by strong immunoreactivity of integrins in the samples without LN metastasis. Study results showed BMP2's strong positive immunoreactivity and weak BMP7 immunoreactivity in tumor cells with a significantly weak inverse correlation. This inverse correlation should be considered as both BMPs have different effects in the window of cancer progression and invasion.
{"title":"The expression of BMP, integrin, ZEB2 in ovarian high-grade serous carcinoma in relation with lymph node metastasis.","authors":"Elham Bahador Zırh, Elif Taşar Kapaklı, Anıl Dolgun, Alp Usubütün, Naciye Dilara Zeybek","doi":"10.1080/08977194.2022.2099849","DOIUrl":"10.1080/08977194.2022.2099849","url":null,"abstract":"<p><p>Ovarian cancer (OC) is clinically important because it is diagnosed late and has metastasis when it is diagnosed. Mortality risk increases 2.75 times in the presence of lymph node (LN) metastasis. During metastasis, many molecules including BMPs originated from stroma, and tumor cells participate through transcription factors and integrins for cytoskeleton regulation during cell migration. We hypothesized an inverse correlation between BMP2 and BMP7 along with changes in ZEB2, and integrin α5β1 in high-grade OCs in relation to LN metastasis. The BMP2 immunoreactivity was strong along with strong ZEB2 and weak integrins' immunoreactivity in samples with LN metastasis. Strong immunoreactivity of BMP7 was accompanied by strong immunoreactivity of integrins in the samples without LN metastasis. Study results showed BMP2's strong positive immunoreactivity and weak BMP7 immunoreactivity in tumor cells with a significantly weak inverse correlation. This inverse correlation should be considered as both BMPs have different effects in the window of cancer progression and invasion.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":" ","pages":"153-162"},"PeriodicalIF":1.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40530970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01Epub Date: 2022-05-23DOI: 10.1080/08977194.2022.2077732
Shichao Sun, Fujun Wang, Yao Sun, Lei Bai
This study was designed to explore the role of miR-146a in diabetic retinopathy (DR). 30 healthy control (HC), 50 patients with type 2 diabetes mellitus, and 48 DR patients were enrolled. Blood was collected and levels of miR-146a expression, vascular endothelial growth factor (VEGF), and three inflammatory cytokines (NF-κB, IL-1β, and TNF-α) were detected. Moreover, ARPE-19 cells were treated with miR-146a mimic or inhibitor in the presence of high glucose to evaluate its effect in vitro. DR patients had the lowest level of miR-146a and the highest level of VEGF as well as the most severe inflammation among the three groups. In addition, the miR-146a level was negatively correlated with the expression of VEGF and three inflammatory cytokines, respectively in DR patients. Moreover, VEGF expression was positively correlated with these three inflammatory cytokines in DR patients. In summary, miR-146a could inhibit VEGF expression and inflammation in DR.
