Epoxy resins (EP) have been commonly used, but their poor flame retardant properties have prevented their widespread use. In order to improve the flame retardant properties of EP, an organic-inorganic composite flame retardant (HKDC) containing multi-element P/N/Si was successfully synthesized in this work using a typical aldehyde amine condensation reaction. This flame retardant utilizes the synergistic effect of multiple elements to simultaneously perform the flame retardant function of each element, and it can achieve excellent flame retardant effect by using low addition amount in EP. At the same time, this flame retardant can not only reduce the migration of molecules through the structure of inorganic substances, but also the C = C reaction in EP can form large molecules and increase the compactness with the EP matrix. The flame retardants were then quantified by measuring their flame retardant properties, combustion behavior and thermal stability. When the flame retardant HKDC is added, the flame retardant performance of EP is improved and the vertical combustion test achieves a V-0 rating. Most importantly, the addition of flame retardant HKDC effectively suppressed the toxic gas and smoke emissions of EP, with TSP values much lower than those of pure EP, and CO and CO2 emissions were suppressed.
{"title":"Multi-element organic-inorganic flame retardants for enhancing the flame retardancy, reducing smoke and toxicity of epoxy resins","authors":"Huaiyin Liu, Junwei Li, Jichang Sun, Haihan Zhao, Jing Wu, Yun Zheng, Penglun Zheng","doi":"10.1177/09540083231170048","DOIUrl":"https://doi.org/10.1177/09540083231170048","url":null,"abstract":"Epoxy resins (EP) have been commonly used, but their poor flame retardant properties have prevented their widespread use. In order to improve the flame retardant properties of EP, an organic-inorganic composite flame retardant (HKDC) containing multi-element P/N/Si was successfully synthesized in this work using a typical aldehyde amine condensation reaction. This flame retardant utilizes the synergistic effect of multiple elements to simultaneously perform the flame retardant function of each element, and it can achieve excellent flame retardant effect by using low addition amount in EP. At the same time, this flame retardant can not only reduce the migration of molecules through the structure of inorganic substances, but also the C = C reaction in EP can form large molecules and increase the compactness with the EP matrix. The flame retardants were then quantified by measuring their flame retardant properties, combustion behavior and thermal stability. When the flame retardant HKDC is added, the flame retardant performance of EP is improved and the vertical combustion test achieves a V-0 rating. Most importantly, the addition of flame retardant HKDC effectively suppressed the toxic gas and smoke emissions of EP, with TSP values much lower than those of pure EP, and CO and CO2 emissions were suppressed.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46841152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-07DOI: 10.1177/09540083231169166
V. Soni, Jai Bhagwan Dahiya
A P/N containing flame retardant DOPO-QN was synthesized by a reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and 8-hydroxyquinoline (QN). Its chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) like 1H, 13C, 31P NMR, and high-resolution mass spectrometry (HRMS) techniques. The synthesized DOPO-QN was employed as an additive type flame retardant in combination with clay nanomer 1.34TCN (NC) in diglycidyl ether of bisphenol A/4,4ʹ-diaminodiphenlsulfone (DGEBA/DDS) to synthesize epoxy thermosets. The fire behavior of synthesized epoxy thermosets was studied by UL-94, limiting oxygen index (LOI), and cone calorimeter tests. The EP/DOPO-QN (1.5%P)/NC sample passed the UL-94 test with a V-0 rating and LOI value of 26.5%. A decrease in peak heat released, carbon monoxide, and carbon dioxide emissions was observed in the cone calorimeter test. Thermogravimetric analysis (TGA) of epoxy thermosets showed an increase in thermal stability at a higher temperature range on the formation of nanocomposites. Also, a remarkable improvement in storage modulus was observed for the EP/DOPO-QN (1.5%P)/NC sample containing 2.0% NC in dynamic mechanical analysis (DMA).
