Pub Date : 2025-08-08DOI: 10.1109/TDEI.2025.3596950
M-Ramez Halloum;B. Subba Reddy
Polymeric outdoor insulators in HVdc systems encounter additional challenges beyond the typical environmental and electrical stresses seen in HVac systems, such as increased pollution accumulation, surface charge accumulation, more severe discharges, and a higher failure rate. This study presents the development of a superhydrophobic coating made from polydimethylsiloxane (PDMS) and hydrophobic nano silica (SiO2) for polymeric outdoor insulators, achieving excellent water-repellency and self-cleaning properties. Experimental evaluations under various conditions—dry, clean fog, clean rain, salt fog, and salt rain—demonstrated significant performance improvements: for example, under salt rain conditions, the flashover voltage increased by 97.3% (from 22.16 to 43.72 kV), while the leakage current (LC) reduced from 32.2 mA to 193 $mu $ A. Simulation and experimental results demonstrate the superior performance of the superhydrophobic insulators, ensuring more stable and reliable operation of composite insulators in HVdc systems.
{"title":"Superhydrophobic Coating for Performance Enhancement of Polymeric Outdoor Insulators Used in HVDC Systems","authors":"M-Ramez Halloum;B. Subba Reddy","doi":"10.1109/TDEI.2025.3596950","DOIUrl":"https://doi.org/10.1109/TDEI.2025.3596950","url":null,"abstract":"Polymeric outdoor insulators in HVdc systems encounter additional challenges beyond the typical environmental and electrical stresses seen in HVac systems, such as increased pollution accumulation, surface charge accumulation, more severe discharges, and a higher failure rate. This study presents the development of a superhydrophobic coating made from polydimethylsiloxane (PDMS) and hydrophobic nano silica (SiO2) for polymeric outdoor insulators, achieving excellent water-repellency and self-cleaning properties. Experimental evaluations under various conditions—dry, clean fog, clean rain, salt fog, and salt rain—demonstrated significant performance improvements: for example, under salt rain conditions, the flashover voltage increased by 97.3% (from 22.16 to 43.72 kV), while the leakage current (LC) reduced from 32.2 mA to 193 <inline-formula> <tex-math>$mu $ </tex-math></inline-formula>A. Simulation and experimental results demonstrate the superior performance of the superhydrophobic insulators, ensuring more stable and reliable operation of composite insulators in HVdc systems.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"2551-2558"},"PeriodicalIF":3.1,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145190284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-08-07DOI: 10.1109/TDEI.2025.3550102
Thomas Montano;Carolyn Chun;Kathryn Sturge;Noah Hoppis;Ariana Shearin;Timothy Koeth
Electrical treeing is a principal degradation mechanism in polymeric dielectric material bombarded with charged particles. Such bombardment occurs when the material is exposed to space radiation environments. Treeing occurs during the rapid evacuation of charges that are embedded in the material and often culminates in catastrophic equipment failure. This article outlines the development and validation of a novel simulation model to depict electrical tree discharge within a dielectric polymethyl methacrylate block, but this model provides predictive power for any similar dielectric material. Dielectric materials have advantageous insulating properties and are crucial for aerospace applications, but the possibility of discharge failure due to electrical treeing poses a substantial risk to in-flight equipment. It jeopardizes expensive equipment, mission objectives, and the safety of any on-board crew. This article utilizes insights from novel imaging techniques that reveal characteristics of electrical treeing, such as the speed and development of the erosion wavefront and the speed at which the detrapped charge evacuates the material. A geometric model and an RLC model are proposed to model this observed behavior, and a stochastic model for the development of the Lichtenberg figure (LF) that incorporates these insights is presented and compared with the experimental results, validating the model with an ${R}^{{2}}$ value of 0.93 and highlighting areas for future development.
