Pub Date : 2024-07-05DOI: 10.1007/s40948-024-00813-6
Qian Cao, Hao Xu, Ke Jiang, Ruiyin Liu, Minghui Qi, Linqi Wang, Feiyu Li, Binyang Ma, Feilong Pu
As the main reservoir of coalbed gas in southeastern Sichuan, the mudstone of the Permian Longtan Formation has been drilled to obtain industrial gas, but the level of exploration and development is low. The researches on the types of lithological assemblages, reservoir characteristics, and gas-bearing properties are poor, which limits the evaluation and selection of the sweet point area for the marine-continental transitional shale gas. In this paper, by comparing the differential of different lithological distribution in the well L3, multiple discriminant functions and logging interpretation models for different lithology are established to determine the classification criteria of lithological assemblage types of shale formations. Based on the experimental results of high-temperature and high-pressure isothermal adsorption, the reservoir space distribution and gas-bearing characteristics of mudstone in different lithological assemblages are compared and analyzed. It is indicated that the four lithological assemblage types are found in the Permian Longtan Formation, including thick mudstone with the interlayer of coalbed (Type I), rich mudstone with the interlayer of sandstone and thin coalbed (Type II), sandstone interbedded with mudstone with the interlayer of coalbed (Type III), and limestone interbedded with sandstone with the interlayer of mudstone (Type IV), which are superimposed with each other. The different pore structure characteristics of mudstone in different lithological assemblages is the main influencing factor of differential gas-bearing property. The dominant lithological assemblages are Type I and Type II. Coalbed and carbonaceous mudstone are the source rock and primary storage space of adsorbed gas. Moreover, with low porosity and permeability, high breakthrough pressure and the strong sealing capacity of regional mudstone, it is easy to form the “microtrap” to store the natural gas. The sealing capacity of mudstone provides a favorable condition for gas preserve. Under the dynamic condition of hydrocarbon generation, the pressure storage box is formed, accompanied with the fine reservoir spaces and gas-bearing contents.
作为四川东南部煤层气的主要储层,二叠系龙潭组泥岩已钻探获得工业气,但勘探开发水平较低。岩性组合类型、储层特征、含气性质等方面的研究较少,限制了海陆过渡页岩气甜点区的评价与选择。本文通过对比 L3 井不同岩性分布的差异性,建立了不同岩性的多重判别函数和测井解释模型,确定了页岩层岩性组合类型的划分标准。根据高温高压等温吸附实验结果,对比分析了不同岩性组合中泥岩的储层空间分布和含气特征。结果表明,二叠系龙潭地层中存在厚泥岩夹煤层(Ⅰ型)、富泥岩夹砂岩和薄煤层(Ⅱ型)、砂岩夹泥岩夹煤层(Ⅲ型)、灰岩夹砂岩夹泥岩(Ⅳ型)四种岩性组合类型,并相互叠加。不同岩性组合中泥岩的孔隙结构特征不同,是影响含气性质差异的主要因素。主要岩性组合为 I 型和 II 型。煤化泥岩和碳质泥岩是吸附天然气的源岩和主要储存空间。此外,区域泥岩孔隙度和渗透率低、突破压力高、密封能力强,容易形成 "微陷阱 "储存天然气。泥岩的密封能力为天然气的保存提供了有利条件。在碳氢化合物生成的动态条件下,伴随着细小的储层空间和含气内容物,形成了压力存储箱。
{"title":"Differential characteristics of lithological assemblages and gas-bearing of the Permian Longtan Formation mudstone in well L3, southeastern Sichuan Basin","authors":"Qian Cao, Hao Xu, Ke Jiang, Ruiyin Liu, Minghui Qi, Linqi Wang, Feiyu Li, Binyang Ma, Feilong Pu","doi":"10.1007/s40948-024-00813-6","DOIUrl":"https://doi.org/10.1007/s40948-024-00813-6","url":null,"abstract":"<p>As the main reservoir of coalbed gas in southeastern Sichuan, the mudstone of the Permian Longtan Formation has been drilled to obtain industrial gas, but the level of exploration and development is low. The researches on the types of lithological assemblages, reservoir characteristics, and gas-bearing properties are poor, which limits the evaluation and selection of the sweet point area for the marine-continental transitional shale gas. In this paper, by comparing the differential of different lithological distribution in the well L3, multiple discriminant functions and logging interpretation models for different lithology are established to determine the classification criteria of lithological assemblage types of shale formations. Based on the experimental results of high-temperature and high-pressure isothermal adsorption, the reservoir space distribution and gas-bearing characteristics of mudstone in different lithological assemblages are compared and analyzed. It is indicated that the four lithological assemblage types are found in the Permian Longtan Formation, including thick mudstone with the interlayer of coalbed (Type I), rich mudstone with the interlayer of sandstone and thin coalbed (Type II), sandstone interbedded with mudstone with the interlayer of coalbed (Type III), and limestone interbedded with sandstone with the interlayer of mudstone (Type IV), which are superimposed with each other. The different pore structure characteristics of mudstone in different lithological assemblages is the main influencing factor of differential gas-bearing property. The dominant lithological assemblages are Type I and Type II. Coalbed and carbonaceous mudstone are the source rock and primary storage space of adsorbed gas. Moreover, with low porosity and permeability, high breakthrough pressure and the strong sealing capacity of regional mudstone, it is easy to form the “microtrap” to store the natural gas. The sealing capacity of mudstone provides a favorable condition for gas preserve. Under the dynamic condition of hydrocarbon generation, the pressure storage box is formed, accompanied with the fine reservoir spaces and gas-bearing contents.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"41 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-26DOI: 10.1007/s40948-024-00794-6
