首页 > 最新文献

IEEE Transactions on Cognitive Communications and Networking最新文献

英文 中文
DisHelis: Optimizing Deployment of Disaggregated LLMs Inference Serving over Heterogeneous Environments via Hierarchical Max-Flow DisHelis:通过分层最大流优化异构环境中分解LLMs推理服务的部署
IF 8.6 1区 计算机科学 Q1 TELECOMMUNICATIONS Pub Date : 2026-01-23 DOI: 10.1109/tccn.2026.3657037
Tao Zhang, Huihuang Qin, Dong Jin, Shuangwu Chen, Huasen He, Xiaobin Tan, Shiyin Zhu, Jian Yang
{"title":"DisHelis: Optimizing Deployment of Disaggregated LLMs Inference Serving over Heterogeneous Environments via Hierarchical Max-Flow","authors":"Tao Zhang, Huihuang Qin, Dong Jin, Shuangwu Chen, Huasen He, Xiaobin Tan, Shiyin Zhu, Jian Yang","doi":"10.1109/tccn.2026.3657037","DOIUrl":"https://doi.org/10.1109/tccn.2026.3657037","url":null,"abstract":"","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"40 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146042783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Objective Reinforcement Learning Based Dependent Task Scheduling with Service Caching in Mobile Edge Computing 移动边缘计算中基于服务缓存的多目标强化学习相关任务调度
IF 8.6 1区 计算机科学 Q1 TELECOMMUNICATIONS Pub Date : 2026-01-23 DOI: 10.1109/tccn.2026.3657056
Fuhong Song, Mingsen Deng, Huanlai Xing, Yanping Liu, Zhiwen Xiao, Lexi Xu, Xianfu Lei
{"title":"Multi-Objective Reinforcement Learning Based Dependent Task Scheduling with Service Caching in Mobile Edge Computing","authors":"Fuhong Song, Mingsen Deng, Huanlai Xing, Yanping Liu, Zhiwen Xiao, Lexi Xu, Xianfu Lei","doi":"10.1109/tccn.2026.3657056","DOIUrl":"https://doi.org/10.1109/tccn.2026.3657056","url":null,"abstract":"","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"58 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2026-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146042780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-level Feature Distribution Learning Method for Automatic Modulation Open-set Recognition 一种用于自动调制开集识别的多层次特征分布学习方法
IF 8.6 1区 计算机科学 Q1 TELECOMMUNICATIONS Pub Date : 2026-01-22 DOI: 10.1109/tccn.2026.3657035
Zhenxi Zhang, Haoyue Tan, Xiaoran Shi, Heng Zhou, Yun Lin, Yu Li, Jiankun Ma, Xueru Bai, Feng Zhou
{"title":"A Multi-level Feature Distribution Learning Method for Automatic Modulation Open-set Recognition","authors":"Zhenxi Zhang, Haoyue Tan, Xiaoran Shi, Heng Zhou, Yun Lin, Yu Li, Jiankun Ma, Xueru Bai, Feng Zhou","doi":"10.1109/tccn.2026.3657035","DOIUrl":"https://doi.org/10.1109/tccn.2026.3657035","url":null,"abstract":"","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"36 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146042793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Noise-Resilient Test-Time Adaptation for RF Signal Recognition 自适应噪声弹性测试时间适应射频信号识别
IF 8.6 1区 计算机科学 Q1 TELECOMMUNICATIONS Pub Date : 2026-01-22 DOI: 10.1109/tccn.2026.3657107
Haoran Zha, Hanhong Wang, Ziwei Zhang, Hongtao Zhan, Guan Gui, Yun Lin
{"title":"Adaptive Noise-Resilient Test-Time Adaptation for RF Signal Recognition","authors":"Haoran Zha, Hanhong Wang, Ziwei Zhang, Hongtao Zhan, Guan Gui, Yun Lin","doi":"10.1109/tccn.2026.3657107","DOIUrl":"https://doi.org/10.1109/tccn.2026.3657107","url":null,"abstract":"","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"14 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146042789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RIS-Enabled UAV Communications and Sensing: Opportunities, Challenges, and Key Technologies RIS-Enabled无人机通信和传感:机遇、挑战和关键技术
IF 8.6 1区 计算机科学 Q1 TELECOMMUNICATIONS Pub Date : 2026-01-22 DOI: 10.1109/tccn.2026.3657121
Yajun Zhao, Mengnan Jian, Yifei Yuan
