Pub Date : 2024-05-03DOI: 10.1007/s40948-024-00799-1
Xinxin Fang, Sijie Ma, Yunhong Wang, Fengling Li
To study borehole deformation under non-uniform horizontal principal stress in the deep strata, a prediction method for horizontal principal stress was developed based on the morphological parameters of boreholes, the deformation trajectory equation for the standard circular borehole was derived based on elasticity theory, and the morphological characteristics of boreholes were analyzed. Additionally, a quantitative relationship between the geometric parameters of elliptical boreholes and horizontal principal stress was established. Subsequently, uniaxial tests on borehole deformation were conducted to verify elliptical deformation under non-uniform horizontal principal stress. A combined deductive, experimental, and numerical simulation approach to borehole deformation analysis was adopted, and the impact factors of borehole deformation were obtained. The results indicated as following: (1) the deformation morphology of borehole under non-uniform horizontal principal stress was elliptical; (2) for the given lithology, the greater the difference in horizontal principal stress, the greater were the ellipticity and elliptical deformation of borehole; (3) for given stress background, rock strength was inversely proportional to ellipticity. Additionally, the smaller the Young’s modulus and compressive strength, the larger was the Poisson’s ratio and the larger was the ellipticity. For example, the ellipticity of mudstone and coal was greater than that of limestone and sandstone; (4) with an increase in load, the displacement of borehole wall exhibited three stages: initial micro-deformation, accelerated deformation, and stable deformation; (5) horizontal principal stress can be calculated by using the morphological parameters (long and short axes) of an elliptical hole. Furthermore, a horizontal principal stress method theory can be developed based on the morphological parameters of boreholes. The results of our study can provide new ideas and methods for the measurement of in situ stress in deep boreholes and a theoretical basis for the development of equipment for measuring elliptical boreholes.
{"title":"Experimental and numerical simulation investigation of the deformation characteristics of vertical boreholes under non-uniform horizontal principal stress","authors":"Xinxin Fang, Sijie Ma, Yunhong Wang, Fengling Li","doi":"10.1007/s40948-024-00799-1","DOIUrl":"https://doi.org/10.1007/s40948-024-00799-1","url":null,"abstract":"<p>To study borehole deformation under non-uniform horizontal principal stress in the deep strata, a prediction method for horizontal principal stress was developed based on the morphological parameters of boreholes, the deformation trajectory equation for the standard circular borehole was derived based on elasticity theory, and the morphological characteristics of boreholes were analyzed. Additionally, a quantitative relationship between the geometric parameters of elliptical boreholes and horizontal principal stress was established. Subsequently, uniaxial tests on borehole deformation were conducted to verify elliptical deformation under non-uniform horizontal principal stress. A combined deductive, experimental, and numerical simulation approach to borehole deformation analysis was adopted, and the impact factors of borehole deformation were obtained. The results indicated as following: (1) the deformation morphology of borehole under non-uniform horizontal principal stress was elliptical; (2) for the given lithology, the greater the difference in horizontal principal stress, the greater were the ellipticity and elliptical deformation of borehole; (3) for given stress background, rock strength was inversely proportional to ellipticity. Additionally, the smaller the Young’s modulus and compressive strength, the larger was the Poisson’s ratio and the larger was the ellipticity. For example, the ellipticity of mudstone and coal was greater than that of limestone and sandstone; (4) with an increase in load, the displacement of borehole wall exhibited three stages: initial micro-deformation, accelerated deformation, and stable deformation; (5) horizontal principal stress can be calculated by using the morphological parameters (long and short axes) of an elliptical hole. Furthermore, a horizontal principal stress method theory can be developed based on the morphological parameters of boreholes. The results of our study can provide new ideas and methods for the measurement of in situ stress in deep boreholes and a theoretical basis for the development of equipment for measuring elliptical boreholes.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"2 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1007/s40948-024-00805-6
Xinmin Ge, Renxia Zhang, Jianyu Liu, Yiren Fan, Michael Myers, Lori Hathon
The compressive strength is very important for petroleum and other engineering studies. However, the effect of pore size and fluid distribution on the rock’s strength is not fully understood. We developed comprehensive research to study the controlling factors of the compressive strength based on low field nuclear magnetic resonance (NMR) measurements and pseudo-triaxial compression test for tight sandstones. The relationship between the compressive strength and the NMR obtained parameters are investigated completely, aiming for a better estimation of the compressive strength using the NMR data. The result shows that the rock’s strength is strongly controlled by the pore size distribution and the fluid existing state. Generally, the compressive strength is negatively correlated with the average transversal relaxation time, the movable water saturation, and the porosity, but positively correlated with the irreducible water saturation. The result reveals that the rock with larger pore radius and higher percentage of movable fluid is easier to reach the failure state. Further, the precision of the empirical model by multiple regression of the geometric mean of the relaxation time and the porosity is greatly improved compared with the model established by the brittle minerals, which is potentially to be use for geophysical prospecting when the NMR logging data is available.
