首页 > 最新文献

IEEE Transactions on Cybernetics最新文献

英文 中文
Cycle-Time Configuration for Parallel Processing Systems via Max-Plus Algebra. 基于Max-Plus代数的并行处理系统周期配置。
IF 10.5 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-06 DOI: 10.1109/TCYB.2026.3655692
Jin Wang, Hongjiu Yang, Yuanqing Xia, Zhiqiang Zuo

In this article, cycle-time configuration is realized using max-plus algebra for a parallel processing system via a synchronous feedback controller. As a key efficiency metric of parallel processing systems, throughput is determined by cycle time, which is threatened by clock asynchrony and the curse of dimensionality. Using instruction dependency and weak linear independence, the parallel processing system is equivalent to a max-plus nonautonomous system to mitigate the curse of dimensionality caused by numerous processing tasks. Based on the max-plus nonautonomous system, the cycle-time configuration is achieved via a synchronous feedback controller while adhering to time restrictions of the parallel processing system. Numerical simulations validate the effectiveness of the proposed cycle-time configuration in parallel processing systems.

本文通过同步反馈控制器,利用max-plus代数实现了并行处理系统的循环时间配置。作为并行处理系统的关键效率指标,吞吐量是由周期时间决定的,而周期时间受到时钟异步和维数诅咒的威胁。利用指令依赖性和弱线性独立性,并行处理系统相当于一个max-plus非自治系统,以减轻由于处理任务多而造成的维数困扰。基于max-plus非自治系统,在遵守并行处理系统时间限制的前提下,通过同步反馈控制器实现循环时间配置。数值仿真验证了所提出的周期时间配置在并行处理系统中的有效性。
{"title":"Cycle-Time Configuration for Parallel Processing Systems via Max-Plus Algebra.","authors":"Jin Wang, Hongjiu Yang, Yuanqing Xia, Zhiqiang Zuo","doi":"10.1109/TCYB.2026.3655692","DOIUrl":"https://doi.org/10.1109/TCYB.2026.3655692","url":null,"abstract":"<p><p>In this article, cycle-time configuration is realized using max-plus algebra for a parallel processing system via a synchronous feedback controller. As a key efficiency metric of parallel processing systems, throughput is determined by cycle time, which is threatened by clock asynchrony and the curse of dimensionality. Using instruction dependency and weak linear independence, the parallel processing system is equivalent to a max-plus nonautonomous system to mitigate the curse of dimensionality caused by numerous processing tasks. Based on the max-plus nonautonomous system, the cycle-time configuration is achieved via a synchronous feedback controller while adhering to time restrictions of the parallel processing system. Numerical simulations validate the effectiveness of the proposed cycle-time configuration in parallel processing systems.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":10.5,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146131674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Multiobjective Evolutionary Algorithm Based on Surrogate-Assisted Robust Distance Metric. 基于代理辅助鲁棒距离度量的鲁棒多目标进化算法。
IF 10.5 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-06 DOI: 10.1109/TCYB.2026.3655818
Fei Li, Yuhao Liu, Hao Shen, Anqi Pan, Wei Du, Yaochu Jin

Robust multiobjective evolutionary algorithms (RMOEAs) aim to obtain robust optimal solutions. However, traditional RMOEAs typically require evaluating a large number of sampling points, which is often impractical in real-world applications due to the high computational cost. In this article, we propose a robust multiobjective evolutionary algorithm based on surrogate-assisted (RMOEA-SA), which incorporates a radial basis function (RBF) surrogate model and a novel robust distance metric (RDM). The proposed algorithm employs the RBF surrogate model to approximate the fitness values of sampling points, thereby significantly reducing the number of function evaluations during the robust optimization process. Furthermore, an RDM assisted by the RBF surrogate model is introduced to measure the robustness of solutions. Besides, the RDM value of each solution is treated as an additional objective, expanding the original objective space, and selection is conducted in this augmented space to achieve a desirable trade-off between robustness and optimality. The experimental results on standard benchmark functions and two real-world application problems demonstrate the superior feasibility and effectiveness of the proposed method compared with several existing algorithms.