{"title":"Synthesis and characterization of a novel P/N containing flame retardant and its effect on flame-retardancy, thermal and mechanical properties of epoxy/clay nanocomposites","authors":"V. Soni, Jai Bhagwan Dahiya","doi":"10.1177/09540083231169166","DOIUrl":"https://doi.org/10.1177/09540083231169166","url":null,"abstract":"A P/N containing flame retardant DOPO-QN was synthesized by a reaction between 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and 8-hydroxyquinoline (QN). Its chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) like 1H, 13C, 31P NMR, and high-resolution mass spectrometry (HRMS) techniques. The synthesized DOPO-QN was employed as an additive type flame retardant in combination with clay nanomer 1.34TCN (NC) in diglycidyl ether of bisphenol A/4,4ʹ-diaminodiphenlsulfone (DGEBA/DDS) to synthesize epoxy thermosets. The fire behavior of synthesized epoxy thermosets was studied by UL-94, limiting oxygen index (LOI), and cone calorimeter tests. The EP/DOPO-QN (1.5%P)/NC sample passed the UL-94 test with a V-0 rating and LOI value of 26.5%. A decrease in peak heat released, carbon monoxide, and carbon dioxide emissions was observed in the cone calorimeter test. Thermogravimetric analysis (TGA) of epoxy thermosets showed an increase in thermal stability at a higher temperature range on the formation of nanocomposites. Also, a remarkable improvement in storage modulus was observed for the EP/DOPO-QN (1.5%P)/NC sample containing 2.0% NC in dynamic mechanical analysis (DMA).","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45614342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-01DOI: 10.1177/09540083221130420
P. Khanna, P. Ramkumar, Nikita Gupta
The current study reviews the viability of various fibre-polymer composites and treatment techniques along with the intricacy involved in improving the rotational moulding process. It is a method used in the manufacturing of hollow plastic items free from stress. As the rotational moulding process has gained prominence in a variety of crucial applications in recent years, a detailed analysis of this technique is important. For this reason, an exhaustive review of various fibres and polymers used in rotational moulding along with different pre-treatment techniques for improving the processability has been carried out and categorised into three sections. The first section deals with the type of polymers which are used for the process along with their nature and suitability for rotational moulding. The second section deals with the study of different fibres that have been blended with the polymers. The last section of the review discusses the different fibre treatment techniques which can be used to improve polymer-fibre compatibility. From a wide range of polymers used, it has been observed that the ease of processability of linear low-density polyethylene makes it the most suitable grade for rotational moulding. It can also be noticed that artificial fibres provide good mechanical properties compared to natural fibres but being eco-friendly and having low cost, natural fibres are more vital in the application. It is evident from the review that fibre pre-treatment enhances the polymer-fibre compatibility which improves the mechanical properties of the rotationally moulded products. Further, it can be concluded from the literature review that an adequate variety of polymer and fibre along with fibre treatment techniques can make an important contribution to the rotational moulding process.
{"title":"A review of polymers, fibre additives and fibre treatment techniques used in rotational moulding processing","authors":"P. Khanna, P. Ramkumar, Nikita Gupta","doi":"10.1177/09540083221130420","DOIUrl":"https://doi.org/10.1177/09540083221130420","url":null,"abstract":"The current study reviews the viability of various fibre-polymer composites and treatment techniques along with the intricacy involved in improving the rotational moulding process. It is a method used in the manufacturing of hollow plastic items free from stress. As the rotational moulding process has gained prominence in a variety of crucial applications in recent years, a detailed analysis of this technique is important. For this reason, an exhaustive review of various fibres and polymers used in rotational moulding along with different pre-treatment techniques for improving the processability has been carried out and categorised into three sections. The first section deals with the type of polymers which are used for the process along with their nature and suitability for rotational moulding. The second section deals with the study of different fibres that have been blended with the polymers. The last section of the review discusses the different fibre treatment techniques which can be used to improve polymer-fibre compatibility. From a wide range of polymers used, it has been observed that the ease of processability of linear low-density polyethylene makes it the most suitable grade for rotational moulding. It can also be noticed that artificial fibres provide good mechanical properties compared to natural fibres but being eco-friendly and having low cost, natural fibres are more vital in the application. It is evident from the review that fibre pre-treatment enhances the polymer-fibre compatibility which improves the mechanical properties of the rotationally moulded products. Further, it can be concluded from the literature review that an adequate variety of polymer and fibre along with fibre treatment techniques can make an important contribution to the rotational moulding process.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48919300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-27DOI: 10.1177/09540083231166849