{"title":"miR-146a suppresses the expression of vascular endothelial growth factor and inflammatory responses in diabetic retinopathy.","authors":"Shichao Sun, Fujun Wang, Yao Sun, Lei Bai","doi":"10.1080/08977194.2022.2077732","DOIUrl":"10.1080/08977194.2022.2077732","url":null,"abstract":"<p><p>This study was designed to explore the role of miR-146a in diabetic retinopathy (DR). 30 healthy control (HC), 50 patients with type 2 diabetes mellitus, and 48 DR patients were enrolled. Blood was collected and levels of miR-146a expression, vascular endothelial growth factor (VEGF), and three inflammatory cytokines (NF-κB, IL-1β, and TNF-α) were detected. Moreover, ARPE-19 cells were treated with miR-146a mimic or inhibitor in the presence of high glucose to evaluate its effect <i>in vitro</i>. DR patients had the lowest level of miR-146a and the highest level of VEGF as well as the most severe inflammation among the three groups. In addition, the miR-146a level was negatively correlated with the expression of VEGF and three inflammatory cytokines, respectively in DR patients. Moreover, VEGF expression was positively correlated with these three inflammatory cytokines in DR patients. In summary, miR-146a could inhibit VEGF expression and inflammation in DR.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":"40 1","pages":"89-97"},"PeriodicalIF":1.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45969317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01Epub Date: 2022-06-05DOI: 10.1080/08977194.2022.2083963
Anandini Swaminathan, Leonardo Cesanelli, Tomas Venckunas, Hans Degens
Methionine restriction (MR) reduces inflammation and increases longevity. We studied the effects of MR (0.17% kCal methionine, 10% kCal fat) and MR + high-fat diet (HFD) (0.17% methionine, 45% kCal fat) and overload-induced hypertrophy on inflammation, angiogenesis and mitochondrial activity in the hind-limb muscle in 10- and 26-month-old male C57BL/6J mice. Plasma IL-6 concentrations were higher in old compared to young mice. M. plantaris hypertrophy was accompanied by increased p-Akt, without a significant change in Akt and VEGF levels. In young mice on a HFD or MR + HFD diet the SDH activity was higher than in those from mice on other diets, irrespective of overload. There were no significant differences in total NAD concentration in the m. gastrocnemius. MR enhanced the skeletal muscle hypertrophic response in old age that was accompanied with an increase in p-Akt without significant changes in muscle oxidative capacity, low-grade systemic inflammation, NAD, VEGF or Akt levels.
{"title":"Impact of methionine restriction on muscle aerobic metabolism and hypertrophy in young and old mice on an obesogenic diet.","authors":"Anandini Swaminathan, Leonardo Cesanelli, Tomas Venckunas, Hans Degens","doi":"10.1080/08977194.2022.2083963","DOIUrl":"10.1080/08977194.2022.2083963","url":null,"abstract":"<p><p>Methionine restriction (MR) reduces inflammation and increases longevity. We studied the effects of MR (0.17% kCal methionine, 10% kCal fat) and MR + high-fat diet (HFD) (0.17% methionine, 45% kCal fat) and overload-induced hypertrophy on inflammation, angiogenesis and mitochondrial activity in the hind-limb muscle in 10- and 26-month-old male C57BL/6J mice. Plasma IL-6 concentrations were higher in old compared to young mice. <i>M. plantaris</i> hypertrophy was accompanied by increased p-Akt, without a significant change in Akt and VEGF levels. In young mice on a HFD or MR + HFD diet the SDH activity was higher than in those from mice on other diets, irrespective of overload. There were no significant differences in total NAD concentration in the <i>m. gastrocnemius</i>. MR enhanced the skeletal muscle hypertrophic response in old age that was accompanied with an increase in p-Akt without significant changes in muscle oxidative capacity, low-grade systemic inflammation, NAD, VEGF or Akt levels.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":"40 1","pages":"108-118"},"PeriodicalIF":1.7,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49395733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-08-01Epub Date: 2022-07-21DOI: 10.1080/08977194.2022.2087520
Oliver Cucanic, Rae H Farnsworth, Steven A Stacker
Organ-specific metastasis to secondary organs is dependent on the formation of a supportive pre-metastatic niche. This tissue-specific microenvironmental response is thought to be mediated by mutational and epigenetic changes to primary tumour cells resulting in altered cross-talk between cell types. This response is augmented through the release of tumour and stromal signalling mediators including cytokines, chemokines, exosomes and growth factors. Although researchers have elucidated some of the cancer-promoting features that are bespoke to organotropic metastasis to the lungs, it remains unclear if these are organ-specific or generic between organs. Understanding the mechanisms that mediate the metastasis-promoting synergy between the host microenvironment, immunity, and pulmonary structures may elucidate predictive, prognostic and therapeutic markers that could be targeted to reduce the metastatic burden of disease. Herein, we give an updated summary of the known cellular and molecular mechanisms that contribute to the formation of the lung pre-metastatic niche and tissue-specific metastasis.