鲁棒多目标进化算法(rmoea)旨在获得鲁棒最优解。然而,传统的rmoea通常需要评估大量的采样点,由于计算成本高,这在实际应用中通常是不切实际的。在本文中,我们提出了一种基于代理辅助(RMOEA-SA)的鲁棒多目标进化算法,该算法结合了径向基函数(RBF)代理模型和一种新的鲁棒距离度量(RDM)。该算法采用RBF代理模型来近似采样点的适应度值,从而显著减少了鲁棒优化过程中函数评估的次数。在此基础上,引入了RBF代理模型辅助下的RDM来衡量解的鲁棒性。此外,将每个解的RDM值作为一个额外的目标,扩展了原始目标空间,并在这个增强的空间中进行选择,以实现鲁棒性和最优性之间的理想权衡。在标准基准函数和两个实际应用问题上的实验结果表明,与现有的几种算法相比,该方法具有优越的可行性和有效性。
{"title":"Robust Multiobjective Evolutionary Algorithm Based on Surrogate-Assisted Robust Distance Metric.","authors":"Fei Li, Yuhao Liu, Hao Shen, Anqi Pan, Wei Du, Yaochu Jin","doi":"10.1109/TCYB.2026.3655818","DOIUrl":"https://doi.org/10.1109/TCYB.2026.3655818","url":null,"abstract":"<p><p>Robust multiobjective evolutionary algorithms (RMOEAs) aim to obtain robust optimal solutions. However, traditional RMOEAs typically require evaluating a large number of sampling points, which is often impractical in real-world applications due to the high computational cost. In this article, we propose a robust multiobjective evolutionary algorithm based on surrogate-assisted (RMOEA-SA), which incorporates a radial basis function (RBF) surrogate model and a novel robust distance metric (RDM). The proposed algorithm employs the RBF surrogate model to approximate the fitness values of sampling points, thereby significantly reducing the number of function evaluations during the robust optimization process. Furthermore, an RDM assisted by the RBF surrogate model is introduced to measure the robustness of solutions. Besides, the RDM value of each solution is treated as an additional objective, expanding the original objective space, and selection is conducted in this augmented space to achieve a desirable trade-off between robustness and optimality. The experimental results on standard benchmark functions and two real-world application problems demonstrate the superior feasibility and effectiveness of the proposed method compared with several existing algorithms.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":10.5,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146131616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Input-Constrained Visual Servoing Formation Control for Quadrotors Using Off-Policy Reinforcement Learning. 基于非策略强化学习的输入约束四旋翼视觉伺服编队控制。
IF 10.5 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-06 DOI: 10.1109/TCYB.2026.3656290
Xinning Yi, Hao Liu, Haibin Duan, Jianbin Qiu

In this article, an input-constrained visual servoing formation controller is proposed for multiple quadrotor systems operating without intervehicle communication or relative position measurements. The aerial formation control is achieved by formulating image-based leader-follower dynamics using a virtual camera framework and sphere-based image moments. An adaptive velocity observer is developed for the follower quadrotor to estimate the relative velocity with respect to the leader quadrotor in communication-free environments. Input-constrained visual servoing and attitude controllers are proposed using an off-policy reinforcement learning (RL) algorithm to handle visibility and attitude constraints, without relying on accurate system model parameters. The stability of the closed-loop system is theoretically analyzed, and the effectiveness of the proposed controller is demonstrated through case studies.

