Rebecca L Margraf, Rachel Z Alexander, Makenzie L Fulmer, Christine E Miller, Elena Coupal, Rong Mao
The Multiple Endocrine Neoplasia type 2 (MEN2) RET proto-oncogene database, originally published in 2008, is a comprehensive repository of all publicly available RET gene variations associated with MEN2 syndromes. The variant-specific genotype/phenotype information, age of earliest reported medullary thyroid carcinoma (MTC) onset, and relevant references with a brief summary of findings are cataloged. The ACMG/AMP 2015 consensus statement on variant classification was modified specifically for MEN2 syndromes and RET variants using ClinGen sequence variant interpretation working group recommendations and ClinGen expert panel manuscripts, as well as manuscripts from the American Thyroid Association Guidelines Task Force on Medullary Thyroid Carcinoma and other MEN2 RET literature. The classifications for the 166 single unique variants in the MEN2 RET database were reanalyzed using the MEN2 RET specifically modified ACMG/AMP classification guidelines (version 1). Applying these guidelines added two new variant classifications to the database (likely benign and likely pathogenic) and resulted in clinically significant classification changes (e.g., from pathogenic to uncertain) in 15.7% (26/166) of the original variants. Of those clinically significant changes, the highest percentage of changes, 46.2% (12/26), were changes from uncertain to benign or likely benign. The modified ACMG/AMP criteria with MEN2 RET specifications will optimize and standardize RET variant classifications.
{"title":"Multiple endocrine neoplasia type 2 (MEN2) and RET specific modifications of the ACMG/AMP variant classification guidelines and impact on the MEN2 RET database.","authors":"Rebecca L Margraf, Rachel Z Alexander, Makenzie L Fulmer, Christine E Miller, Elena Coupal, Rong Mao","doi":"10.1002/humu.24486","DOIUrl":"https://doi.org/10.1002/humu.24486","url":null,"abstract":"<p><p>The Multiple Endocrine Neoplasia type 2 (MEN2) RET proto-oncogene database, originally published in 2008, is a comprehensive repository of all publicly available RET gene variations associated with MEN2 syndromes. The variant-specific genotype/phenotype information, age of earliest reported medullary thyroid carcinoma (MTC) onset, and relevant references with a brief summary of findings are cataloged. The ACMG/AMP 2015 consensus statement on variant classification was modified specifically for MEN2 syndromes and RET variants using ClinGen sequence variant interpretation working group recommendations and ClinGen expert panel manuscripts, as well as manuscripts from the American Thyroid Association Guidelines Task Force on Medullary Thyroid Carcinoma and other MEN2 RET literature. The classifications for the 166 single unique variants in the MEN2 RET database were reanalyzed using the MEN2 RET specifically modified ACMG/AMP classification guidelines (version 1). Applying these guidelines added two new variant classifications to the database (likely benign and likely pathogenic) and resulted in clinically significant classification changes (e.g., from pathogenic to uncertain) in 15.7% (26/166) of the original variants. Of those clinically significant changes, the highest percentage of changes, 46.2% (12/26), were changes from uncertain to benign or likely benign. The modified ACMG/AMP criteria with MEN2 RET specifications will optimize and standardize RET variant classifications.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10558942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rossano Atzeni, Matteo Massidda, Giorgio Fotia, Paolo Uva
The reinterpretation of variants based on updated annotations is part of the routine work of research laboratories: the more data is collected about a specific variant, the higher the probability to reinterpret its classification. To support this task, we developed VariantAlert, a web-based tool to help researchers and clinicians to be constantly informed about changes in variant annotations extracted from multiple sources. VariantAlert provides daily re-annotation of variants using external resources accessed through application programming interface, such as MyVariant.info providing in turn links to gnomAD, catalogue of somatic mutations In cancer (COSMIC), ClinVar, CIViC, and many others. Researchers and clinicians can submit one or more lists of variants. If a change is detected for the annotation of a variant due to the upgrade of the underlying resource (e.g., change in gnomAD allele frequency, presence in COSMIC database, change in ClinVar classification) the user is notified by email and updated annotations are stored on the web-site. VariantAlert is freely available at https://github.com/next-crs4/VariantAlert. Installation and deployment are easy thanks to the use of the Docker platform. A Makefile allows you to easily bootstrap VariantAlert. VariantAlert is also available as a web service at https://variant-alert.crs4.it/.