{"title":"The cellular and molecular mediators of metastasis to the lung.","authors":"Oliver Cucanic, Rae H Farnsworth, Steven A Stacker","doi":"10.1080/08977194.2022.2087520","DOIUrl":"https://doi.org/10.1080/08977194.2022.2087520","url":null,"abstract":"<p><p>Organ-specific metastasis to secondary organs is dependent on the formation of a supportive pre-metastatic niche. This tissue-specific microenvironmental response is thought to be mediated by mutational and epigenetic changes to primary tumour cells resulting in altered cross-talk between cell types. This response is augmented through the release of tumour and stromal signalling mediators including cytokines, chemokines, exosomes and growth factors. Although researchers have elucidated some of the cancer-promoting features that are bespoke to organotropic metastasis to the lungs, it remains unclear if these are organ-specific or generic between organs. Understanding the mechanisms that mediate the metastasis-promoting synergy between the host microenvironment, immunity, and pulmonary structures may elucidate predictive, prognostic and therapeutic markers that could be targeted to reduce the metastatic burden of disease. Herein, we give an updated summary of the known cellular and molecular mechanisms that contribute to the formation of the lung pre-metastatic niche and tissue-specific metastasis.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":" ","pages":"119-152"},"PeriodicalIF":1.8,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40634297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-16DOI: 10.1080/08977194.2022.2082294
Yujie Li, Xinyue Liu, Xueli Liu, Yuanqiu Peng, Bin Zhu, Sheng Guo, Chenglong Wang, Dingxuan Wang, Sen Li
Abstract Transforming growth factor-β(TGF-β) plays an important but diverse role in tendon injuries, such as collagen synthesis, cell proliferation, cell differentiation, and cell adhesion, leading to tendon healing and tendon fibrosis. In the well-known canonical TGF-β signalling pathway, TGF-β activates Smad signalling through its two cell surface receptors, which leads to Smad-mediated transcriptional regulation and is also regulated by inhibitory Smads, forming a negative feedback regulatory pathway. In the context of the canonical TGF-β signalling mechanism mediated by Smad, the activated receptors also send signals through other signal transducers, which in the backdrop of TGF-β signaling are collectively known as non-Smad signalling pathways. Activated TGF-β binds to the receptor and acts through these signalling pathways. Understanding the mechanism of the TGF-β signalling pathway and its role in tendon repair is of great significance for targeting the TGF-β signalling pathway to accelerate tendon healing and reduce tendon fibrosis.
{"title":"Transforming growth factor-β signalling pathway in tendon healing","authors":"Yujie Li, Xinyue Liu, Xueli Liu, Yuanqiu Peng, Bin Zhu, Sheng Guo, Chenglong Wang, Dingxuan Wang, Sen Li","doi":"10.1080/08977194.2022.2082294","DOIUrl":"https://doi.org/10.1080/08977194.2022.2082294","url":null,"abstract":"Abstract Transforming growth factor-β(TGF-β) plays an important but diverse role in tendon injuries, such as collagen synthesis, cell proliferation, cell differentiation, and cell adhesion, leading to tendon healing and tendon fibrosis. In the well-known canonical TGF-β signalling pathway, TGF-β activates Smad signalling through its two cell surface receptors, which leads to Smad-mediated transcriptional regulation and is also regulated by inhibitory Smads, forming a negative feedback regulatory pathway. In the context of the canonical TGF-β signalling mechanism mediated by Smad, the activated receptors also send signals through other signal transducers, which in the backdrop of TGF-β signaling are collectively known as non-Smad signalling pathways. Activated TGF-β binds to the receptor and acts through these signalling pathways. Understanding the mechanism of the TGF-β signalling pathway and its role in tendon repair is of great significance for targeting the TGF-β signalling pathway to accelerate tendon healing and reduce tendon fibrosis.","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":"40 1","pages":"98 - 107"},"PeriodicalIF":1.8,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49184219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}