首页 > 最新文献

IEEE Transactions on Broadcasting最新文献

英文 中文
Long-Term and Short-Term Information Propagation and Fusion for Learned Video Compression 学习视频压缩的长短期信息传播与融合
IF 4.5 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-30 DOI: 10.1109/tbc.2024.3434702
Shen Wang, Donghui Feng, Guo Lu, Zhengxue Cheng, Li Song, Wenjun Zhang
{"title":"Long-Term and Short-Term Information Propagation and Fusion for Learned Video Compression","authors":"Shen Wang, Donghui Feng, Guo Lu, Zhengxue Cheng, Li Song, Wenjun Zhang","doi":"10.1109/tbc.2024.3434702","DOIUrl":"https://doi.org/10.1109/tbc.2024.3434702","url":null,"abstract":"","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"51 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Layered Division Multiplexing Enabled Broadcast Broadband Convergence in 5G: Theory, Simulations, and Scenarios 分层时分复用支持 5G 广播宽带融合:理论、模拟和方案
IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-28 DOI: 10.1109/TBC.2024.3437204
Yu Xue;Wei Li;Yuxiao Zhai;Liang Zhang;Zhihong Hong;Elvino Sousa;Yiyan Wu
The vision of the future 5G - Multicast Broadcast Services (5G-MBS) is to achieve full convergence of broadcast and broadband services by providing these services on the same infrastructure and dynamically switching between them without impacting user experiences. By incorporating Layered Division Multiplexing (LDM) into the new 5G-MBS system and performing proper antenna precoding, the network can transmit a 2-layered signal where the higher-power Core Layer (CL) transmits a Single Frequency Network (SFN) broadcast signal, and the lower-power Enhanced Layer (EL) is used for broadband services. To evaluate the performance of the 2-layered network, a 5G system-level simulator is created and configured according to the 3GPP self-evaluation scenarios to compare against the 3GPP calibration results. The resulting Signal to Interference & Noise Ratio (SINR) Cumulative Distribution Function (CDF) curves fall within the tolerance margin of 1~2 dB from the 3GPP calibration average. Full simulations of the 2-layered network show for an urban scenario with Inter-Site Distance (ISD) of less than 1 km, the network can provide up to three 4K video broadcast services in the CL while supporting a near full broadband network in the EL. For further ISDs up to 3 km, the network can sustain video broadcast service at 1080p while supporting a partial broadband network. For a rural scenario, at the reference ISD of 1732 m, the CL can support three 4k video broadcast services while the EL performance matches a standalone broadband network. Finally, for further ISD of up to 5 km, the CL can support one 1080p and one 720p video broadcast service, and for ISD up to 10 km, the network can provide one broadcast service at 720p in the CL, all while providing a full broadband network in the EL.
未来 5G - 多播广播服务(5G-MBS)的愿景是实现广播和宽带服务的全面融合,在相同的基础设施上提供这些服务,并在不影响用户体验的情况下在两者之间动态切换。通过在新的 5G-MBS 系统中采用分层多路复用(LDM)技术并执行适当的天线预编码,网络可以传输双层信号,其中功率较高的核心层(CL)传输单频网(SFN)广播信号,功率较低的增强层(EL)用于宽带服务。为评估双层网络的性能,创建了一个 5G 系统级模拟器,并根据 3GPP 自我评估方案进行配置,以便与 3GPP 校准结果进行比较。所得到的信号干扰与噪声比(SINR)累积分布函数(CDF)曲线与 3GPP 校准平均值的误差范围在 1~2 dB 之间。对 2 层网络的全面模拟显示,在站点间距离(ISD)小于 1 公里的城市场景中,该网络可在 CL 中提供多达三种 4K 视频广播服务,同时在 EL 中支持接近完整的宽带网络。对于更远的 3 千米 ISD,网络可维持 1080p 的视频广播服务,同时支持部分宽带网络。在农村场景中,参考 ISD 为 1732 米,CL 可支持三个 4k 视频广播服务,而 EL 的性能与独立宽带网络相当。最后,在 5 千米以内的 ISD,CL 可支持一个 1080p 和一个 720p 视频广播服务;在 10 千米以内的 ISD,网络可在 CL 中提供一个 720p 的广播服务,同时在 EL 中提供一个完整的宽带网络。