{"title":"VariantAlert: A web-based tool to notify updates in genetic variant annotations.","authors":"Rossano Atzeni, Matteo Massidda, Giorgio Fotia, Paolo Uva","doi":"10.1002/humu.24495","DOIUrl":"https://doi.org/10.1002/humu.24495","url":null,"abstract":"<p><p>The reinterpretation of variants based on updated annotations is part of the routine work of research laboratories: the more data is collected about a specific variant, the higher the probability to reinterpret its classification. To support this task, we developed VariantAlert, a web-based tool to help researchers and clinicians to be constantly informed about changes in variant annotations extracted from multiple sources. VariantAlert provides daily re-annotation of variants using external resources accessed through application programming interface, such as MyVariant.info providing in turn links to gnomAD, catalogue of somatic mutations In cancer (COSMIC), ClinVar, CIViC, and many others. Researchers and clinicians can submit one or more lists of variants. If a change is detected for the annotation of a variant due to the upgrade of the underlying resource (e.g., change in gnomAD allele frequency, presence in COSMIC database, change in ClinVar classification) the user is notified by email and updated annotations are stored on the web-site. VariantAlert is freely available at https://github.com/next-crs4/VariantAlert. Installation and deployment are easy thanks to the use of the Docker platform. A Makefile allows you to easily bootstrap VariantAlert. VariantAlert is also available as a web service at https://variant-alert.crs4.it/.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9b/1c/HUMU-43-1808.PMC10091775.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9297375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Plectin, encoded by PLEC, is a cytoskeletal linker of intermediate filaments expressed in many cell types. Plectin consists of three main domains that determine its functionality: the N-terminal domain, the Rod domain, and the C-terminal domain. Molecular defects of PLEC correlating with the functional aspects lead to a group of rare heritable disorders, plectinopathies. These multisystem disorders include an autosomal dominant form of epidermolysis bullosa simplex (EBS-Ogna), limb-girdle muscular dystrophy (LGMD), aplasia cutis congenita (ACC), and an autosomal recessive form of EBS, which may associate with muscular dystrophy (EBS-MD), pyloric atresia (EBS-PA), and/or congenital myasthenic syndrome (EBS-MyS). In this study, genotyping of over 600 Iranian patients with epidermolysis bullosa by next-generation sequencing identified 15 patients with disease-causing PLEC variants. This mutation update analyzes the clinical spectrum of PLEC in our cohort and in the literature and demonstrates the relationship between PLEC genotype and phenotypic manifestations. This study has integrated our seven novel PLEC variants and phenotypic findings with previously published data totaling 116 variants to provide the most complete overview of pathogenic PLEC variants and related disorders.
{"title":"Mutation update: The spectra of PLEC sequence variants and related plectinopathies.","authors":"Hassan Vahidnezhad, Leila Youssefian, Nailah Harvey, Ali Reza Tavasoli, Amir Hossein Saeidian, Soheila Sotoudeh, Aida Varghaei, Hamidreza Mahmoudi, Parvin Mansouri, Nikoo Mozafari, Omid Zargari, Sirous Zeinali, Jouni Uitto","doi":"10.1002/humu.24434","DOIUrl":"10.1002/humu.24434","url":null,"abstract":"<p><p>Plectin, encoded by PLEC, is a cytoskeletal linker of intermediate filaments expressed in many cell types. Plectin consists of three main domains that determine its functionality: the N-terminal domain, the Rod domain, and the C-terminal domain. Molecular defects of PLEC correlating with the functional aspects lead to a group of rare heritable disorders, plectinopathies. These multisystem disorders include an autosomal dominant form of epidermolysis bullosa simplex (EBS-Ogna), limb-girdle muscular dystrophy (LGMD), aplasia cutis congenita (ACC), and an autosomal recessive form of EBS, which may associate with muscular dystrophy (EBS-MD), pyloric atresia (EBS-PA), and/or congenital myasthenic syndrome (EBS-MyS). In this study, genotyping of over 600 Iranian patients with epidermolysis bullosa by next-generation sequencing identified 15 patients with disease-causing PLEC variants. This mutation update analyzes the clinical spectrum of PLEC in our cohort and in the literature and demonstrates the relationship between PLEC genotype and phenotypic manifestations. This study has integrated our seven novel PLEC variants and phenotypic findings with previously published data totaling 116 variants to provide the most complete overview of pathogenic PLEC variants and related disorders.