S. Abdous, M. Derradji, Oussama Mehelli, Karim Khiari, Mohamed Elamine Kadi, Abdelmalek Habes, Noureddine Ramdani, Abdeljalil Zegaoui, Wen-ben Liu
The design of lightweight neutron shields has been restricted for quite some time to the use of epoxy thermosets as the main building blocks. Meanwhile, the recent developments in the field of polymers suggest otherwise. Indeed, the phthalonitrile (PN) resins have taken the lead over traditional thermosets in many demanding applications. Therefore, in a vision to introduce newer matrices with better performances and to further expand the applications of the PN resins into the nuclear field, the neutron shielding efficiency along with the thermal resistance performances of the neat PN polymer and its subsequent silane surface-modified B4C-reinforced composites were investigated. The neutron shielding measurements were performed using an optimized experimental setup at the NUR research reactor in Algiers. The neat PN polymer displayed better thermal neutron screening performances than the epoxy and benzoxazine, with a macroscopic cross-section (Σ) of a 1.936 cm−1, equivalent to a mean free path (λ) of 0.358 cm. The effect of the particle amount was also studied to maximize the shielding ability of the developed materials. For instance, the PN composite containing 20 wt. % of B4C displayed an outstanding screening ratio of about 99.8% for a sample thickness of 13 mm. Finally, the remarkable findings were put into context by providing multifaceted comparisons with the available shielding materials.
{"title":"Phthalonitrile resin reinforced silane surface modified boron carbide: Efficient neutrons screening and exceptional thermal properties","authors":"S. Abdous, M. Derradji, Oussama Mehelli, Karim Khiari, Mohamed Elamine Kadi, Abdelmalek Habes, Noureddine Ramdani, Abdeljalil Zegaoui, Wen-ben Liu","doi":"10.1177/09540083231166849","DOIUrl":"https://doi.org/10.1177/09540083231166849","url":null,"abstract":"The design of lightweight neutron shields has been restricted for quite some time to the use of epoxy thermosets as the main building blocks. Meanwhile, the recent developments in the field of polymers suggest otherwise. Indeed, the phthalonitrile (PN) resins have taken the lead over traditional thermosets in many demanding applications. Therefore, in a vision to introduce newer matrices with better performances and to further expand the applications of the PN resins into the nuclear field, the neutron shielding efficiency along with the thermal resistance performances of the neat PN polymer and its subsequent silane surface-modified B4C-reinforced composites were investigated. The neutron shielding measurements were performed using an optimized experimental setup at the NUR research reactor in Algiers. The neat PN polymer displayed better thermal neutron screening performances than the epoxy and benzoxazine, with a macroscopic cross-section (Σ) of a 1.936 cm−1, equivalent to a mean free path (λ) of 0.358 cm. The effect of the particle amount was also studied to maximize the shielding ability of the developed materials. For instance, the PN composite containing 20 wt. % of B4C displayed an outstanding screening ratio of about 99.8% for a sample thickness of 13 mm. Finally, the remarkable findings were put into context by providing multifaceted comparisons with the available shielding materials.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48583872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-14DOI: 10.1177/09540083231162516
V. Arivalagan, M. Meera, Devaraj Stephen, M. Soundarrajan, . SGGunasekaran
A new class of nanotitania reinforced polybenzoxazine (nTiO2/PBZ) hybrid nanocomposites was synthesized using newly designed phthalide cardo chain extended imine skeletal linked maleimido end capped polybenzoxazine (PHM-PBZ) and nTiO2 through in-situ sol-gel method. The formation of hybrid nanocomposites was confirmed by NMR and FT-IR spectra. The structurally stable nTiO2 present in the nTiO2/PBZ hybrids accounted their exceptional thermal stability and good char yield. The restricted motion of flexible polymeric chain resulted from the inclusion of nTiO2 in the PBZ system increased the glass transition temperature (T g ) to a higher percentage than that of neat PBZ system. With the successive enhancement in the incorporation of nTiO2, the synthesized nanocomposites exhibited better thermal stability, higher flame retardancy and lesser water absorption behaviour than the of neat PBZ. The sequential increments in the loading level of nTiO2 onto the PBZ matrices caused the lower value of dielectric constant than that of neat PBZ. The homogeneity and successful dispersion of the nTiO2 fillers in the PBZ matrix were ascertained from the strong fluorescent emissions observed in the wavelength range of 300–550 nm through optical studies. Scanning electron microscope and transmission electron microscopic micrographs evidenced the successful incorporation of nTiO2 as can be seen from the different morphology at the nanoscale level in the PBZ matrix. This kind of structurally designed nTiO2/PBZ nanocomposites may find multifaceted applications in the form of adhesives, encapsulants, matrices and sealants and in the fields of automobile and microelectronics applications for better performance and longevity.