Oluwafemi Oyedokun, Jerome Schubert
The shear and tensile stabilities of highly inclined non-circular wellbores are investigated in this study. Using the equivalent-ellipse hypothesis, the non-circular geometry was approximated as an ellipse, and the corresponding stress concentration equations are presented. With the new set of stress concentration equations, a comprehensive study of the tensile and shear stabilities of an elliptical borehole was conducted, including the impact of well inclination and azimuthal angles, horizontal stress difference, degree of ellipticity, and orientation of the maximum horizontal stress to the major axis of the ellipse. Using five commonly used shear failure criteria, we observed that both Mohr–Coulomb and Drucker Prager (inscribed) failure criteria predicted higher collapse pressures, relative to the others including Drucker Prager (inscribed), Mogi-Coulomb, and Modified Lade. While Drucker Prager's (circumscribed) failure criterion underestimates the collapse pressure. Both the linear elastic and poroelastic models were used in investigating the fracture initiation orientation and pressure of highly inclined elliptical boreholes. The prediction from the poroelastic model is always less than the linear elastic model. In some instances, they predict different fracture initiation orientations. From this study, we observed that generally, a near-circular wellbore is more stable than elliptical borehole in both shear and tension. Nevertheless, there are some well inclination and azimuthal angles than can make an elliptical borehole have more shear and tensile stabilities than a near-circular wellbore.
{"title":"Stability of highly inclined non-circular wellbores in isotropic formations","authors":"Oluwafemi Oyedokun, Jerome Schubert","doi":"10.1007/s40948-024-00794-6","DOIUrl":"https://doi.org/10.1007/s40948-024-00794-6","url":null,"abstract":"<p>The shear and tensile stabilities of highly inclined non-circular wellbores are investigated in this study. Using the equivalent-ellipse hypothesis, the non-circular geometry was approximated as an ellipse, and the corresponding stress concentration equations are presented. With the new set of stress concentration equations, a comprehensive study of the tensile and shear stabilities of an elliptical borehole was conducted, including the impact of well inclination and azimuthal angles, horizontal stress difference, degree of ellipticity, and orientation of the maximum horizontal stress to the major axis of the ellipse. Using five commonly used shear failure criteria, we observed that both Mohr–Coulomb and Drucker Prager (inscribed) failure criteria predicted higher collapse pressures, relative to the others including Drucker Prager (inscribed), Mogi-Coulomb, and Modified Lade. While Drucker Prager's (circumscribed) failure criterion underestimates the collapse pressure. Both the linear elastic and poroelastic models were used in investigating the fracture initiation orientation and pressure of highly inclined elliptical boreholes. The prediction from the poroelastic model is always less than the linear elastic model. In some instances, they predict different fracture initiation orientations. From this study, we observed that generally, a near-circular wellbore is more stable than elliptical borehole in both shear and tension. Nevertheless, there are some well inclination and azimuthal angles than can make an elliptical borehole have more shear and tensile stabilities than a near-circular wellbore.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"69 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-strength bolts have become indispensable support materials in geotechnical engineering, but the incidence of safety accidents caused by bolt fractures under complex geological conditions is increasing. To address this challenge, this study focuses on a typical roadway in the Xinjulong coal mine, employing a combination of mechanical performance testing, microscopic and macroscopic analyses to investigate the failure mechanism of bolt breakage. The research indicates that the cracks in the failed bolts underground exhibit subcritical patterns, with the presence of oxides and Cl elements, and multiple intergranular fractures internally, consistent with the characteristics of stress corrosion failure. Additionally, inherent defects in the bolts are also a primary cause of failure. For instance, for type A bolts, the levels of P and S elements significantly exceed the normative requirements, forming inclusions, while the low content of elements like Si and V leads to reduced plasticity, toughness, and corrosion resistance. Furthermore, the excessive pitch in type A bolts leads to stress concentration and cracking under complex loads. The study concludes that the synergistic effect of stress corrosion cracking and inherent flaws in bolts are the main causes of failure. Therefore, it is recommended to enhance the reliability and safety of bolt support by optimizing the bolt shape and developing anti-corrosion bolts, thereby achieving long-term stability in underground engineering.