本文提出了一种输入约束的视觉伺服编队控制器,用于多四旋翼系统在没有车间通信或相对位置测量的情况下运行。利用虚拟摄像机框架和基于球的图像矩,制定了基于图像的leader-follower动力学,实现了空中编队控制。开发了一种自适应速度观测器,用于在无通信环境下估计随动四旋翼相对于领头四旋翼的相对速度。提出了一种不依赖精确系统模型参数的输入约束视觉伺服和姿态控制器,采用非策略强化学习(RL)算法来处理可见性和姿态约束。从理论上分析了闭环系统的稳定性,并通过实例验证了所提控制器的有效性。
{"title":"Input-Constrained Visual Servoing Formation Control for Quadrotors Using Off-Policy Reinforcement Learning.","authors":"Xinning Yi, Hao Liu, Haibin Duan, Jianbin Qiu","doi":"10.1109/TCYB.2026.3656290","DOIUrl":"https://doi.org/10.1109/TCYB.2026.3656290","url":null,"abstract":"<p><p>In this article, an input-constrained visual servoing formation controller is proposed for multiple quadrotor systems operating without intervehicle communication or relative position measurements. The aerial formation control is achieved by formulating image-based leader-follower dynamics using a virtual camera framework and sphere-based image moments. An adaptive velocity observer is developed for the follower quadrotor to estimate the relative velocity with respect to the leader quadrotor in communication-free environments. Input-constrained visual servoing and attitude controllers are proposed using an off-policy reinforcement learning (RL) algorithm to handle visibility and attitude constraints, without relying on accurate system model parameters. The stability of the closed-loop system is theoretically analyzed, and the effectiveness of the proposed controller is demonstrated through case studies.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":10.5,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146131694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sliding Mode Control for Multiagent Systems Under DoS Attacks: A Reduced-Order Approach DoS攻击下多智能体系统的滑模控制:一种降阶方法
IF 11.8 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-04 DOI: 10.1109/tcyb.2026.3658741
Peng Cheng, Di Wu, Rong Nie, Shuping He, Gaoxi Xiao
{"title":"Sliding Mode Control for Multiagent Systems Under DoS Attacks: A Reduced-Order Approach","authors":"Peng Cheng, Di Wu, Rong Nie, Shuping He, Gaoxi Xiao","doi":"10.1109/tcyb.2026.3658741","DOIUrl":"https://doi.org/10.1109/tcyb.2026.3658741","url":null,"abstract":"","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"31 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving Music Recommendation With Fine-Grained Content-Based Behavior Retrieval 基于细粒度内容的行为检索改进音乐推荐
IF 11.8 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-04 DOI: 10.1109/tcyb.2026.3651813
Wenyan Fan, Yan Liu, Shengyu Zhang, Jieming Zhu, Mengze Li, Xufeng Qian, Zhou Zhao, Zhenhua Dong, Ruiming Tang, Fei Wu
{"title":"Improving Music Recommendation With Fine-Grained Content-Based Behavior Retrieval","authors":"Wenyan Fan, Yan Liu, Shengyu Zhang, Jieming Zhu, Mengze Li, Xufeng Qian, Zhou Zhao, Zhenhua Dong, Ruiming Tang, Fei Wu","doi":"10.1109/tcyb.2026.3651813","DOIUrl":"https://doi.org/10.1109/tcyb.2026.3651813","url":null,"abstract":"","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"23 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonconvex Federated Composite Optimization With Random Reshuffling and Biased Compression 随机重组和有偏压缩的非凸联邦复合优化
IF 11.8 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-04 DOI: 10.1109/tcyb.2024.3514833
Haibao Tian, Xiuxian Li, Shanying Zhu
{"title":"Nonconvex Federated Composite Optimization With Random Reshuffling and Biased Compression","authors":"Haibao Tian, Xiuxian Li, Shanying Zhu","doi":"10.1109/tcyb.2024.3514833","DOIUrl":"https://doi.org/10.1109/tcyb.2024.3514833","url":null,"abstract":"","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"215 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fixed Step-Size Algorithm for Distributed Optimization With Both Globally Coupled and Locally Separated Constraints 一种具有全局耦合约束和局部分离约束的固定步长分布式优化算法
IF 11.8 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-04 DOI: 10.1109/tcyb.2026.3652224
Zeci Chen, Wenwu Yu, Qingshan Liu
{"title":"A Fixed Step-Size Algorithm for Distributed Optimization With Both Globally Coupled and Locally Separated Constraints","authors":"Zeci Chen, Wenwu Yu, Qingshan Liu","doi":"10.1109/tcyb.2026.3652224","DOIUrl":"https://doi.org/10.1109/tcyb.2026.3652224","url":null,"abstract":"","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"288 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146115983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skill Information Representation Imitation Learning for Long-Horizon Dexterous Robot Micromanipulation of Deformable Cell 长视距灵巧机器人变形细胞微操作的技能信息表示模仿学习
IF 11.8 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-03 DOI: 10.1109/tcyb.2026.3656969
Youchao Zhang, Fanghao Wang, Tong Zhou, Xiangyu Guo, Guang Chen, Alois Knoll, Yibin Ying, Mingchuan Zhou
{"title":"Skill Information Representation Imitation Learning for Long-Horizon Dexterous Robot Micromanipulation of Deformable Cell","authors":"Youchao Zhang, Fanghao Wang, Tong Zhou, Xiangyu Guo, Guang Chen, Alois Knoll, Yibin Ying, Mingchuan Zhou","doi":"10.1109/tcyb.2026.3656969","DOIUrl":"https://doi.org/10.1109/tcyb.2026.3656969","url":null,"abstract":"","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"19 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Transactions on Cybernetics Information for Authors IEEE控制论信息汇刊
IF 10.5 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-03 DOI: 10.1109/TCYB.2026.3652053
{"title":"IEEE Transactions on Cybernetics Information for Authors","authors":"","doi":"10.1109/TCYB.2026.3652053","DOIUrl":"https://doi.org/10.1109/TCYB.2026.3652053","url":null,"abstract":"","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"56 2","pages":"C4-C4"},"PeriodicalIF":10.5,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11371485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146102981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Safe Optimal Control Framework for Cooperative Manipulation of Objects in Human–Robot Teams 人-机器人团队协作操作的安全最优控制框架
IF 11.8 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Pub Date : 2026-02-03 DOI: 10.1109/tcyb.2026.3651182
Irfan Ganie, Sarangapani Jagannathan
{"title":"Safe Optimal Control Framework for Cooperative Manipulation of Objects in Human–Robot Teams","authors":"Irfan Ganie, Sarangapani Jagannathan","doi":"10.1109/tcyb.2026.3651182","DOIUrl":"https://doi.org/10.1109/tcyb.2026.3651182","url":null,"abstract":"","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"6 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2026-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146110398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Cybernetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1