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9771971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10555043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Beau D E Janssen, Marie-Jose H van den Boogaard, Klaske Lichtenbelt, Eleanor G Seaby, Karen Stals, Sian Ellard, Ruth Newbury-Ecob, Abhijit Dixit, Laura Roht, Sander Pajusalu, Katrin Õunap, Helen V Firth, Michael Buckley, Meredith Wilson, Tony Roscioli, Timothy Tidwell, Rong Mao, Sarah Ennis, Sjoerd J Holwerda, Koen van Gassen, Richard H van Jaarsveld
TATA-binding protein associated factor 4 (TAF4) is a subunit of the Transcription Factor IID (TFIID) complex, a central player in transcription initiation. Other members of this multimeric complex have been implicated previously as monogenic disease genes in human developmental disorders. TAF4 has not been described to date as a monogenic disease gene. We here present a cohort of eight individuals, each carrying de novo putative loss-of-function (pLoF) variants in TAF4 and expressing phenotypes consistent with a neuro-developmental disorder (NDD). Common features include intellectual disability, abnormal behavior, and facial dysmorphisms. We propose TAF4 as a novel dominant disease gene for NDD, and coin this novel disorder "TAF4-related NDD" (T4NDD). We place T4NDD in the context of other disorders related to TFIID subunits, revealing shared features of T4NDD with other TAF-opathies.
{"title":"De novo putative loss-of-function variants in TAF4 are associated with a neuro-developmental disorder.","authors":"Beau D E Janssen, Marie-Jose H van den Boogaard, Klaske Lichtenbelt, Eleanor G Seaby, Karen Stals, Sian Ellard, Ruth Newbury-Ecob, Abhijit Dixit, Laura Roht, Sander Pajusalu, Katrin Õunap, Helen V Firth, Michael Buckley, Meredith Wilson, Tony Roscioli, Timothy Tidwell, Rong Mao, Sarah Ennis, Sjoerd J Holwerda, Koen van Gassen, Richard H van Jaarsveld","doi":"10.1002/humu.24444","DOIUrl":"https://doi.org/10.1002/humu.24444","url":null,"abstract":"<p><p>TATA-binding protein associated factor 4 (TAF4) is a subunit of the Transcription Factor IID (TFIID) complex, a central player in transcription initiation. Other members of this multimeric complex have been implicated previously as monogenic disease genes in human developmental disorders. TAF4 has not been described to date as a monogenic disease gene. We here present a cohort of eight individuals, each carrying de novo putative loss-of-function (pLoF) variants in TAF4 and expressing phenotypes consistent with a neuro-developmental disorder (NDD). Common features include intellectual disability, abnormal behavior, and facial dysmorphisms. We propose TAF4 as a novel dominant disease gene for NDD, and coin this novel disorder \"TAF4-related NDD\" (T4NDD). We place T4NDD in the context of other disorders related to TFIID subunits, revealing shared features of T4NDD with other TAF-opathies.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a3/6f/HUMU-43-1844.PMC10087332.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9278849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Musculocontractural Ehlers-Danlos syndrome caused by dermatan sulfate epimerase deficiency (mcEDS-DSE) is a rare connective tissue disorder. This is the first report describing the detailed and comprehensive clinical and pathophysiological features of mcEDS-DSE. The patient, with a novel homozygous nonsense variant (NM_013352.4:c.2601C>A:p.(Tyr867*)), exhibited mild skin hyperextensibility without fragility and small joint hypermobility, but developed recurrent large subcutaneous hematomas. Dermatan sulfate (DS) moieties on chondroitin sulfate/DS proteoglycans were significantly decreased, but remained present, in skin fibroblasts. Electron microscopy examination of skin specimens, including cupromeronic blue-staining to visualize glycosaminoglycan (GAG) chains, revealed coexistence of normally assembled collagen fibrils with attached curved GAG chains and dispersed collagen fibrils with linear GAG chains from attached collagen fibrils across interfibrillar spaces to adjacent fibrils. Residual activity of DS-epi1, encoded by DSE, and/or compensation by DS-epi2, a minor homolog of DS-epi1, may contribute to the mild skin involvement through this "mosaic" pattern of collagen fibril assembly.