{"title":"Predicting the compressive strength of tight sandstone based on the low field NMR and pseudo-triaxial compression measurements","authors":"Xinmin Ge, Renxia Zhang, Jianyu Liu, Yiren Fan, Michael Myers, Lori Hathon","doi":"10.1007/s40948-024-00805-6","DOIUrl":"https://doi.org/10.1007/s40948-024-00805-6","url":null,"abstract":"<p>The compressive strength is very important for petroleum and other engineering studies. However, the effect of pore size and fluid distribution on the rock’s strength is not fully understood. We developed comprehensive research to study the controlling factors of the compressive strength based on low field nuclear magnetic resonance (NMR) measurements and pseudo-triaxial compression test for tight sandstones. The relationship between the compressive strength and the NMR obtained parameters are investigated completely, aiming for a better estimation of the compressive strength using the NMR data. The result shows that the rock’s strength is strongly controlled by the pore size distribution and the fluid existing state. Generally, the compressive strength is negatively correlated with the average transversal relaxation time, the movable water saturation, and the porosity, but positively correlated with the irreducible water saturation. The result reveals that the rock with larger pore radius and higher percentage of movable fluid is easier to reach the failure state. Further, the precision of the empirical model by multiple regression of the geometric mean of the relaxation time and the porosity is greatly improved compared with the model established by the brittle minerals, which is potentially to be use for geophysical prospecting when the NMR logging data is available.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"122 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1007/s40948-024-00807-4
Jianchao Wang, Wei Wang, Guoqing Chen, Yanke Wang
Rockburst is a common geological hazard in deep underground engineering, and it often occurs in strata consisting of brittle rocks. In this study, the moisture content effect on the rockburst intensity of sandstones is systematically studied. A series of triaxial unloading compression tests along with the acoustic emission monitoring are performed for sandstone specimens with different moisture content levels. The mechanical properties, failure characteristics, and dilatancy behaviors of sandstone specimens are then properly compared. Comparative results reveal that the triaxial compressive strength and total strain energy of the saturated specimen decrease by about 30% and 35%, respectively, as compared to those of the dry specimen. Moreover, the magnitude of elastic strain energy tends to decrease with the increasing water content. The effect of moisture content on the rockburst intensity of sandstones is, therefore, significant. Besides, it is also found that the onset of dilatancy is generally unaffected by the water content, whereas the extent of dilatancy significantly decreases with the increasing water content. Numerical simulations for a tunnel excavation model confirm that injecting water into the surrounding rock is an effective way of reducing the rockburst intensity during tunnel excavations. These results have a guiding significance for the prevention and control of rockbursts in underground engineering.
{"title":"Effect of moisture content on the rockburst intensity of sandstones","authors":"Jianchao Wang, Wei Wang, Guoqing Chen, Yanke Wang","doi":"10.1007/s40948-024-00807-4","DOIUrl":"https://doi.org/10.1007/s40948-024-00807-4","url":null,"abstract":"<p>Rockburst is a common geological hazard in deep underground engineering, and it often occurs in strata consisting of brittle rocks. In this study, the moisture content effect on the rockburst intensity of sandstones is systematically studied. A series of triaxial unloading compression tests along with the acoustic emission monitoring are performed for sandstone specimens with different moisture content levels. The mechanical properties, failure characteristics, and dilatancy behaviors of sandstone specimens are then properly compared. Comparative results reveal that the triaxial compressive strength and total strain energy of the saturated specimen decrease by about 30% and 35%, respectively, as compared to those of the dry specimen. Moreover, the magnitude of elastic strain energy tends to decrease with the increasing water content. The effect of moisture content on the rockburst intensity of sandstones is, therefore, significant. Besides, it is also found that the onset of dilatancy is generally unaffected by the water content, whereas the extent of dilatancy significantly decreases with the increasing water content. Numerical simulations for a tunnel excavation model confirm that injecting water into the surrounding rock is an effective way of reducing the rockburst intensity during tunnel excavations. These results have a guiding significance for the prevention and control of rockbursts in underground engineering.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"8 1","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-03DOI: 10.1007/s40948-024-00792-8
Qamar Yasin, Yan Ding, Qizhen Du, Hung Vo Thanh, Bo Liu
Geothermal energy is a sustainable energy source that meets the needs of the climate crisis and global warming caused by fossil fuel burning. Geothermal resources are found in complex geological settings, with faults and interconnected networks of fractures acting as pathways for fluid circulation. Identifying faults and fractures is an essential component of exploiting geothermal resources. However, accurately predicting fractures without high-resolution geophysical logs (e.g., image logs) and well-core samples is challenging. Soft computing techniques, such as machine learning, make it possible to map fracture networks at a finer resolution. This study employed four supervised machine learning techniques (multilayer perceptron (MLP), random forests (RF), extreme gradient boosting (XGBoost), and support vector regression (SVR)) to identify fractures in geothermal carbonate reservoirs in the sub-basins of East China. The models were trained and tested on a diverse well-logging dataset collected at the field scale. A comparison of the predicted results revealed that XGBoost with optimized hyperparameters and data division achieved the best performance than RF, MLP, and SVR with RMSE = 0.02 and R2 = 0.92. The Q-learning algorithm outperformed grid search, Bayesian, and ant colony optimizations. The blind well test demonstrates that it is possible to accurately identify fractures by applying machine learning algorithms to standard well logs. In addition, the comparative analysis indicates that XGBoost was able to handle the complex relationship between input parameters (e.g., DTP > RD > DEN > GR > CAL > RS > U > CNL) and fracture in geologically complex geothermal carbonate reservoirs. Furthermore, comparing the XGBoost model with previous studies proved superior in training and testing. This study suggests that XGBoost with Q-learning-based optimized hyperparameters and data division is a suitable algorithm for identifying fractures using well-log data to explore complex geothermal systems in carbonate rocks.