{"title":"Layered Division Multiplexing Enabled Broadcast Broadband Convergence in 5G: Theory, Simulations, and Scenarios","authors":"Yu Xue;Wei Li;Yuxiao Zhai;Liang Zhang;Zhihong Hong;Elvino Sousa;Yiyan Wu","doi":"10.1109/TBC.2024.3437204","DOIUrl":"10.1109/TBC.2024.3437204","url":null,"abstract":"The vision of the future 5G - Multicast Broadcast Services (5G-MBS) is to achieve full convergence of broadcast and broadband services by providing these services on the same infrastructure and dynamically switching between them without impacting user experiences. By incorporating Layered Division Multiplexing (LDM) into the new 5G-MBS system and performing proper antenna precoding, the network can transmit a 2-layered signal where the higher-power Core Layer (CL) transmits a Single Frequency Network (SFN) broadcast signal, and the lower-power Enhanced Layer (EL) is used for broadband services. To evaluate the performance of the 2-layered network, a 5G system-level simulator is created and configured according to the 3GPP self-evaluation scenarios to compare against the 3GPP calibration results. The resulting Signal to Interference & Noise Ratio (SINR) Cumulative Distribution Function (CDF) curves fall within the tolerance margin of 1~2 dB from the 3GPP calibration average. Full simulations of the 2-layered network show for an urban scenario with Inter-Site Distance (ISD) of less than 1 km, the network can provide up to three 4K video broadcast services in the CL while supporting a near full broadband network in the EL. For further ISDs up to 3 km, the network can sustain video broadcast service at 1080p while supporting a partial broadband network. For a rural scenario, at the reference ISD of 1732 m, the CL can support three 4k video broadcast services while the EL performance matches a standalone broadband network. Finally, for further ISD of up to 5 km, the CL can support one 1080p and one 720p video broadcast service, and for ISD up to 10 km, the network can provide one broadcast service at 720p in the CL, all while providing a full broadband network in the EL.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 3","pages":"1018-1031"},"PeriodicalIF":3.2,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing QoE for Multi-Device Video Delivery: A Novel Dataset and Model Perspective 增强多设备视频传输的 QoE:新颖的数据集和模型视角
IF 4.5 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-28 DOI: 10.1109/tbc.2024.3443544
Hao Yang, Tao Lin, Yuan Zhang, Yin Xu, Zhe Chen, Jinyao Yan
{"title":"Enhancing QoE for Multi-Device Video Delivery: A Novel Dataset and Model Perspective","authors":"Hao Yang, Tao Lin, Yuan Zhang, Yin Xu, Zhe Chen, Jinyao Yan","doi":"10.1109/tbc.2024.3443544","DOIUrl":"https://doi.org/10.1109/tbc.2024.3443544","url":null,"abstract":"","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"13 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing 5G Broadcast Services in Large-Scale IoV Networks Using Reliable RIS Relaying 利用可靠的 RIS 中继增强大规模物联网网络中的 5G 广播服务
IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-23 DOI: 10.1109/TBC.2024.3394293
Qian Huang;Xueguang Yuan;Xiaoyin Yi;Qingming Xie;Qin Jiang;Bingxin Wang
The advent of 5G technology and new energy radio communication systems heralds a significant shift in the landscape of automated driving. This paper focuses on the integration of 5G and broadcast services in the realm of new energy automatic assisted driving, emphasizing the importance of reliable, energy-efficient communication in the large-scale IoV. The enhanced capabilities of 5G enable improved vehicle battery endurance while safeguarding user data privacy and road traffic safety. We introduce RIS relay reflection as a novel approach to optimize non-line-of-sight links, presenting a RIS-assisted communication model tailored for 5G-enhanced large-scale IoV. The paper evaluates the trustworthiness of RIS relays using user behavior data, proposing a reliable and energy-efficient communication scheme that incorporates RIS security relay assistance. This scheme ensures the selection of trustworthy relays, synergizing the beam direction of transmitters and RISs for optimal 5G broadcast service delivery and OTA updates. Our approach promises to revolutionize communication in large-scale IoV systems, paving the way for a more connected and efficient future in automated vehicle networks.