{"title":"Clinical and pathophysiological delineation of musculocontractural Ehlers-Danlos syndrome caused by dermatan sulfate epimerase deficiency (mcEDS-DSE): A detailed and comprehensive glycobiological and pathological investigation in a novel patient.","authors":"Mari Minatogawa, Takuya Hirose, Shuji Mizumoto, Tomomi Yamaguchi, Chiai Nagae, Masashi Taki, Shuhei Yamada, Takafumi Watanabe, Tomoki Kosho","doi":"10.1002/humu.24437","DOIUrl":"https://doi.org/10.1002/humu.24437","url":null,"abstract":"<p><p>Musculocontractural Ehlers-Danlos syndrome caused by dermatan sulfate epimerase deficiency (mcEDS-DSE) is a rare connective tissue disorder. This is the first report describing the detailed and comprehensive clinical and pathophysiological features of mcEDS-DSE. The patient, with a novel homozygous nonsense variant (NM_013352.4:c.2601C>A:p.(Tyr867*)), exhibited mild skin hyperextensibility without fragility and small joint hypermobility, but developed recurrent large subcutaneous hematomas. Dermatan sulfate (DS) moieties on chondroitin sulfate/DS proteoglycans were significantly decreased, but remained present, in skin fibroblasts. Electron microscopy examination of skin specimens, including cupromeronic blue-staining to visualize glycosaminoglycan (GAG) chains, revealed coexistence of normally assembled collagen fibrils with attached curved GAG chains and dispersed collagen fibrils with linear GAG chains from attached collagen fibrils across interfibrillar spaces to adjacent fibrils. Residual activity of DS-epi1, encoded by DSE, and/or compensation by DS-epi2, a minor homolog of DS-epi1, may contribute to the mild skin involvement through this \"mosaic\" pattern of collagen fibril assembly.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10610896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Josine M de Winter, Karlijn Bouman, Joshua Strom, Mei Methawasin, Jan D H Jongbloed, Wilma van der Roest, Jan van Wijngaarden, Janneke Timmermans, Robin Nijveldt, Frederik van den Heuvel, Erik-Jan Kamsteeg, Baziel G van Engelen, Ricardo Galli, Sylvia J P Bogaards, Reinier A Boon, Robbert J van der Pijl, Henk Granzier, Bobby Koeleman, Ahmad S Amin, Jolanda van der Velden, J Peter van Tintelen, Maarten P van den Berg, Karin Y van Spaendonck-Zwarts, Nicol C Voermans, Coen A C Ottenheijm
KBTBD13 variants cause nemaline myopathy type 6 (NEM6). The majority of NEM6 patients harbors the Dutch founder variant, c.1222C>T, p.Arg408Cys (KBTBD13 p.R408C). Although KBTBD13 is expressed in cardiac muscle, cardiac involvement in NEM6 is unknown. Here, we constructed pedigrees of three families with the KBTBD13 p.R408C variant. In 65 evaluated patients, 12% presented with left ventricle dilatation, 29% with left ventricular ejection fraction< 50%, 8% with atrial fibrillation, 9% with ventricular tachycardia, and 20% with repolarization abnormalities. Five patients received an implantable cardioverter defibrillator, three cases of sudden cardiac death were reported. Linkage analysis confirmed cosegregation of the KBTBD13 p.R408C variant with the cardiac phenotype. Mouse studies revealed that (1) mice harboring the Kbtbd13 p.R408C variant display mild diastolic dysfunction; (2) Kbtbd13-deficient mice have systolic dysfunction. Hence, (1) KBTBD13 is associated with cardiac dysfunction and cardiomyopathy; (2) KBTBD13 should be added to the cardiomyopathy gene panel; (3) NEM6 patients should be referred to the cardiologist.