{"title":"Simulation and Modeling of Prompt Electrical Tree Formation During Dielectric Breakdown in Space-Charged Dielectrics","authors":"Thomas Montano;Carolyn Chun;Kathryn Sturge;Noah Hoppis;Ariana Shearin;Timothy Koeth","doi":"10.1109/TDEI.2025.3550102","DOIUrl":"https://doi.org/10.1109/TDEI.2025.3550102","url":null,"abstract":"Electrical treeing is a principal degradation mechanism in polymeric dielectric material bombarded with charged particles. Such bombardment occurs when the material is exposed to space radiation environments. Treeing occurs during the rapid evacuation of charges that are embedded in the material and often culminates in catastrophic equipment failure. This article outlines the development and validation of a novel simulation model to depict electrical tree discharge within a dielectric polymethyl methacrylate block, but this model provides predictive power for any similar dielectric material. Dielectric materials have advantageous insulating properties and are crucial for aerospace applications, but the possibility of discharge failure due to electrical treeing poses a substantial risk to in-flight equipment. It jeopardizes expensive equipment, mission objectives, and the safety of any on-board crew. This article utilizes insights from novel imaging techniques that reveal characteristics of electrical treeing, such as the speed and development of the erosion wavefront and the speed at which the detrapped charge evacuates the material. A geometric model and an RLC model are proposed to model this observed behavior, and a stochastic model for the development of the Lichtenberg figure (LF) that incorporates these insights is presented and compared with the experimental results, validating the model with an <inline-formula> <tex-math>${R}^{{2}}$ </tex-math></inline-formula> value of 0.93 and highlighting areas for future development.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"2577-2585"},"PeriodicalIF":3.1,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145189983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-30DOI: 10.1109/TDEI.2025.3588636
{"title":"IEEE Transactions on Dielectrics and Electrical Insulation Information for Authors","authors":"","doi":"10.1109/TDEI.2025.3588636","DOIUrl":"https://doi.org/10.1109/TDEI.2025.3588636","url":null,"abstract":"","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 4","pages":"C4-C4"},"PeriodicalIF":3.1,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11104954","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-30DOI: 10.1109/TDEI.2025.3589035
{"title":"Call for Papers: Special Issue on Electrets and Related Phenomena","authors":"","doi":"10.1109/TDEI.2025.3589035","DOIUrl":"https://doi.org/10.1109/TDEI.2025.3589035","url":null,"abstract":"","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 4","pages":"2493-2493"},"PeriodicalIF":3.1,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11104952","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-30DOI: 10.1109/TDEI.2025.3589036
{"title":"Call for Papers: Special Issue on Liquid Dielectrics","authors":"","doi":"10.1109/TDEI.2025.3589036","DOIUrl":"https://doi.org/10.1109/TDEI.2025.3589036","url":null,"abstract":"","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 4","pages":"2494-2494"},"PeriodicalIF":3.1,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11104943","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-30DOI: 10.1109/TDEI.2025.3588640
{"title":"IEEE Dielectrics and Electrical Insulation Society Information","authors":"","doi":"10.1109/TDEI.2025.3588640","DOIUrl":"https://doi.org/10.1109/TDEI.2025.3588640","url":null,"abstract":"","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 4","pages":"C3-C3"},"PeriodicalIF":3.1,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11104953","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-30DOI: 10.1109/TDEI.2025.3588642
{"title":"IEEE Transactions on Dielectrics and Electrical Insulation Publication Information","authors":"","doi":"10.1109/TDEI.2025.3588642","DOIUrl":"https://doi.org/10.1109/TDEI.2025.3588642","url":null,"abstract":"","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 4","pages":"C2-C2"},"PeriodicalIF":3.1,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11104951","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144739978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The phenomenon of surface charging caused by electrical discharges has attracted significant attention because of its adverse effects on electrical systems and its industrial applications. Since the surface charging and discharge current are both influenced by the charges generated during the discharge, it is important to study the correlation quantitatively. The primary goal of the study is to analyze the relationship between the discharge current pulse and the corresponding surface charge deposition for positive and negative excitations. To establish the relation, variations were introduced in two key parameters influencing the discharge process: the discharge medium (N2, CO2, and dry air) and the pressure (100, 90, 80, 70, and 60 kPa) in each medium. The excitation voltage waveform is chosen to ensure the generation of only a single current pulse during the discharge. The positive excitation resulted in a higher pulse magnitude for N2 and dry air, whereas CO2 exhibited an opposite trend. The change in the current pulse is found to be directly proportional to the variation in charge deposition. The derived empirical formulas establish a linear correlation between the total charge computed from the current pulse and the deposited surface charge, verified by Pearson’s correlation coefficient, which suggests a good correlation strength. Of the three gaseous media, CO2 has shown a lower margin of error and consistent discharge results.