{"title":"Phthalide cardo chain extended imine skeletal linked maleimido end capped nanotitania reinforced novel polybenzoxazine (nTiO2/PBZ) hybrid nanocomposites","authors":"V. Arivalagan, M. Meera, Devaraj Stephen, M. Soundarrajan, . SGGunasekaran","doi":"10.1177/09540083231162516","DOIUrl":"https://doi.org/10.1177/09540083231162516","url":null,"abstract":"A new class of nanotitania reinforced polybenzoxazine (nTiO2/PBZ) hybrid nanocomposites was synthesized using newly designed phthalide cardo chain extended imine skeletal linked maleimido end capped polybenzoxazine (PHM-PBZ) and nTiO2 through in-situ sol-gel method. The formation of hybrid nanocomposites was confirmed by NMR and FT-IR spectra. The structurally stable nTiO2 present in the nTiO2/PBZ hybrids accounted their exceptional thermal stability and good char yield. The restricted motion of flexible polymeric chain resulted from the inclusion of nTiO2 in the PBZ system increased the glass transition temperature (T g ) to a higher percentage than that of neat PBZ system. With the successive enhancement in the incorporation of nTiO2, the synthesized nanocomposites exhibited better thermal stability, higher flame retardancy and lesser water absorption behaviour than the of neat PBZ. The sequential increments in the loading level of nTiO2 onto the PBZ matrices caused the lower value of dielectric constant than that of neat PBZ. The homogeneity and successful dispersion of the nTiO2 fillers in the PBZ matrix were ascertained from the strong fluorescent emissions observed in the wavelength range of 300–550 nm through optical studies. Scanning electron microscope and transmission electron microscopic micrographs evidenced the successful incorporation of nTiO2 as can be seen from the different morphology at the nanoscale level in the PBZ matrix. This kind of structurally designed nTiO2/PBZ nanocomposites may find multifaceted applications in the form of adhesives, encapsulants, matrices and sealants and in the fields of automobile and microelectronics applications for better performance and longevity.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45426554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-14DOI: 10.1177/09540083231163582
Xin Yue, Jinsheng Zhao
In this work, two D-A monomers 2,3-di(5-methylfuran-2-yl)-5,7-di(thiophene-2-yl) thiopheno[3,4-b] pyrazine (MFTTP) and 2,3-di(5-methylfuran-2-yl)-5,7-di(4-methoxythiophen-2-yl) thiopheno [3,4-b] pyrazine (MFMOTTP) were first obtained by Stille Coupling reaction, and then the corresponding composites were obtained by in-situ oxidative polymerization method with supercapacitor carbon. The surface morphology, chemical structure, and the element valence states of two materials were characterized by scanning electron microscopy, infrared and XPS, respectively. The specific surface areas of PMFTTP@SC and PMFMOTTP@SC are measured as 756.5 and 954.9 m2/g, respectively. The CV curves were used to determine the initial oxidative and initial reduction potentials, both polymers have a narrow band gap with Eg values below 1.5 eV, electron clouds in the HOMO and LUMO orbits of the polymer are mainly distributed on the aromatic rings of the polymer backbone. Polymer composite materials were used as the anode materials and the lithium sheets were used as counter electrode, and then lithium ion batteries are assembled. The first discharge specific capacities of PMFTTP@SC and PMFMOTTP@SC are 741.9 and 951.3 mAh/g at a current density of 100 mA/g, and as the electrodes are activated in the subsequent cycles, their coulomb efficiencies can reach more than 92% from the third cycle. In contrast, PMFMOTTP with methoxy-thiophene as the donor unit has higher conductivity and lower corresponding impedance due to its stronger electron donating ability and abundant pore structure, which is also more conducive to the lithiation/delithiation redox process.