高强度螺栓已成为岩土工程中不可或缺的支护材料,但在复杂地质条件下,因螺栓断裂而引发的安全事故也日益增多。针对这一难题,本研究以新聚龙煤矿典型巷道为研究对象,采用力学性能测试、微观和宏观分析相结合的方法,对螺栓断裂的失效机理进行了研究。研究表明,井下失效螺栓的裂纹呈现亚临界形态,存在氧化物和Cl元素,内部存在多条晶间裂纹,符合应力腐蚀失效的特征。此外,螺栓的固有缺陷也是失效的主要原因。例如,对于 A 型螺栓,P 和 S 元素的含量大大超出了规范要求,形成了夹杂物,而 Si 和 V 等元素的含量较低,导致塑性、韧性和耐腐蚀性降低。此外,A 型螺栓中过大的间距会导致应力集中,并在复杂载荷下产生裂纹。研究得出结论,应力腐蚀开裂和螺栓固有缺陷的协同作用是导致失效的主要原因。因此,建议通过优化螺栓形状和开发防腐蚀螺栓来提高螺栓支撑的可靠性和安全性,从而实现地下工程的长期稳定性。
{"title":"Multi-scale experimental study on the failure mechanism of high-strength bolts under highly mineralized environment","authors":"Zhe He, Nong Zhang, Zhengzheng Xie, Qun Wei, Changliang Han, Feng Guo, Yijun Yin, Yuxuan Liu","doi":"10.1007/s40948-024-00824-3","DOIUrl":"https://doi.org/10.1007/s40948-024-00824-3","url":null,"abstract":"<p>High-strength bolts have become indispensable support materials in geotechnical engineering, but the incidence of safety accidents caused by bolt fractures under complex geological conditions is increasing. To address this challenge, this study focuses on a typical roadway in the Xinjulong coal mine, employing a combination of mechanical performance testing, microscopic and macroscopic analyses to investigate the failure mechanism of bolt breakage. The research indicates that the cracks in the failed bolts underground exhibit subcritical patterns, with the presence of oxides and Cl elements, and multiple intergranular fractures internally, consistent with the characteristics of stress corrosion failure. Additionally, inherent defects in the bolts are also a primary cause of failure. For instance, for type A bolts, the levels of P and S elements significantly exceed the normative requirements, forming inclusions, while the low content of elements like Si and V leads to reduced plasticity, toughness, and corrosion resistance. Furthermore, the excessive pitch in type A bolts leads to stress concentration and cracking under complex loads. The study concludes that the synergistic effect of stress corrosion cracking and inherent flaws in bolts are the main causes of failure. Therefore, it is recommended to enhance the reliability and safety of bolt support by optimizing the bolt shape and developing anti-corrosion bolts, thereby achieving long-term stability in underground engineering.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"5 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gas diffusion is a pivotal process during shale gas recovery, which is determined by diffusion coefficient to a large extent. In previous studies, the gas diffusion coefficient is generally assumed as a constant. However, increasing experiments prove that the diffusion coefficient of shale gas is strongly time-dependent. Therefore, to perfect the theory of shale gas diffusion, this paper proposes a time-dependent diffusion model for shale gas, which incorporates time-dependent gas diffusion coefficient, composing of the bulk diffusion coefficient for free gas in organic and inorganic pores, as well as the surface diffusion coefficient for adsorbed gas in organic pores. To validate the accuracy of the new theory, we calibrate the theoretical results against experimental data, and the results show that they have strong correlation, and the time-dependent diffusion model is superior to classical model. Finally, the numerical analysis of gas dynamic diffusion process in shale matrix is conducted. The results show that at the end of diffusion, a large amounts of shale gas remain trapped in the matrix core due to the attenuation of gas diffusion coefficient. In addition, neglecting the time-dependent nature of gas diffusion in shale matrix leads to a significant overestimation of gas production.