5G 技术和新能源无线电通信系统的出现预示着自动驾驶领域的重大变革。本文重点探讨了新能源自动辅助驾驶领域中 5G 与广播服务的整合,强调了可靠、节能的通信在大规模 IoV 中的重要性。5G 的增强功能可提高车辆电池的续航能力,同时保护用户数据隐私和道路交通安全。我们将 RIS 中继反射作为优化非视距链路的一种新方法,提出了一种专为 5G 增强型大规模物联网量身定制的 RIS 辅助通信模型。论文利用用户行为数据评估了 RIS 中继的可信度,提出了一种结合 RIS 安全中继辅助的可靠且节能的通信方案。该方案确保选择值得信赖的中继站,协同发射机和 RIS 的波束方向,以优化 5G 广播服务交付和 OTA 更新。我们的方法有望彻底改变大规模物联网系统中的通信,为自动驾驶汽车网络更互联、更高效的未来铺平道路。
{"title":"Enhancing 5G Broadcast Services in Large-Scale IoV Networks Using Reliable RIS Relaying","authors":"Qian Huang;Xueguang Yuan;Xiaoyin Yi;Qingming Xie;Qin Jiang;Bingxin Wang","doi":"10.1109/TBC.2024.3394293","DOIUrl":"10.1109/TBC.2024.3394293","url":null,"abstract":"The advent of 5G technology and new energy radio communication systems heralds a significant shift in the landscape of automated driving. This paper focuses on the integration of 5G and broadcast services in the realm of new energy automatic assisted driving, emphasizing the importance of reliable, energy-efficient communication in the large-scale IoV. The enhanced capabilities of 5G enable improved vehicle battery endurance while safeguarding user data privacy and road traffic safety. We introduce RIS relay reflection as a novel approach to optimize non-line-of-sight links, presenting a RIS-assisted communication model tailored for 5G-enhanced large-scale IoV. The paper evaluates the trustworthiness of RIS relays using user behavior data, proposing a reliable and energy-efficient communication scheme that incorporates RIS security relay assistance. This scheme ensures the selection of trustworthy relays, synergizing the beam direction of transmitters and RISs for optimal 5G broadcast service delivery and OTA updates. Our approach promises to revolutionize communication in large-scale IoV systems, paving the way for a more connected and efficient future in automated vehicle networks.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 3","pages":"1104-1112"},"PeriodicalIF":3.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learned Image Coding for Human-Machine Collaborative Optimization 用于人机协作优化的学习型图像编码
IF 4.5 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-21 DOI: 10.1109/tbc.2024.3443470
Jingbo He, Xiaohai He, Shuhua Xiong, Honggang Chen
{"title":"Learned Image Coding for Human-Machine Collaborative Optimization","authors":"Jingbo He, Xiaohai He, Shuhua Xiong, Honggang Chen","doi":"10.1109/tbc.2024.3443470","DOIUrl":"https://doi.org/10.1109/tbc.2024.3443470","url":null,"abstract":"","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"2 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing 3D Indoor Visible Light Positioning With Machine Learning Combined Nyström Kernel Approximation 利用机器学习结合 Nyström 核近似法增强 3D 室内可见光定位功能
IF 4.5 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-07 DOI: 10.1109/tbc.2024.3437216
Vasileios P. Rekkas, Sotirios P. Sotiroudis, Lazaros Alexios Iliadis, Sander Bastiaens, Wout Joseph, David Plets, Christos G. Christodoulou, George K. Karagiannidis, Sotirios K. Goudos