{"title":"Preparation and electrochemical properties of thieno-[3,4-b] pyrazine conjugated polymer composite supercapacitor carbon powder electrode materials for Li-organic battery","authors":"Xin Yue, Jinsheng Zhao","doi":"10.1177/09540083231163582","DOIUrl":"https://doi.org/10.1177/09540083231163582","url":null,"abstract":"In this work, two D-A monomers 2,3-di(5-methylfuran-2-yl)-5,7-di(thiophene-2-yl) thiopheno[3,4-b] pyrazine (MFTTP) and 2,3-di(5-methylfuran-2-yl)-5,7-di(4-methoxythiophen-2-yl) thiopheno [3,4-b] pyrazine (MFMOTTP) were first obtained by Stille Coupling reaction, and then the corresponding composites were obtained by in-situ oxidative polymerization method with supercapacitor carbon. The surface morphology, chemical structure, and the element valence states of two materials were characterized by scanning electron microscopy, infrared and XPS, respectively. The specific surface areas of PMFTTP@SC and PMFMOTTP@SC are measured as 756.5 and 954.9 m2/g, respectively. The CV curves were used to determine the initial oxidative and initial reduction potentials, both polymers have a narrow band gap with Eg values below 1.5 eV, electron clouds in the HOMO and LUMO orbits of the polymer are mainly distributed on the aromatic rings of the polymer backbone. Polymer composite materials were used as the anode materials and the lithium sheets were used as counter electrode, and then lithium ion batteries are assembled. The first discharge specific capacities of PMFTTP@SC and PMFMOTTP@SC are 741.9 and 951.3 mAh/g at a current density of 100 mA/g, and as the electrodes are activated in the subsequent cycles, their coulomb efficiencies can reach more than 92% from the third cycle. In contrast, PMFMOTTP with methoxy-thiophene as the donor unit has higher conductivity and lower corresponding impedance due to its stronger electron donating ability and abundant pore structure, which is also more conducive to the lithiation/delithiation redox process.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47087176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-10DOI: 10.1177/09540083231162513
Aziz Ahmadi-khaneghah, Sara Khosravi-ardakani, Abolfazl Jahani, Hossein Behniafar
In this research, diglycidyl ethers of bisphenol-A (BADGE) and polyethylene glycol (PEGDGE) were binarily cured with a mixture of diamine curing agents including isophorone diamine and polyethylene glycol diamine (PEGDA) in the absence/presence of aminated graphene oxide nanoplatelets (AGNPs, 0.5 wt.%). Four molar ratios of diglycidyl ethers and curing agents were used stoichiometrically in isothermal curing systems. The films prepared from the epoxy networks were entirely strong and pliable. All epoxy thermosets were evaluated using field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and diffuse reflectance-ultraviolet/visible spectroscopy (DR-UV/vis). The absorption coefficients of the epoxy and AGNPs-loaded epoxy materials decreased with increasing the molar ratio of PEGDGE resin and polyethylene glycol diamine curing agent. According to dynamic mechanical analysis no phase heterogeneity occurred in the structure of the prepared thermostats. When the thermoset materials were loaded by AGNPs filler, the peaks associated with alpha relaxations shifted to higher temperatures. Moreover, thermogravimetric analysis demonstrated that the thermal stability of the prepared epoxy thermosets slightly increased after the addition of the nanoplatelets. In addition, the thermal resistance of the prepared thermosets decreased to some extent by increasing the participation rate of monomers containing polyoxyethylene. Graphical Abstract