{"title":"RIS-Enabled UAV Communications and Sensing: Opportunities, Challenges, and Key Technologies","authors":"Yajun Zhao, Mengnan Jian, Yifei Yuan","doi":"10.1109/tccn.2026.3657121","DOIUrl":"https://doi.org/10.1109/tccn.2026.3657121","url":null,"abstract":"","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"117 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146042790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lagrangian-Augmented Learning for Stochastic Age of Accurate Semantic Information Minimization in Mobile Edge Computing Systems 移动边缘计算系统中精确语义信息最小化随机时代的拉格朗日增强学习
IF 8.6 1区 计算机科学 Q1 TELECOMMUNICATIONS Pub Date : 2026-01-22 DOI: 10.1109/tccn.2026.3657116
Jialin Zhuang, Lanhua Li, Yusi Long, Bo Gu, Changyan Yi, Shimin Gong
{"title":"Lagrangian-Augmented Learning for Stochastic Age of Accurate Semantic Information Minimization in Mobile Edge Computing Systems","authors":"Jialin Zhuang, Lanhua Li, Yusi Long, Bo Gu, Changyan Yi, Shimin Gong","doi":"10.1109/tccn.2026.3657116","DOIUrl":"https://doi.org/10.1109/tccn.2026.3657116","url":null,"abstract":"","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"44 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146042797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI-enabled Near-Field Communications: User Movement Prediction and Beam Tracking 支持人工智能的近场通信:用户运动预测和波束跟踪
IF 8.6 1区 计算机科学 Q1 TELECOMMUNICATIONS Pub Date : 2026-01-22 DOI: 10.1109/tccn.2026.3657029
Meng Zhang, Ruikang Zhong, Xidong Mu, Hyundong Shin, Yuanwei Liu
{"title":"AI-enabled Near-Field Communications: User Movement Prediction and Beam Tracking","authors":"Meng Zhang, Ruikang Zhong, Xidong Mu, Hyundong Shin, Yuanwei Liu","doi":"10.1109/tccn.2026.3657029","DOIUrl":"https://doi.org/10.1109/tccn.2026.3657029","url":null,"abstract":"","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"68 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146043165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Band Spectrum Prediction Algorithm Based on HGCN and Simplified ReLU-GRU 基于HGCN和简化ReLU-GRU的多波段频谱预测算法
IF 7 1区 计算机科学 Q1 TELECOMMUNICATIONS Pub Date : 2026-01-22 DOI: 10.1109/TCCN.2026.3657092
Lingzhao Zhang;Qin Wang;Haotian Chang;Haitao Zhao;Hongbo Zhu
The increasing scarcity of spectrum resources, coupled with rising demand, has made effective spectrum management crucial. However, the complexity and spatio-temporal variability of spectral data present significant challenges for accurate spectrum prediction. This paper proposes a novel multi-band spectrum prediction model that integrates a hypergraph convolutional neural network (HGCN) with a simplified rectified linear unit-gated recurrent unit (ReLU-GRU) network which eliminate the reset gate. In this framework, the HGCN employs hypergraphs to represent spectral data, where nodes correspond to individual frequency bands and hyperedges capture multivariate relationships among them. The simplified ReLU-GRU is used to model the temporal dependencies between frequency bands, effectively fusing the extracted features for enhanced prediction performance. By replacing the traditional hyperbolic tangent (tanh) activation function with a linear rectification function (ReLU) in the state update process, the model mitigates the issue of gradient vanishing and accelerates the training process. To further improve convergence, an attention mechanism is incorporated to weight the output of hidden states. Experimental evaluation on a real-world spectral dataset from sensors in St. Gallen demonstrates that the proposed model achieves a 4.43% improvement in prediction accuracy compared to the traditional LSTM model and a 0.56% improvement over the GCN-GRU model, exhibiting superior stability. The results also show that the simplified ReLU-GRU is particularly effective in predicting highly variable data, outperforming the traditional tanh-GRU, especially in scenarios with significant fluctuations.