{"title":"KBTBD13 is a novel cardiomyopathy gene.","authors":"Josine M de Winter, Karlijn Bouman, Joshua Strom, Mei Methawasin, Jan D H Jongbloed, Wilma van der Roest, Jan van Wijngaarden, Janneke Timmermans, Robin Nijveldt, Frederik van den Heuvel, Erik-Jan Kamsteeg, Baziel G van Engelen, Ricardo Galli, Sylvia J P Bogaards, Reinier A Boon, Robbert J van der Pijl, Henk Granzier, Bobby Koeleman, Ahmad S Amin, Jolanda van der Velden, J Peter van Tintelen, Maarten P van den Berg, Karin Y van Spaendonck-Zwarts, Nicol C Voermans, Coen A C Ottenheijm","doi":"10.1002/humu.24499","DOIUrl":"https://doi.org/10.1002/humu.24499","url":null,"abstract":"<p><p>KBTBD13 variants cause nemaline myopathy type 6 (NEM6). The majority of NEM6 patients harbors the Dutch founder variant, c.1222C>T, p.Arg408Cys (KBTBD13 p.R408C). Although KBTBD13 is expressed in cardiac muscle, cardiac involvement in NEM6 is unknown. Here, we constructed pedigrees of three families with the KBTBD13 p.R408C variant. In 65 evaluated patients, 12% presented with left ventricle dilatation, 29% with left ventricular ejection fraction< 50%, 8% with atrial fibrillation, 9% with ventricular tachycardia, and 20% with repolarization abnormalities. Five patients received an implantable cardioverter defibrillator, three cases of sudden cardiac death were reported. Linkage analysis confirmed cosegregation of the KBTBD13 p.R408C variant with the cardiac phenotype. Mouse studies revealed that (1) mice harboring the Kbtbd13 p.R408C variant display mild diastolic dysfunction; (2) Kbtbd13-deficient mice have systolic dysfunction. Hence, (1) KBTBD13 is associated with cardiac dysfunction and cardiomyopathy; (2) KBTBD13 should be added to the cardiomyopathy gene panel; (3) NEM6 patients should be referred to the cardiologist.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/62/ba/HUMU-43-1860.PMC10100581.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9297885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Johanna Ranta-Aho, Montse Olive, Marie Vandroux, Giorgia Roticiani, Cristina Dominguez, Mridul Johari, Annalaura Torella, Johann Böhm, Janina Turon, Vincenzo Nigro, Peter Hackman, Jocelyn Laporte, Bjarne Udd, Marco Savarese
ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.
{"title":"Mutation update for the ACTN2 gene.","authors":"Johanna Ranta-Aho, Montse Olive, Marie Vandroux, Giorgia Roticiani, Cristina Dominguez, Mridul Johari, Annalaura Torella, Johann Böhm, Janina Turon, Vincenzo Nigro, Peter Hackman, Jocelyn Laporte, Bjarne Udd, Marco Savarese","doi":"10.1002/humu.24470","DOIUrl":"https://doi.org/10.1002/humu.24470","url":null,"abstract":"<p><p>ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9655471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flora Szeri, Agnes Miko, Nastassia Navasiolava, Ambrus Kaposi, Shana Verschuere, Beatrix Molnar, Qiaoli Li, Sharon F Terry, Federica Boraldi, Jouni Uitto, Koen van de Wetering, Ludovic Martin, Daniela Quaglino, Olivier M Vanakker, Kalman Tory, Tamas Aranyi
ABCC6 promotes ATP efflux from hepatocytes to bloodstream. ATP is metabolized to pyrophosphate, an inhibitor of ectopic calcification. Pathogenic variants of ABCC6 cause pseudoxanthoma elasticum, a highly variable recessive ectopic calcification disorder. Incomplete penetrance may initiate disease heterogeneity, hence symptoms may not, or differently manifest in carriers. Here, we investigated whether incomplete penetrance is a source of heterogeneity in pseudoxanthoma elasticum. By integrating clinical and genetic data of 589 patients, we created the largest European cohort. Based on allele frequency alterations, we identified two incomplete penetrant pathogenic variants, c.2359G>A (p.Val787Ile) and c.1171A>G (p.Arg391Gly), with 6.5% and 2% penetrance, respectively. However, when penetrant, the c.1171A>G (p.Arg391Gly) manifested a clinically unaltered severity. After applying in silico and in vitro characterization, we suggest that incomplete penetrant variants are only deleterious if a yet unknown interacting partner of ABCC6 is mutated simultaneously. The low penetrance of these variants should be contemplated in genetic counseling.