{"title":"Binary Resin-Curing Agent Systems for Fabricating Epoxy and Graphene Oxide-loaded Epoxy Films","authors":"Aziz Ahmadi-khaneghah, Sara Khosravi-ardakani, Abolfazl Jahani, Hossein Behniafar","doi":"10.1177/09540083231162513","DOIUrl":"https://doi.org/10.1177/09540083231162513","url":null,"abstract":"In this research, diglycidyl ethers of bisphenol-A (BADGE) and polyethylene glycol (PEGDGE) were binarily cured with a mixture of diamine curing agents including isophorone diamine and polyethylene glycol diamine (PEGDA) in the absence/presence of aminated graphene oxide nanoplatelets (AGNPs, 0.5 wt.%). Four molar ratios of diglycidyl ethers and curing agents were used stoichiometrically in isothermal curing systems. The films prepared from the epoxy networks were entirely strong and pliable. All epoxy thermosets were evaluated using field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and diffuse reflectance-ultraviolet/visible spectroscopy (DR-UV/vis). The absorption coefficients of the epoxy and AGNPs-loaded epoxy materials decreased with increasing the molar ratio of PEGDGE resin and polyethylene glycol diamine curing agent. According to dynamic mechanical analysis no phase heterogeneity occurred in the structure of the prepared thermostats. When the thermoset materials were loaded by AGNPs filler, the peaks associated with alpha relaxations shifted to higher temperatures. Moreover, thermogravimetric analysis demonstrated that the thermal stability of the prepared epoxy thermosets slightly increased after the addition of the nanoplatelets. In addition, the thermal resistance of the prepared thermosets decreased to some extent by increasing the participation rate of monomers containing polyoxyethylene. Graphical Abstract","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49092005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel nanocomposite proton-exchange membrane (PEM) was obtained by combined electrospinning and solution casting of a composite solution of sulfophenylated poly(ether ether ketone ketone) (SP-PEEKK) and maleic anhydride modified nanocellulose (MN). SP-PEEKK was prepared by polymerization between phenyl hydroquinone and 1,4-bis(4-fluorobenzoyl)benzene followed by post-sulfonation. Nanocellulose (NCC) was prepared by the acid treatment of MCC with sulfuric acid, and MN with carboxyl group was obtained by modifying NCC with maleic anhydride. PEMs with 2% MN (MN2) showed a water uptake of 28% at 100°C, which was higher than that of MN0 (with 0% MN content). MN2 possessed a high tensile strength of 48.7 MPa, Young’s modulus of 1.3 GPa, and elongation at break of 34%, which was 54%, 21%, and 16% higher than those of MN0, respectively. Thus, the ordered distributed of MN was illustrated to be the effective reinforcing material for SP-PEEKK membranes because of the strong interface between the hydroxyl group of rigid MN and the sulfonic acid group of SP-PEEKK. MN2 also had a substantially higher proton conductivity of 0.09 S cm−1 at 90°C than MN0 (0.037 S cm−1). Therefore, combined electrospinning and solution casting was found to be a promising choice to improve the proton conductivity of nanocomposite PEMs, as promoted by the three-dimensional hydrogen bond-proton-transport network formed by the well-oriented MN in SPEEKK produced by the electrospinning.