{"title":"Enhancing 3D Indoor Visible Light Positioning With Machine Learning Combined Nyström Kernel Approximation","authors":"Vasileios P. Rekkas, Sotirios P. Sotiroudis, Lazaros Alexios Iliadis, Sander Bastiaens, Wout Joseph, David Plets, Christos G. Christodoulou, George K. Karagiannidis, Sotirios K. Goudos","doi":"10.1109/tbc.2024.3437216","DOIUrl":"https://doi.org/10.1109/tbc.2024.3437216","url":null,"abstract":"","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"23 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal Adaptive Learned Surveillance Video Compression 时态自适应学习型监控视频压缩
IF 4.5 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-05 DOI: 10.1109/tbc.2024.3434736
Yu Zhao, Mao Ye, Luping Ji, Hongwei Guo, Ce Zhu
{"title":"Temporal Adaptive Learned Surveillance Video Compression","authors":"Yu Zhao, Mao Ye, Luping Ji, Hongwei Guo, Ce Zhu","doi":"10.1109/tbc.2024.3434736","DOIUrl":"https://doi.org/10.1109/tbc.2024.3434736","url":null,"abstract":"","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"46 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual Feature Indexed Quadratic Polynomial-Based Piecewise Behavioral Model for Digital Predistortion of RF Power Amplifiers 射频功率放大器数字预失真基于双特征索引二次多项式的分片行为模型
IF 4.5 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-05 DOI: 10.1109/tbc.2024.3434625
Hao Chang, Renlong Han, Chengye Jiang, Guichen Yang, Qianqian Zhang, Junsen Wang, Falin Liu
{"title":"Dual Feature Indexed Quadratic Polynomial-Based Piecewise Behavioral Model for Digital Predistortion of RF Power Amplifiers","authors":"Hao Chang, Renlong Han, Chengye Jiang, Guichen Yang, Qianqian Zhang, Junsen Wang, Falin Liu","doi":"10.1109/tbc.2024.3434625","DOIUrl":"https://doi.org/10.1109/tbc.2024.3434625","url":null,"abstract":"","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"12 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Decentralized Reputation Management Model for Enhanced IoV Networks With 5G Broadcast Services 利用 5G 广播服务增强物联网网络的分散式声誉管理模型
IF 4.5 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-05 DOI: 10.1109/tbc.2024.3434745
Jinxin Zuo, Ziping Wang, Chenqing Guo, Weixuan Xie, Hao Wu, Peng Yu, Yueming Lu
{"title":"A Decentralized Reputation Management Model for Enhanced IoV Networks With 5G Broadcast Services","authors":"Jinxin Zuo, Ziping Wang, Chenqing Guo, Weixuan Xie, Hao Wu, Peng Yu, Yueming Lu","doi":"10.1109/tbc.2024.3434745","DOIUrl":"https://doi.org/10.1109/tbc.2024.3434745","url":null,"abstract":"","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"40 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MAFBLiF: Multi-Scale Attention Feature Fusion-Based Blind Light Field Image Quality Assessment MAFBLiF:基于多尺度注意力特征融合的盲光场图像质量评估
IF 4.5 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2024-08-05 DOI: 10.1109/tbc.2024.3434699
Rui Zhou, Gangyi Jiang, Yueli Cui, Yeyao Chen, Haiyong Xu, Ting Luo, Mei Yu
{"title":"MAFBLiF: Multi-Scale Attention Feature Fusion-Based Blind Light Field Image Quality Assessment","authors":"Rui Zhou, Gangyi Jiang, Yueli Cui, Yeyao Chen, Haiyong Xu, Ting Luo, Mei Yu","doi":"10.1109/tbc.2024.3434699","DOIUrl":"https://doi.org/10.1109/tbc.2024.3434699","url":null,"abstract":"","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"59 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Broadcasting
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1