频谱资源的日益稀缺,加上需求的不断增长,使得有效的频谱管理变得至关重要。然而,光谱数据的复杂性和时空变异性对准确预测光谱提出了重大挑战。本文提出了一种新的多频段频谱预测模型,该模型将超图卷积神经网络(HGCN)与消除复位门的简化整流线性单元门控循环单元(ReLU-GRU)网络相结合。在这个框架中,HGCN使用超图来表示频谱数据,其中节点对应于单个频带,超边捕获它们之间的多元关系。采用简化的ReLU-GRU模型对频带间的时间依赖性进行建模,有效融合提取的特征,提高预测性能。该模型在状态更新过程中用线性整流函数(ReLU)代替传统的双曲正切(tanh)激活函数,缓解了梯度消失的问题,加快了训练过程。为了进一步提高收敛性,引入了一个注意机制来对隐藏状态的输出进行加权。在St. Gallen的真实光谱数据集上进行的实验评估表明,与传统的LSTM模型相比,该模型的预测精度提高了4.43%,比GCN-GRU模型提高了0.56%,具有优越的稳定性。结果还表明,简化的ReLU-GRU在预测高变量数据方面特别有效,优于传统的tanh-GRU,特别是在波动较大的情况下。
{"title":"Multi-Band Spectrum Prediction Algorithm Based on HGCN and Simplified ReLU-GRU","authors":"Lingzhao Zhang;Qin Wang;Haotian Chang;Haitao Zhao;Hongbo Zhu","doi":"10.1109/TCCN.2026.3657092","DOIUrl":"10.1109/TCCN.2026.3657092","url":null,"abstract":"The increasing scarcity of spectrum resources, coupled with rising demand, has made effective spectrum management crucial. However, the complexity and spatio-temporal variability of spectral data present significant challenges for accurate spectrum prediction. This paper proposes a novel multi-band spectrum prediction model that integrates a hypergraph convolutional neural network (HGCN) with a simplified rectified linear unit-gated recurrent unit (ReLU-GRU) network which eliminate the reset gate. In this framework, the HGCN employs hypergraphs to represent spectral data, where nodes correspond to individual frequency bands and hyperedges capture multivariate relationships among them. The simplified ReLU-GRU is used to model the temporal dependencies between frequency bands, effectively fusing the extracted features for enhanced prediction performance. By replacing the traditional hyperbolic tangent (tanh) activation function with a linear rectification function (ReLU) in the state update process, the model mitigates the issue of gradient vanishing and accelerates the training process. To further improve convergence, an attention mechanism is incorporated to weight the output of hidden states. Experimental evaluation on a real-world spectral dataset from sensors in St. Gallen demonstrates that the proposed model achieves a 4.43% improvement in prediction accuracy compared to the traditional LSTM model and a 0.56% improvement over the GCN-GRU model, exhibiting superior stability. The results also show that the simplified ReLU-GRU is particularly effective in predicting highly variable data, outperforming the traditional tanh-GRU, especially in scenarios with significant fluctuations.","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"12 ","pages":"5903-5912"},"PeriodicalIF":7.0,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146042796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Segmented Multi-Subpulse Waveform Processing for Cognitive Radar System 认知雷达系统的分段多子脉冲波形处理
IF 8.6 1区 计算机科学 Q1 TELECOMMUNICATIONS Pub Date : 2026-01-22 DOI: 10.1109/tccn.2026.3657044
Hui Qiu, Xianxiang Yu, Tao Fan, Jing Yang, Guolong Cui, Lan Lan, Guan Gui
{"title":"Segmented Multi-Subpulse Waveform Processing for Cognitive Radar System","authors":"Hui Qiu, Xianxiang Yu, Tao Fan, Jing Yang, Guolong Cui, Lan Lan, Guan Gui","doi":"10.1109/tccn.2026.3657044","DOIUrl":"https://doi.org/10.1109/tccn.2026.3657044","url":null,"abstract":"","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"1 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146042791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-jamming Resource Allocation in Air-Terrestrial Integrated Networks: A Hierarchical Game-Theoretic MADRL Approach 地空综合网络中抗干扰资源分配:一种层次博弈论MADRL方法
IF 8.6 1区 计算机科学 Q1 TELECOMMUNICATIONS Pub Date : 2026-01-22 DOI: 10.1109/tccn.2026.3657145
Jiatao Du, Yifan Xu, Songyi Liu, Hao Han, Hui Tian, Zhibin Feng, Haichao Wang, Yuhua Xu
{"title":"Anti-jamming Resource Allocation in Air-Terrestrial Integrated Networks: A Hierarchical Game-Theoretic MADRL Approach","authors":"Jiatao Du, Yifan Xu, Songyi Liu, Hao Han, Hui Tian, Zhibin Feng, Haichao Wang, Yuhua Xu","doi":"10.1109/tccn.2026.3657145","DOIUrl":"https://doi.org/10.1109/tccn.2026.3657145","url":null,"abstract":"","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"40 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146043164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Cognitive Communications and Networking
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1