首页 > 最新文献

IEEE Signal Processing Magazine最新文献

英文 中文
Advance Your Career 推进你的事业
IF 9.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-15 DOI: 10.1109/MSP.2025.3601126
{"title":"Advance Your Career","authors":"","doi":"10.1109/MSP.2025.3601126","DOIUrl":"https://doi.org/10.1109/MSP.2025.3601126","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 3","pages":"C2-C2"},"PeriodicalIF":9.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11164543","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SPS Social Media SPS社交媒体
IF 9.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-15 DOI: 10.1109/MSP.2025.3601123
{"title":"SPS Social Media","authors":"","doi":"10.1109/MSP.2025.3601123","DOIUrl":"https://doi.org/10.1109/MSP.2025.3601123","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 3","pages":"12-12"},"PeriodicalIF":9.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11164919","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Dataport IEEE Dataport
IF 9.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-15 DOI: 10.1109/MSP.2025.3601122
{"title":"IEEE Dataport","authors":"","doi":"10.1109/MSP.2025.3601122","DOIUrl":"https://doi.org/10.1109/MSP.2025.3601122","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 3","pages":"4-4"},"PeriodicalIF":9.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11164546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Online Course - Foundation Models 新的在线课程-基础模型
IF 9.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-15 DOI: 10.1109/MSP.2025.3601203
{"title":"New Online Course - Foundation Models","authors":"","doi":"10.1109/MSP.2025.3601203","DOIUrl":"https://doi.org/10.1109/MSP.2025.3601203","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 3","pages":"83-83"},"PeriodicalIF":9.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11165054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning From Crowdsourced Noisy Labels: A signal processing perspective 从众包噪声标签学习:信号处理的视角
IF 9.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-15 DOI: 10.1109/MSP.2025.3572636
Shahana Ibrahim;Panagiotis A. Traganitis;Xiao Fu;Georgios B. Giannakis
One of the primary catalysts fueling advances in artificial intelligence (AI) and machine learning (ML) is the availability of massive, curated datasets. A commonly used technique to curate such massive datasets is crowdsourcing, where data are dispatched to multiple annotators. The annotatorproduced labels are then fused to serve downstream learning and inference tasks. This annotation process often creates noisy labels due to various reasons, such as the limited expertise, or unreliability of annotators, among others. Therefore, a core objective in crowdsourcing is to develop methods that effectively mitigate the negative impact of such label noise on learning tasks. This feature article introduces advances in learning from noisy crowdsourced labels. The focus is on key crowdsourcing models and their methodological treatments, from classical statistical models to recent deep learningbased approaches, emphasizing analytical insights and algorithmic developments. In particular, this article reviews the connections between signal processing (SP) theory and methods, such as identifiability of tensor and nonnegative matrix factorization, and novel, principled solutions of longstanding challenges in crowdsourcing—showing how SP perspectives drive the advancements of this field. Furthermore, this article touches upon emerging topics that are critical for developing cutting-edge AI/ML systems, such as crowdsourcing in reinforcement learning with human feedback (RLHF) and direct preference optimization (DPO) that are key techniques for fine-tuning large language models (LLMs).