{"title":"Time-dependent gas dynamic diffusion process in shale matrix: model development and numerical analysis","authors":"Rui Yang, Depeng Ma, Shuli Xie, Tai Chen, Tianran Ma, Chao Sun, Zhichao Duan","doi":"10.1007/s40948-024-00800-x","DOIUrl":"https://doi.org/10.1007/s40948-024-00800-x","url":null,"abstract":"<p>Gas diffusion is a pivotal process during shale gas recovery, which is determined by diffusion coefficient to a large extent. In previous studies, the gas diffusion coefficient is generally assumed as a constant. However, increasing experiments prove that the diffusion coefficient of shale gas is strongly time-dependent. Therefore, to perfect the theory of shale gas diffusion, this paper proposes a time-dependent diffusion model for shale gas, which incorporates time-dependent gas diffusion coefficient, composing of the bulk diffusion coefficient for free gas in organic and inorganic pores, as well as the surface diffusion coefficient for adsorbed gas in organic pores. To validate the accuracy of the new theory, we calibrate the theoretical results against experimental data, and the results show that they have strong correlation, and the time-dependent diffusion model is superior to classical model. Finally, the numerical analysis of gas dynamic diffusion process in shale matrix is conducted. The results show that at the end of diffusion, a large amounts of shale gas remain trapped in the matrix core due to the attenuation of gas diffusion coefficient. In addition, neglecting the time-dependent nature of gas diffusion in shale matrix leads to a significant overestimation of gas production.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"47 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-21DOI: 10.1007/s40948-024-00827-0
Hucheng Yang, Peng Li, Shengrui Su, Jianxun Chen
Carbonaceous slate exhibits a significant creep deformation that seriously affects the construction and operation of underground projects. To investigate the microstructural changes characteristics and reveal the microscopic deformation mechanism of the carbonaceous slate during the creep process, multiple methods were performed, including the triaxial creep test, SEM and MIP. The following conclusions were drawn: The rock samples underwent three stages during the creep test: microporosity closure at a low-stress level, material densification at an intermediate stress level, and microcracks emerging and expanding to failure at the high stress. The creep deformation was particularly significant in the first and third processes. The lamellar particles are compressed or bent under stress in parallel and vertical directions, showing the anisotropic properties of deformation. The deformation of the rock sample is related to the angle between the bedding and the orientation of major principal stress, and the effect of the anisotropy decreases with the increased stress level. The sprouting and expansion of microfractures occur at high-stress levels, showing pressure dissolution of mineral particles, migration of very fine particles, and cement damage between lamellar particles. Finally, the horizontal samples formed a combined rupture surface composed of the laminar surface and the fracture surface intersecting it, showing brittle damage, while the vertical samples formed a fracture surface parallel to the laminar surface, showing a ductile damage pattern. Those results could provide the basis for a further understanding of the mechanical properties of carbonaceous slate and the improvement of its creep model and parameters. It was significant for the stability analysis and deformation prediction of engineering structures using numerical simulation.
{"title":"Microscopic deformation mechanism and characteristics of carbonaceous slate during the creep process","authors":"Hucheng Yang, Peng Li, Shengrui Su, Jianxun Chen","doi":"10.1007/s40948-024-00827-0","DOIUrl":"https://doi.org/10.1007/s40948-024-00827-0","url":null,"abstract":"<p>Carbonaceous slate exhibits a significant creep deformation that seriously affects the construction and operation of underground projects. To investigate the microstructural changes characteristics and reveal the microscopic deformation mechanism of the carbonaceous slate during the creep process, multiple methods were performed, including the triaxial creep test, SEM and MIP. The following conclusions were drawn: The rock samples underwent three stages during the creep test: microporosity closure at a low-stress level, material densification at an intermediate stress level, and microcracks emerging and expanding to failure at the high stress. The creep deformation was particularly significant in the first and third processes. The lamellar particles are compressed or bent under stress in parallel and vertical directions, showing the anisotropic properties of deformation. The deformation of the rock sample is related to the angle between the bedding and the orientation of major principal stress, and the effect of the anisotropy decreases with the increased stress level. The sprouting and expansion of microfractures occur at high-stress levels, showing pressure dissolution of mineral particles, migration of very fine particles, and cement damage between lamellar particles. Finally, the horizontal samples formed a combined rupture surface composed of the laminar surface and the fracture surface intersecting it, showing brittle damage, while the vertical samples formed a fracture surface parallel to the laminar surface, showing a ductile damage pattern. Those results could provide the basis for a further understanding of the mechanical properties of carbonaceous slate and the improvement of its creep model and parameters. It was significant for the stability analysis and deformation prediction of engineering structures using numerical simulation.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"17 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-18DOI: 10.1007/s40948-024-00828-z