将磺基苯基化聚醚醚酮(SP-PEEKK)和马来酸酐改性纳米纤维素(MN)的复合溶液通过静电纺丝和溶液浇铸相结合,制备了一种新型纳米复合质子交换膜(PEM)。SP-PEEKK是由苯基对苯二酚和1,4-双(4-氟苯甲酰基)苯聚合,然后进行后磺化制备的。用硫酸对MCC进行酸处理制备了纳米纤维素(NCC),并用马来酸酐对其进行改性,得到了具有羧基的MN。含2%MN的PEMs(MN2)在100°C下的吸水率为28%,高于MN0(含0%MN)。MN2具有48.7MPa的高拉伸强度、1.3GPa的杨氏模量和34%的断裂伸长率,分别比MN0高54%、21%和16%。因此,由于刚性MN的羟基和SP-PEEKK的磺酸基之间的强界面,MN的有序分布被证明是SP-PEEKK的膜的有效增强材料。在90°C下,MN2的质子传导率也显著高于MN0(0.037 S cm−1),为0.09 S cm−。因此,电纺丝和溶液浇铸相结合是提高纳米复合PEM质子导电性的一种很有前途的选择,这得益于电纺丝产生的SPEEKK中取向良好的MN形成的三维氢键质子传输网络。
{"title":"Carboxyl-functionalized nanocellulose/sulfonated poly(aryl ether ether ketone ketone) composites for proton exchange membrane by electrospinning","authors":"Xiaohui Guo, Xue Yang, Wanli Liu, Shuai Zheng, Yuanrui Wang, Wei Hu, Baijun Liu","doi":"10.1177/09540083231162515","DOIUrl":"https://doi.org/10.1177/09540083231162515","url":null,"abstract":"A novel nanocomposite proton-exchange membrane (PEM) was obtained by combined electrospinning and solution casting of a composite solution of sulfophenylated poly(ether ether ketone ketone) (SP-PEEKK) and maleic anhydride modified nanocellulose (MN). SP-PEEKK was prepared by polymerization between phenyl hydroquinone and 1,4-bis(4-fluorobenzoyl)benzene followed by post-sulfonation. Nanocellulose (NCC) was prepared by the acid treatment of MCC with sulfuric acid, and MN with carboxyl group was obtained by modifying NCC with maleic anhydride. PEMs with 2% MN (MN2) showed a water uptake of 28% at 100°C, which was higher than that of MN0 (with 0% MN content). MN2 possessed a high tensile strength of 48.7 MPa, Young’s modulus of 1.3 GPa, and elongation at break of 34%, which was 54%, 21%, and 16% higher than those of MN0, respectively. Thus, the ordered distributed of MN was illustrated to be the effective reinforcing material for SP-PEEKK membranes because of the strong interface between the hydroxyl group of rigid MN and the sulfonic acid group of SP-PEEKK. MN2 also had a substantially higher proton conductivity of 0.09 S cm−1 at 90°C than MN0 (0.037 S cm−1). Therefore, combined electrospinning and solution casting was found to be a promising choice to improve the proton conductivity of nanocomposite PEMs, as promoted by the three-dimensional hydrogen bond-proton-transport network formed by the well-oriented MN in SPEEKK produced by the electrospinning.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48881860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-05DOI: 10.1177/09540083231162511
Weilong Cai, Wei Wang, Z. Zheng, Jingyun Zhang, Hong Cao, Jianying Huang, Bing Zhang, Y. Lai
Owing to the complicated environments, the service life of bag-filter or electrostatic-bag composite precipitators with polyphenylene sulfide (PPS) is greatly deviated from the ideal time. In this paper, the structural transformation of PPS-based bag filter materials collected from the coal-fired power plants with different loading units were investigated systematically. As the SO2 content increases, the surface evolution of PPS fibers from smoothness to crack occurs. An opposite trend is observed for melting point and cross breaking strength. The major reason for the failure of PPS-based bag filters is that working temperature (T) often passes through acid dew gas point (Ta), and the SO3 would be produced during the condensing of H2SO4 when T is lower than Ta. The SO3 with strong oxidation would attack the weak C-S bonds of PPS, resulting in the oxidation or even sulfonation of PPS-based bag filters. This work discloses the actual structural evolution of PPS and some corresponding rules under the complicated corrosive gases with high temperatures, which provides a guidance for prolonging the service life of PPS-based bag filters during the usage of coal-fired power plants.