{"title":"Correlating Discharge Current Pulse With Surface Charge Deposition in Diverse Gaseous Environment","authors":"Shelly Saini;Shakthi Prasad D;Thami Zeghloul;Lucian Dascalescu","doi":"10.1109/TDEI.2025.3591391","DOIUrl":"https://doi.org/10.1109/TDEI.2025.3591391","url":null,"abstract":"The phenomenon of surface charging caused by electrical discharges has attracted significant attention because of its adverse effects on electrical systems and its industrial applications. Since the surface charging and discharge current are both influenced by the charges generated during the discharge, it is important to study the correlation quantitatively. The primary goal of the study is to analyze the relationship between the discharge current pulse and the corresponding surface charge deposition for positive and negative excitations. To establish the relation, variations were introduced in two key parameters influencing the discharge process: the discharge medium (N2, CO2, and dry air) and the pressure (100, 90, 80, 70, and 60 kPa) in each medium. The excitation voltage waveform is chosen to ensure the generation of only a single current pulse during the discharge. The positive excitation resulted in a higher pulse magnitude for N2 and dry air, whereas CO2 exhibited an opposite trend. The change in the current pulse is found to be directly proportional to the variation in charge deposition. The derived empirical formulas establish a linear correlation between the total charge computed from the current pulse and the deposited surface charge, verified by Pearson’s correlation coefficient, which suggests a good correlation strength. Of the three gaseous media, CO2 has shown a lower margin of error and consistent discharge results.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"2756-2764"},"PeriodicalIF":3.1,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145190288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The inverter-driven motors are increasingly used in industrial and mobility applications, driving the demand for greater performance and reliability. Recent advances in power electronics have raised inverter output frequencies and slew rates, increasing the risk of discharge and insulation failure. A better understanding of discharge phenomena is thus essential. The authors are developing numerical simulations of dielectric barrier discharge (DBD) in twisted pairs of enameled wire. This study investigates the estimation and applicability of the secondary electron emission (SEE) coefficient ($gamma $ ) to the DBD simulations, addressing the lack of empirical data. As a result, fitting was found effective for estimating $gamma $ from discharge voltage measurements. The estimated values were $4.7times 10^{text {-3}}$ for polyimide (PI) and $7.5times 10^{text {-3}}$ for polyethylene (PE). Applying these values in DBD simulations suggests the potential to estimate discharge voltages under various pressure conditions. These findings imply that DBD simulations can enhance the accuracy of predictions of discharge phenomena in twisted pairs of enameled wire.
{"title":"Estimation of Secondary Electron Emission Coefficients for Dielectric Barrier Discharge Simulations","authors":"Yoshitaka Miyaji;Hirotaku Ishikawa;Yasutomo Otake;Fuma Yamada;Yusuke Kikuchi","doi":"10.1109/TDEI.2025.3589990","DOIUrl":"https://doi.org/10.1109/TDEI.2025.3589990","url":null,"abstract":"The inverter-driven motors are increasingly used in industrial and mobility applications, driving the demand for greater performance and reliability. Recent advances in power electronics have raised inverter output frequencies and slew rates, increasing the risk of discharge and insulation failure. A better understanding of discharge phenomena is thus essential. The authors are developing numerical simulations of dielectric barrier discharge (DBD) in twisted pairs of enameled wire. This study investigates the estimation and applicability of the secondary electron emission (SEE) coefficient (<inline-formula> <tex-math>$gamma $ </tex-math></inline-formula>) to the DBD simulations, addressing the lack of empirical data. As a result, fitting was found effective for estimating <inline-formula> <tex-math>$gamma $ </tex-math></inline-formula> from discharge voltage measurements. The estimated values were <inline-formula> <tex-math>$4.7times 10^{text {-3}}$ </tex-math></inline-formula> for polyimide (PI) and <inline-formula> <tex-math>$7.5times 10^{text {-3}}$ </tex-math></inline-formula> for polyethylene (PE). Applying these values in DBD simulations suggests the potential to estimate discharge voltages under various pressure conditions. These findings imply that DBD simulations can enhance the accuracy of predictions of discharge phenomena in twisted pairs of enameled wire.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"3117-3119"},"PeriodicalIF":3.1,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145189980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-07-16DOI: 10.1109/TDEI.2025.3589978