Wei-Qiang Feng, Kamal Al-Zaoari, Ze-Jian Chen
Expansive soils are known to be hazardous materials for infrastructure due to their high shrinking or swelling potential. Understanding the shrinking factors of expansive soils such as montmorillonite (MMT) is essential for predicting their mechanical properties. The interactions between the components of Na-MMT clays, e.g., MMT layer–layer (LL), layer–cation (LC), layer–water (LW) and water–cation (WC), are responsible for its shrinking behavior. In this study, molecular dynamics simulation and grand canonical Monte Carlo simulations are used to investigate the interaction energy evolution in the layered structure of Na-MMT for the shrinkage mechanisms analysis of clay. The results of simulation indicate that the magnitude of the interaction energy contributed by the interlayer cations dehydration is the driving force of the interlayer shrinkage. Furthermore, in the hydrated state, with one water layer, two water layers and three water layers, the attractive interactions between WC and LW, maintain the stability of the clay layers. However, at the dry state, the interaction energy between layers and cations appears to be the most essential component in holding the stacked layers together, which provides structural stability to the clay sheets. Finally, the study reveals that intermolecular interactions contribute to the mechanical properties of clays such as cohesive and elastic properties.
{"title":"Insight on molecular interactions in shrinkage of Na-montmorillonite clay by molecular dynamics simulation","authors":"Wei-Qiang Feng, Kamal Al-Zaoari, Ze-Jian Chen","doi":"10.1007/s40948-024-00828-z","DOIUrl":"https://doi.org/10.1007/s40948-024-00828-z","url":null,"abstract":"<p>Expansive soils are known to be hazardous materials for infrastructure due to their high shrinking or swelling potential. Understanding the shrinking factors of expansive soils such as montmorillonite (MMT) is essential for predicting their mechanical properties. The interactions between the components of Na-MMT clays, e.g., MMT layer–layer (LL), layer–cation (LC), layer–water (LW) and water–cation (WC), are responsible for its shrinking behavior. In this study, molecular dynamics simulation and grand canonical Monte Carlo simulations are used to investigate the interaction energy evolution in the layered structure of Na-MMT for the shrinkage mechanisms analysis of clay. The results of simulation indicate that the magnitude of the interaction energy contributed by the interlayer cations dehydration is the driving force of the interlayer shrinkage. Furthermore, in the hydrated state, with one water layer, two water layers and three water layers, the attractive interactions between WC and LW, maintain the stability of the clay layers. However, at the dry state, the interaction energy between layers and cations appears to be the most essential component in holding the stacked layers together, which provides structural stability to the clay sheets. Finally, the study reveals that intermolecular interactions contribute to the mechanical properties of clays such as cohesive and elastic properties.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"35 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.1007/s40948-024-00825-2
Dingchao Chen, Xiangyu Wang, Jianbiao Bai, Menglong Li
The failure of waterproof coal pillars under the coupled effects of mining, excavation and water seepage is a significant factor contributing to sudden water inflow accidents in underground roadways. Investigating the instability characteristics and optimal width of waterproof coal pillars holds vital significance for water control and resource protection in mines. This study focus on the rational width of waterproof coal pillar at Dongzhuang Coal Mine in Shanxi Province. Using FLAC3D, a fluid–structure interaction numerical model of waterproof coal pillar was established, revealing the coupling characteristics of stress fields, plastic zones, and seepage zones within coal pillars under the influence of mining, excavation and water infiltration weakening. Furthermore, the stability characteristics of waterproof coal pillars with different widths were compared. The results are as follows: (1) Under the combined action of overlying strata pressure and water pressure from the gob, the coal mass on the water-inflow side of coal pillar is the first to fail. Additionally, with the infiltration of water, the elastic modulus, cohesion, and friction angle of the coal mass in the seepage zone decrease. (2) The lifecycle of waterproof coal pillar can be divided into three stages: working face mining, water infiltration from the gob, and roadway excavation. Based on this, the connectivity between plastic zones and seepage zones serves as the critical condition for the stability of waterproof coal pillar was proposed. (3) When the width of waterproof coal pillar is 3 m and 5 m, plastic zones become connected, forming a water-conducting channel. When the width of waterproof coal pillar is 7 m, 9 m, and 11 m, seepage zones and plastic zones are not connected, and the coal pillar exhibits load-bearing and water-barrier properties.
