Pub Date : 2024-10-11DOI: 10.1109/MSP.2024.3448099
{"title":"Special Issue on Accelerating Brain Discovery Through Data Science and Neurotechnology","authors":"","doi":"10.1109/MSP.2024.3448099","DOIUrl":"https://doi.org/10.1109/MSP.2024.3448099","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 4","pages":"7-7"},"PeriodicalIF":9.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10714508","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1109/MSP.2024.3440568
Alan V. Oppenheim;Ronald W. Schafer;James Ward
{"title":"Efficient Deconvolution With the Discrete Fourier Transform","authors":"Alan V. Oppenheim;Ronald W. Schafer;James Ward","doi":"10.1109/MSP.2024.3440568","DOIUrl":"https://doi.org/10.1109/MSP.2024.3440568","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 4","pages":"76-83"},"PeriodicalIF":9.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10714910","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142408849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-11DOI: 10.1109/MSP.2024.3424578
Zafar Rafii;Erling Wold;Richard Boulderstone
We show how to design a cheap system for detecting when music is present in audio recordings. We make use of a small neural network consisting of a simple multilayer perceptron (MLP) along with compact features derived from the mel spectrogram by means of temporal integration.
{"title":"How to Design a Cheap Music Detection System Using a Simple Multilayer Perceptron With Temporal Integration","authors":"Zafar Rafii;Erling Wold;Richard Boulderstone","doi":"10.1109/MSP.2024.3424578","DOIUrl":"https://doi.org/10.1109/MSP.2024.3424578","url":null,"abstract":"We show how to design a cheap system for detecting when music is present in audio recordings. We make use of a small neural network consisting of a simple multilayer perceptron (MLP) along with compact features derived from the mel spectrogram by means of temporal integration.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 4","pages":"83-88"},"PeriodicalIF":9.4,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142408851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1109/MSP.2024.3394153
Roman Jacome;Kumar Vijay Mishra;Brian M. Sadler;Henry Arguello
Hypercomplex signal processing (HSP) provides state-of-the-art tools to handle multidimensional signals by harnessing the intrinsic correlation of the signal dimensions through Clifford algebra. Recently, the hypercomplex representation of the phase retrieval (PR) problem, wherein a complex-valued signal is estimated through its intensity-only projections, has attracted significant interest. The hypercomplex PR (HPR) arises in many optical imaging and computational sensing applications that usually comprise quaternion- and octonion-valued signals. Analogous to the traditional PR, measurements in HPR may involve complex, hypercomplex, Fourier, and other sensing matrices. This set of problems opens opportunities for developing novel HSP tools and algorithms. This article provides a synopsis of the emerging areas and applications of HPR with a focus on optical imaging.
{"title":"An Invitation to Hypercomplex Phase Retrieval: Theory and applications [Hypercomplex Signal and Image Processing]","authors":"Roman Jacome;Kumar Vijay Mishra;Brian M. Sadler;Henry Arguello","doi":"10.1109/MSP.2024.3394153","DOIUrl":"https://doi.org/10.1109/MSP.2024.3394153","url":null,"abstract":"Hypercomplex signal processing (HSP) provides state-of-the-art tools to handle multidimensional signals by harnessing the intrinsic correlation of the signal dimensions through Clifford algebra. Recently, the hypercomplex representation of the phase retrieval (PR) problem, wherein a complex-valued signal is estimated through its intensity-only projections, has attracted significant interest. The hypercomplex PR (HPR) arises in many optical imaging and computational sensing applications that usually comprise quaternion- and octonion-valued signals. Analogous to the traditional PR, measurements in HPR may involve complex, hypercomplex, Fourier, and other sensing matrices. This set of problems opens opportunities for developing novel HSP tools and algorithms. This article provides a synopsis of the emerging areas and applications of HPR with a focus on optical imaging.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 3","pages":"22-32"},"PeriodicalIF":9.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1109/MSP.2024.3384178
Clive Cheong Took;Sayed Pouria Talebi;Rosa Maria Fernandez Alcala;Danilo P. Mandic
Learning machines for vector sensor data are naturally developed in the quaternion domain and are underpinned by quaternion statistics. To this end, we revisit the “augmented” representation basis for discrete quaternion random variables (RVs) ${bf{q}}^{a}[n]$