{"title":"The pathogenic c.1171A>G (p.Arg391Gly) and c.2359G>A (p.Val787Ile) ABCC6 variants display incomplete penetrance causing pseudoxanthoma elasticum in a subset of individuals.","authors":"Flora Szeri, Agnes Miko, Nastassia Navasiolava, Ambrus Kaposi, Shana Verschuere, Beatrix Molnar, Qiaoli Li, Sharon F Terry, Federica Boraldi, Jouni Uitto, Koen van de Wetering, Ludovic Martin, Daniela Quaglino, Olivier M Vanakker, Kalman Tory, Tamas Aranyi","doi":"10.1002/humu.24498","DOIUrl":"https://doi.org/10.1002/humu.24498","url":null,"abstract":"<p><p>ABCC6 promotes ATP efflux from hepatocytes to bloodstream. ATP is metabolized to pyrophosphate, an inhibitor of ectopic calcification. Pathogenic variants of ABCC6 cause pseudoxanthoma elasticum, a highly variable recessive ectopic calcification disorder. Incomplete penetrance may initiate disease heterogeneity, hence symptoms may not, or differently manifest in carriers. Here, we investigated whether incomplete penetrance is a source of heterogeneity in pseudoxanthoma elasticum. By integrating clinical and genetic data of 589 patients, we created the largest European cohort. Based on allele frequency alterations, we identified two incomplete penetrant pathogenic variants, c.2359G>A (p.Val787Ile) and c.1171A>G (p.Arg391Gly), with 6.5% and 2% penetrance, respectively. However, when penetrant, the c.1171A>G (p.Arg391Gly) manifested a clinically unaltered severity. After applying in silico and in vitro characterization, we suggest that incomplete penetrant variants are only deleterious if a yet unknown interacting partner of ABCC6 is mutated simultaneously. The low penetrance of these variants should be contemplated in genetic counseling.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9772137/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9297864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jotte Rodrigues Bento, Alice Krebsová, Ilse Van Gucht, Irene Valdivia Callejon, An Van Berendoncks, Pavel Votypka, Ilse Luyckx, Petra Peldova, Steven Laga, Marek Havelka, Lut Van Laer, Pavel Trunecka, Nele Boeckx, Aline Verstraeten, Milan Macek, Josephina A N Meester, Bart Loeys
Pathogenic variants in JAG1 are known to cause Alagille syndrome (ALGS), a disorder that primarily affects the liver, lung, kidney, and skeleton. Whereas cardiac symptoms are also frequently observed in ALGS, thoracic aortic aneurysms have only been reported sporadically in postmortem autopsies. We here report two families with segregating JAG1 variants that present with isolated aneurysmal disease, as well as the first histological evaluation of aortic aneurysm tissue of a JAG1 variant carrier. Our observations shed more light on the pathomechanisms behind aneurysm formation in JAG1 variant harboring individuals and underline the importance of cardiovascular imaging in the clinical follow-up of such individuals.