在采矿、掘进和渗水的耦合作用下,防水煤柱的失稳是造成井下巷道突水事故的重要因素。研究防水煤柱的失稳特性和最佳宽度对矿井防治水和资源保护具有重要意义。本研究的重点是山西省东庄煤矿防水煤柱的合理宽度。利用 FLAC3D 建立了防水煤柱流固耦合数值模型,揭示了煤柱在开采、掘进和渗水削弱作用下的应力场、塑性区和渗流区耦合特征。此外,还比较了不同宽度防水煤柱的稳定性特征。结果如下(1)在上覆地层压力和涌水压力的共同作用下,煤柱进水侧的煤块首先失稳。此外,随着水的渗入,渗流区煤块的弹性模量、粘聚力和摩擦角都会减小。(2)防水煤柱的生命周期可分为三个阶段:工作面开采、煤层渗水和巷道掘进。在此基础上,提出塑性区与渗流区的连通性是防水煤柱稳定性的关键条件。(3)当防水煤柱宽度为 3 m 和 5 m 时,塑性区连通,形成导水通道。当防水煤柱宽度为 7 m、9 m 和 11 m 时,渗流区和塑性区不相连,煤柱具有承载和阻水性能。
{"title":"Characteristics of waterproof failure and optimal width of narrow coal pillars under the coupled effects of mining, excavation and seepage","authors":"Dingchao Chen, Xiangyu Wang, Jianbiao Bai, Menglong Li","doi":"10.1007/s40948-024-00825-2","DOIUrl":"https://doi.org/10.1007/s40948-024-00825-2","url":null,"abstract":"<p>The failure of waterproof coal pillars under the coupled effects of mining, excavation and water seepage is a significant factor contributing to sudden water inflow accidents in underground roadways. Investigating the instability characteristics and optimal width of waterproof coal pillars holds vital significance for water control and resource protection in mines. This study focus on the rational width of waterproof coal pillar at Dongzhuang Coal Mine in Shanxi Province. Using FLAC<sup>3D</sup>, a fluid–structure interaction numerical model of waterproof coal pillar was established, revealing the coupling characteristics of stress fields, plastic zones, and seepage zones within coal pillars under the influence of mining, excavation and water infiltration weakening. Furthermore, the stability characteristics of waterproof coal pillars with different widths were compared. The results are as follows: (1) Under the combined action of overlying strata pressure and water pressure from the gob, the coal mass on the water-inflow side of coal pillar is the first to fail. Additionally, with the infiltration of water, the elastic modulus, cohesion, and friction angle of the coal mass in the seepage zone decrease. (2) The lifecycle of waterproof coal pillar can be divided into three stages: working face mining, water infiltration from the gob, and roadway excavation. Based on this, the connectivity between plastic zones and seepage zones serves as the critical condition for the stability of waterproof coal pillar was proposed. (3) When the width of waterproof coal pillar is 3 m and 5 m, plastic zones become connected, forming a water-conducting channel. When the width of waterproof coal pillar is 7 m, 9 m, and 11 m, seepage zones and plastic zones are not connected, and the coal pillar exhibits load-bearing and water-barrier properties.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"181 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141252066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.1007/s40948-024-00818-1
Ke Ma, Yu Li, Zhiyi Liao, Zuorong Wang, ZhengChun Jiang, Rulin Wang
Dam stability is one of the most important issues in hydraulic engineering. Microfractures and damage commonly occur during impoundment, which might lead to serious dam problems. In this study, based on the engineering background of the Sanhekou hydropower station, microseismic monitoring and numerical simulation were employed to systematically investigate the microfracture and damage characteristics of the dam body. First, the microseismic monitoring system was established to capture the microfractures inside the dam. The results indicated that the rise in water level elevation has a significant effect on the microfracture and damage characteristics of the dam body, especially during the early stage of impoundment. This can be reflected by the variation in the derived source parameters, i.e., the b value, daily energy release, daily apparent stress and daily apparent volume. In addition, the failure mode of the microfractures could be determined by using the ES/EP value of microseismic events and the moment tensor inversion method. The cracking orientation of the failure surfaces could also be determined by the moment tensor inversion method. Subsequently, numerical simulation was conducted where the initial damage of the dam was considered by integrating the microseismic monitoring data. The simulation results suggested that dam deformation under impoundment considering microseismic feedback agrees well with the real field measured results. The stress level of the dam toe was larger than that of the dam heel, and both the dam toe and dam heel were under compression before impoundment. However, with increasing water level elevation, the stress status of the dam heel area changes from compression to tension. The findings in this study will provide a better understanding of the damage and failure mechanism of dams during impoundment, which might be helpful for the design and support of dams in hydropower stations.