Yuwei Fu;Peng Ji;Shuai Wen;Rong Liang
Magnetron sputtering is widely used in thin film fabrication and surface modification of materials. During the sputtering process, the spatial species distribution significantly impacts the deposited film’s properties. However, there are still some difficulties in understanding the spatial species distribution, transport and energy control, resulting in uneven coating and low target utilization. In this article, we utilized a 2-D magnetron sputtering plasma model to further investigate the species distribution of the plasma under different excitation voltage sources and consequently obtain the Ar+ sputtering energy distribution. The erosion phenomenon was studied in the transport of ions in matter (TRIM) software, and the particle energy and angle obtained from the plasma simulation were used as input to study the incident distribution and sputtering yield. The results show significant differences in the distribution, density, and sputtering energy of plasma under dc, radio frequency (RF) (13.56 MHz) and high-power pulse (HPP) excitation voltage sources. Under dc, the electron distribution is more uniform than other excitation sources, covering 40%–50% of the target surface area. The initial sputtering energy distribution ranges from 0 to 400 eV with an erosion depth of 20Å, and the sputtering yield is approximately proportional to the voltage. The sputtering yield increases slower under RF when the voltage reaches 1000 V. Under RF, the electric field distribution is uniform at 800 V, but Ar+ is concentrated covering only 15% of the target surface. Under HPP, the electron and Ar+ densities reach $10^{{17}}$ –$10^{{18}}$ m${}^{-{3}}$ , with the highest electron current density reaching $5times 10^{{3}}$ A/m2. The sputtering depth is 30Å. This research has significant importance in optimizing the process parameters of magnetron sputtering and improving film performance. It provides strong support for the development and application of magnetron sputtering processes.
{"title":"The Distribution and Erosion Characteristics of Plasma Particles in Magnetron Sputtering Under Different Excitation Voltage Sources","authors":"Yuwei Fu;Peng Ji;Shuai Wen;Rong Liang","doi":"10.1109/TDEI.2025.3589978","DOIUrl":"https://doi.org/10.1109/TDEI.2025.3589978","url":null,"abstract":"Magnetron sputtering is widely used in thin film fabrication and surface modification of materials. During the sputtering process, the spatial species distribution significantly impacts the deposited film’s properties. However, there are still some difficulties in understanding the spatial species distribution, transport and energy control, resulting in uneven coating and low target utilization. In this article, we utilized a 2-D magnetron sputtering plasma model to further investigate the species distribution of the plasma under different excitation voltage sources and consequently obtain the Ar+ sputtering energy distribution. The erosion phenomenon was studied in the transport of ions in matter (TRIM) software, and the particle energy and angle obtained from the plasma simulation were used as input to study the incident distribution and sputtering yield. The results show significant differences in the distribution, density, and sputtering energy of plasma under dc, radio frequency (RF) (13.56 MHz) and high-power pulse (HPP) excitation voltage sources. Under dc, the electron distribution is more uniform than other excitation sources, covering 40%–50% of the target surface area. The initial sputtering energy distribution ranges from 0 to 400 eV with an erosion depth of 20Å, and the sputtering yield is approximately proportional to the voltage. The sputtering yield increases slower under RF when the voltage reaches 1000 V. Under RF, the electric field distribution is uniform at 800 V, but Ar+ is concentrated covering only 15% of the target surface. Under HPP, the electron and Ar+ densities reach <inline-formula> <tex-math>$10^{{17}}$ </tex-math></inline-formula>–<inline-formula> <tex-math>$10^{{18}}$ </tex-math></inline-formula> m<inline-formula> <tex-math>${}^{-{3}}$ </tex-math></inline-formula>, with the highest electron current density reaching <inline-formula> <tex-math>$5times 10^{{3}}$ </tex-math></inline-formula> A/m2. The sputtering depth is 30Å. This research has significant importance in optimizing the process parameters of magnetron sputtering and improving film performance. It provides strong support for the development and application of magnetron sputtering processes.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"32 5","pages":"2730-2737"},"PeriodicalIF":3.1,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145190289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}