{"title":"Isolated aneurysmal disease as an underestimated finding in individuals with JAG1 pathogenic variants.","authors":"Jotte Rodrigues Bento, Alice Krebsová, Ilse Van Gucht, Irene Valdivia Callejon, An Van Berendoncks, Pavel Votypka, Ilse Luyckx, Petra Peldova, Steven Laga, Marek Havelka, Lut Van Laer, Pavel Trunecka, Nele Boeckx, Aline Verstraeten, Milan Macek, Josephina A N Meester, Bart Loeys","doi":"10.1002/humu.24433","DOIUrl":"https://doi.org/10.1002/humu.24433","url":null,"abstract":"<p><p>Pathogenic variants in JAG1 are known to cause Alagille syndrome (ALGS), a disorder that primarily affects the liver, lung, kidney, and skeleton. Whereas cardiac symptoms are also frequently observed in ALGS, thoracic aortic aneurysms have only been reported sporadically in postmortem autopsies. We here report two families with segregating JAG1 variants that present with isolated aneurysmal disease, as well as the first histological evaluation of aortic aneurysm tissue of a JAG1 variant carrier. Our observations shed more light on the pathomechanisms behind aneurysm formation in JAG1 variant harboring individuals and underline the importance of cardiovascular imaging in the clinical follow-up of such individuals.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10084246/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9283576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aiysha Abid, Ali Raza, Tahir Aziz, Shagufta Khaliq
Primary hyperoxalurias (PH) are a group of rare heterogeneous disorders characterized by deficiencies in glyoxylate metabolism. To date, three genes have been identified to cause three types of PH (I, II, and III). The HOGA1 gene caused type III in around 10% of the PH cases. Disease-associated pathogenic variants have been reported from several populations and a comprehensive spectrum of these mutations and genotype-phenotype correlation has never been presented. In this study, we describe new cases of the HOGA1 gene pathogenic variants identified in our population. We report the first case of ESKD with successful kidney transplantation with 5 years of follow-up. Furthermore, a comprehensive overview of PH type III associated HOGA1 gene variants was carried out. Compiling the data from the literature, we reviewed 57 distinct HOGA1 gene pathogenic variants in 175 patients worldwide. The majority of reported variants are missense variants that predicted a loss of function mechanism as the underlying pathology. There has been evidence of the presence of founder mutations in several populations like Europeans, Ashkenazi Jews, Arab, and Chinese populations. No significant genotype-phenotype correlation was identified concerning the ages of onset of the disease and biochemical and metabolic parameters. Nephrocalcinosis was rare in patients with disease-associated variants. Most of the patients were presented with urolithiasis early in life; only five cases reported disease progression after the second decade of life. The establishment of impairment of renal function in 8% of all the reported cases makes this type a relatively severe form of primary hyperoxaluria, not a benign etiology as suggested previously.
{"title":"HOGA1 gene pathogenic variants in primary hyperoxaluria type III: Spectrum of pathogenic sequence variants, and phenotypic association.","authors":"Aiysha Abid, Ali Raza, Tahir Aziz, Shagufta Khaliq","doi":"10.1002/humu.24490","DOIUrl":"https://doi.org/10.1002/humu.24490","url":null,"abstract":"<p><p>Primary hyperoxalurias (PH) are a group of rare heterogeneous disorders characterized by deficiencies in glyoxylate metabolism. To date, three genes have been identified to cause three types of PH (I, II, and III). The HOGA1 gene caused type III in around 10% of the PH cases. Disease-associated pathogenic variants have been reported from several populations and a comprehensive spectrum of these mutations and genotype-phenotype correlation has never been presented. In this study, we describe new cases of the HOGA1 gene pathogenic variants identified in our population. We report the first case of ESKD with successful kidney transplantation with 5 years of follow-up. Furthermore, a comprehensive overview of PH type III associated HOGA1 gene variants was carried out. Compiling the data from the literature, we reviewed 57 distinct HOGA1 gene pathogenic variants in 175 patients worldwide. The majority of reported variants are missense variants that predicted a loss of function mechanism as the underlying pathology. There has been evidence of the presence of founder mutations in several populations like Europeans, Ashkenazi Jews, Arab, and Chinese populations. No significant genotype-phenotype correlation was identified concerning the ages of onset of the disease and biochemical and metabolic parameters. Nephrocalcinosis was rare in patients with disease-associated variants. Most of the patients were presented with urolithiasis early in life; only five cases reported disease progression after the second decade of life. The establishment of impairment of renal function in 8% of all the reported cases makes this type a relatively severe form of primary hyperoxaluria, not a benign etiology as suggested previously.</p>","PeriodicalId":13061,"journal":{"name":"Human Mutation","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10813822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}