大坝稳定性是水利工程中最重要的问题之一。蓄水过程中经常发生微裂缝和破坏,可能导致严重的坝体问题。本研究基于三河口水电站的工程背景,采用微震监测和数值模拟的方法,系统研究了坝体的微裂缝和破坏特征。首先,建立了微震监测系统来捕捉坝体内部的微裂缝。结果表明,水位升高对坝体的微裂缝和破坏特征有显著影响,尤其是在蓄水初期。这可以从衍生源参数(即 b 值、日能量释放、日表观应力和日表观体积)的变化中反映出来。此外,还可利用微地震事件的 ES/EP 值和力矩张量反演法确定微裂缝的破坏模式。破坏面的开裂方向也可通过力矩张量反演法确定。随后进行了数值模拟,通过整合微震监测数据来考虑大坝的初始破坏。模拟结果表明,考虑到微震反馈,蓄水池下的大坝变形与实际现场测量结果非常吻合。坝趾的应力水平大于坝踵,坝趾和坝踵在蓄水前均处于压缩状态。然而,随着水位标高的增加,坝踵区域的应力状态由压缩变为拉伸。本研究的结果将有助于更好地理解蓄水过程中大坝的破坏和溃决机理,从而有助于水电站大坝的设计和支撑。
{"title":"Investigation of the microfracture and damage characteristics of dam during impoundment at Sanhekou hydropower station","authors":"Ke Ma, Yu Li, Zhiyi Liao, Zuorong Wang, ZhengChun Jiang, Rulin Wang","doi":"10.1007/s40948-024-00818-1","DOIUrl":"https://doi.org/10.1007/s40948-024-00818-1","url":null,"abstract":"<p>Dam stability is one of the most important issues in hydraulic engineering. Microfractures and damage commonly occur during impoundment, which might lead to serious dam problems. In this study, based on the engineering background of the Sanhekou hydropower station, microseismic monitoring and numerical simulation were employed to systematically investigate the microfracture and damage characteristics of the dam body. First, the microseismic monitoring system was established to capture the microfractures inside the dam. The results indicated that the rise in water level elevation has a significant effect on the microfracture and damage characteristics of the dam body, especially during the early stage of impoundment. This can be reflected by the variation in the derived source parameters, i.e., the <i>b</i> value, daily energy release, daily apparent stress and daily apparent volume. In addition, the failure mode of the microfractures could be determined by using the <i>E</i><sub><i>S</i></sub>/<i>E</i><sub><i>P</i></sub> value of microseismic events and the moment tensor inversion method. The cracking orientation of the failure surfaces could also be determined by the moment tensor inversion method. Subsequently, numerical simulation was conducted where the initial damage of the dam was considered by integrating the microseismic monitoring data. The simulation results suggested that dam deformation under impoundment considering microseismic feedback agrees well with the real field measured results. The stress level of the dam toe was larger than that of the dam heel, and both the dam toe and dam heel were under compression before impoundment. However, with increasing water level elevation, the stress status of the dam heel area changes from compression to tension. The findings in this study will provide a better understanding of the damage and failure mechanism of dams during impoundment, which might be helpful for the design and support of dams in hydropower stations.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"13 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141252068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.1007/s40948-024-00819-0
Xun Gong, Xinhua Ma, Yuyang Liu
The complexity of hydraulic fracture network generation during the fracturing of shale reservoirs is a key indicator of the effectiveness of fracture stimulation. To obtain as large a reservoir stimulation volume as possible, this paper reviews articles on the study of hydraulic fracture propagation mechanism during hydraulic fracturing, analyses the factors affecting hydraulic fracture propagation, and classifies them into two categories: geological factors and engineering factors. In particular, the geological factors affecting hydraulic fracture propagation are classified into five categories: mineral composition of the shale, connections between mineral grains, defects in the shale, geostress, and temperature. Various influencing factors act together, resulting in the hydraulic fracture propagation path is difficult to predict. Therefore, this paper firstly explores the hydraulic fracture propagation pattern under the action of single geological factors and specifies its action mechanism; secondly, it also analyses the hydraulic fracture propagation pattern under the combined action of multiple geological factors and analyses its action mechanism. It is clear that relatively high brittle mineral content and temperature, low stress anisotropy and cementation strength, and a more developed natural fracture network are conducive to the generation of a complex fracture network. By analyzing the influence mechanism of single factors and multiple factors, the influence mechanism of geological factors on hydraulic fracture propagation is identified, guiding the optimal design of hydraulic fracturing.