{"title":"Structural transformation and performance analysis of PPS-based bag filters in coal-fired power plants","authors":"Weilong Cai, Wei Wang, Z. Zheng, Jingyun Zhang, Hong Cao, Jianying Huang, Bing Zhang, Y. Lai","doi":"10.1177/09540083231162511","DOIUrl":"https://doi.org/10.1177/09540083231162511","url":null,"abstract":"Owing to the complicated environments, the service life of bag-filter or electrostatic-bag composite precipitators with polyphenylene sulfide (PPS) is greatly deviated from the ideal time. In this paper, the structural transformation of PPS-based bag filter materials collected from the coal-fired power plants with different loading units were investigated systematically. As the SO2 content increases, the surface evolution of PPS fibers from smoothness to crack occurs. An opposite trend is observed for melting point and cross breaking strength. The major reason for the failure of PPS-based bag filters is that working temperature (T) often passes through acid dew gas point (Ta), and the SO3 would be produced during the condensing of H2SO4 when T is lower than Ta. The SO3 with strong oxidation would attack the weak C-S bonds of PPS, resulting in the oxidation or even sulfonation of PPS-based bag filters. This work discloses the actual structural evolution of PPS and some corresponding rules under the complicated corrosive gases with high temperatures, which provides a guidance for prolonging the service life of PPS-based bag filters during the usage of coal-fired power plants.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42508654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A series of soluble thermosetting polyimide resins containing benzoxazole structure were synthesized by two-step polymerization using 4-phenylethynylphthalic anhydride (4-PEPA) as the end-capping reagent, 2-(4-aminophenyl)-5-aminobenzoxazole (BOA) and 3,4′-diaminodiphenyl ether (3,4′-ODA) as the aromatic diamines, and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as the aromatic dianhydride. The imide oligomers were characterized by employing Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), solubility tests and rheological measurements. Thermosetting polyimides derived from the imide oligomers were then produced via a thermal cross-linking reaction of the phenylethynyl group. The thermal and mechanical properties of the thermosets were studied using thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMA), and mechanical property measurements. The effects of chemical architectures and molecular weights of the imide oligomers on processability, thermostability and mechanical properties were systematically investigated. The results showed that all the copolymerized imide oligomers possessed good solubility in organic and low melt viscosity, and the corresponding thermosets exhibited high glass transition temperature (up to 401°C) and 5% weight-loss temperature (up to 533°C) in an air atmosphere while excellent mechanical properties (flexural strength up to 217 MPa and elongation at break up to 11.2%). With the increase of the concentration of the benzoxazole group, the imide oligomers of PI-X-2 (-O-, -BO-, -B-) exhibited less solubility and higher minimum melt viscosity but improved glass transition temperature after curing and mechanical properties of their thermosets.
{"title":"Soluble imide oligomers containing benzoxazole structures","authors":"Yujing Xiang, Xiangsheng Meng, Xianwei Wang, Xianming Li, Aimin Chen","doi":"10.1177/09540083231161413","DOIUrl":"https://doi.org/10.1177/09540083231161413","url":null,"abstract":"A series of soluble thermosetting polyimide resins containing benzoxazole structure were synthesized by two-step polymerization using 4-phenylethynylphthalic anhydride (4-PEPA) as the end-capping reagent, 2-(4-aminophenyl)-5-aminobenzoxazole (BOA) and 3,4′-diaminodiphenyl ether (3,4′-ODA) as the aromatic diamines, and 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as the aromatic dianhydride. The imide oligomers were characterized by employing Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), solubility tests and rheological measurements. Thermosetting polyimides derived from the imide oligomers were then produced via a thermal cross-linking reaction of the phenylethynyl group. The thermal and mechanical properties of the thermosets were studied using thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMA), and mechanical property measurements. The effects of chemical architectures and molecular weights of the imide oligomers on processability, thermostability and mechanical properties were systematically investigated. The results showed that all the copolymerized imide oligomers possessed good solubility in organic and low melt viscosity, and the corresponding thermosets exhibited high glass transition temperature (up to 401°C) and 5% weight-loss temperature (up to 533°C) in an air atmosphere while excellent mechanical properties (flexural strength up to 217 MPa and elongation at break up to 11.2%). With the increase of the concentration of the benzoxazole group, the imide oligomers of PI-X-2 (-O-, -BO-, -B-) exhibited less solubility and higher minimum melt viscosity but improved glass transition temperature after curing and mechanical properties of their thermosets.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44329134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}