推动人工智能(AI)和机器学习(ML)进步的主要催化剂之一是大量精心策划的数据集的可用性。管理如此庞大的数据集的一种常用技术是众包,将数据分发给多个注释者。然后将注释器生成的标签融合到下游的学习和推理任务中。由于各种原因,例如有限的专业知识或注释者的不可靠性等,此注释过程通常会创建嘈杂的标签。因此,众包的核心目标是开发有效减轻这种标签噪声对学习任务的负面影响的方法。这篇专题文章介绍了从嘈杂的众包标签中学习的进展。重点是关键的众包模型及其方法处理,从经典的统计模型到最近的基于深度学习的方法,强调分析见解和算法的发展。特别是,本文回顾了信号处理(SP)理论和方法之间的联系,例如张量的可辨识性和非负矩阵分解,以及众包中长期挑战的新颖,原则性解决方案-展示了SP观点如何推动该领域的进步。此外,本文还涉及了对开发尖端AI/ML系统至关重要的新兴主题,例如基于人类反馈的强化学习众包(RLHF)和直接偏好优化(DPO),这些都是微调大型语言模型(llm)的关键技术。
{"title":"Learning From Crowdsourced Noisy Labels: A signal processing perspective","authors":"Shahana Ibrahim;Panagiotis A. Traganitis;Xiao Fu;Georgios B. Giannakis","doi":"10.1109/MSP.2025.3572636","DOIUrl":"https://doi.org/10.1109/MSP.2025.3572636","url":null,"abstract":"One of the primary catalysts fueling advances in <italic>artificial intelligence</i> (AI) and <italic>machine learning</i> (ML) is the availability of massive, curated datasets. A commonly used technique to curate such massive datasets is crowdsourcing, where data are dispatched to multiple annotators. The annotatorproduced labels are then fused to serve downstream learning and inference tasks. This annotation process often creates noisy labels due to various reasons, such as the limited expertise, or unreliability of annotators, among others. Therefore, a core objective in crowdsourcing is to develop methods that effectively mitigate the negative impact of such label noise on learning tasks. This feature article introduces advances in learning from noisy crowdsourced labels. The focus is on key crowdsourcing models and their methodological treatments, from classical statistical models to recent deep learningbased approaches, emphasizing analytical insights and algorithmic developments. In particular, this article reviews the connections between signal processing (SP) theory and methods, such as identifiability of tensor and nonnegative matrix factorization, and novel, principled solutions of longstanding challenges in crowdsourcing—showing how SP perspectives drive the advancements of this field. Furthermore, this article touches upon emerging topics that are critical for developing cutting-edge AI/ML systems, such as crowdsourcing in reinforcement learning with human feedback (RLHF) and direct preference optimization (DPO) that are key techniques for fine-tuning large language models (LLMs).","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 3","pages":"84-106"},"PeriodicalIF":9.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SPS Podcast SPS播客
IF 9.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-15 DOI: 10.1109/MSP.2025.3601125
{"title":"SPS Podcast","authors":"","doi":"10.1109/MSP.2025.3601125","DOIUrl":"https://doi.org/10.1109/MSP.2025.3601125","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 3","pages":"13-13"},"PeriodicalIF":9.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11164788","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Feedback IEEE反馈
IF 9.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-15 DOI: 10.1109/MSP.2025.3601124
{"title":"IEEE Feedback","authors":"","doi":"10.1109/MSP.2025.3601124","DOIUrl":"https://doi.org/10.1109/MSP.2025.3601124","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 3","pages":"39-39"},"PeriodicalIF":9.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11164918","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Moving IEEE移动
IF 9.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-15 DOI: 10.1109/MSP.2025.3601202
{"title":"IEEE Moving","authors":"","doi":"10.1109/MSP.2025.3601202","DOIUrl":"https://doi.org/10.1109/MSP.2025.3601202","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 3","pages":"120-120"},"PeriodicalIF":9.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11164996","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conference Calendar [Dates Ahead] 会议日程表[未来日期]
IF 9.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-15 DOI: 10.1109/MSP.2025.3596656
{"title":"Conference Calendar [Dates Ahead]","authors":"","doi":"10.1109/MSP.2025.3596656","DOIUrl":"https://doi.org/10.1109/MSP.2025.3596656","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 3","pages":"C3-C3"},"PeriodicalIF":9.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11164944","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Connects IEEE连接
IF 9.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Pub Date : 2025-09-15 DOI: 10.1109/MSP.2025.3601201
{"title":"IEEE Connects","authors":"","doi":"10.1109/MSP.2025.3601201","DOIUrl":"https://doi.org/10.1109/MSP.2025.3601201","url":null,"abstract":"","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"42 3","pages":"82-82"},"PeriodicalIF":9.6,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11164933","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145061853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Signal Processing Magazine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1