{"title":"Analysis of geological factors affecting propagation behavior of fracture during hydraulic fracturing shale formation","authors":"Xun Gong, Xinhua Ma, Yuyang Liu","doi":"10.1007/s40948-024-00819-0","DOIUrl":"https://doi.org/10.1007/s40948-024-00819-0","url":null,"abstract":"<p>The complexity of hydraulic fracture network generation during the fracturing of shale reservoirs is a key indicator of the effectiveness of fracture stimulation. To obtain as large a reservoir stimulation volume as possible, this paper reviews articles on the study of hydraulic fracture propagation mechanism during hydraulic fracturing, analyses the factors affecting hydraulic fracture propagation, and classifies them into two categories: geological factors and engineering factors. In particular, the geological factors affecting hydraulic fracture propagation are classified into five categories: mineral composition of the shale, connections between mineral grains, defects in the shale, geostress, and temperature. Various influencing factors act together, resulting in the hydraulic fracture propagation path is difficult to predict. Therefore, this paper firstly explores the hydraulic fracture propagation pattern under the action of single geological factors and specifies its action mechanism; secondly, it also analyses the hydraulic fracture propagation pattern under the combined action of multiple geological factors and analyses its action mechanism. It is clear that relatively high brittle mineral content and temperature, low stress anisotropy and cementation strength, and a more developed natural fracture network are conducive to the generation of a complex fracture network. By analyzing the influence mechanism of single factors and multiple factors, the influence mechanism of geological factors on hydraulic fracture propagation is identified, guiding the optimal design of hydraulic fracturing.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"40 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141252071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to investigate the macroscopic and mesoscopic mechanism of hydration instability of rock-grout structure under the influence of moisture content, a direct shear test combined with particle flow code (PFC) simulation was conducted subject to various moisture content levels and normal stresses. The results show that a higher moisture content would compromise the load bearing capacity of soft rock anchorage structures by deteriorating the structural integrity of the surrounding rock and the bonding effect between the anchorage interfaces. The load bearing capacity of the surrounding rock is also rapidly reduced. The rock-grout structure has four main shear damage modes, which are influenced by both moisture content and normal stress. When the saturated moisture content is reached, the anchorage structure has lost its bearing capacity, and the rock is muddied and subsequently debonded from the bolt. The energy required to break the internal adhesion of the rock-grout structure under the effect of hydration is greatly reduced, resulting in easy decoupling and dispersion between the rock skeleton particles. In turn, the rock surface particles bonded by the anchor agent are separated from the deeper particles, resulting in the failure of the bonding surface and weakening the coupling effect between the anchor and the surrounding rock. According to the test results, the control measures for surrounding rock of muddy roadway are put forward.
{"title":"Macroscopic and mesoscopic mechanism of hydration instability of the rock-grout coupled structure","authors":"Haoyu Rong, Wei Wang, Guichen Li, Dongxu Liang, Jiahui Xu","doi":"10.1007/s40948-024-00814-5","DOIUrl":"https://doi.org/10.1007/s40948-024-00814-5","url":null,"abstract":"<p>In order to investigate the macroscopic and mesoscopic mechanism of hydration instability of rock-grout structure under the influence of moisture content, a direct shear test combined with particle flow code (PFC) simulation was conducted subject to various moisture content levels and normal stresses. The results show that a higher moisture content would compromise the load bearing capacity of soft rock anchorage structures by deteriorating the structural integrity of the surrounding rock and the bonding effect between the anchorage interfaces. The load bearing capacity of the surrounding rock is also rapidly reduced. The rock-grout structure has four main shear damage modes, which are influenced by both moisture content and normal stress. When the saturated moisture content is reached, the anchorage structure has lost its bearing capacity, and the rock is muddied and subsequently debonded from the bolt. The energy required to break the internal adhesion of the rock-grout structure under the effect of hydration is greatly reduced, resulting in easy decoupling and dispersion between the rock skeleton particles. In turn, the rock surface particles bonded by the anchor agent are separated from the deeper particles, resulting in the failure of the bonding surface and weakening the coupling effect between the anchor and the surrounding rock. According to the test results, the control measures for surrounding rock of muddy roadway are put forward.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"48 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141196691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}