Pub Date : 2024-08-03DOI: 10.1016/j.imbio.2024.152840
Ritasha Sawoo, Biswadev Bishayi
Due to the urgent need to create appropriate treatment techniques, which are currently unavailable, LPS-induced sepsis has become a serious concern on a global scale. The primary active component in the pathophysiology of inflammatory diseases such as sepsis is the Gram-negative bacterial lipopolysaccharide (LPS). LPS interacts with cell surface TLR4 in macrophages, causing the formation of reactive oxygen species (ROS), TNF-α, IL-1β and oxidative stress. It also significantly activates the MAPKs and NF-κB pathway. Excessive production of pro-inflammatory cytokines is one of the primary characteristic features in the onset and progression of inflammation. Cytokines mainly signal through the JAK/STAT pathway. We hypothesize that blocking of TLR4 along with TNFR1 might be beneficial in suppressing the effects of STAT1/STAT3 due to the stimulation of SOCS3 proteins. Prior to the LPS challenge, the macrophages were treated with antibodies against TLR4 and TNFR1 either individually or in combination. On analysis of the macrophage populations by flowcytometry, it was seen that receptor blockade facilitated the phenotypic shift of the M1 macrophages towards M2 resulting in lowered oxidative stress. Blocking of TLR4/TNFR1 upregulated the SOCS3 and mTOR expressions that enabled the transition of inflammatory M1 macrophages towards the anti-inflammatory M2 phenotype, which might be crucial in curbing the inflammatory responses. Also the reduction in the production of inflammatory cytokines such as IL-6, IL-1β due to the reduction in the activation of the STAT1 and STAT3 molecules was observed in our combination treatment group. All these results indicated that neutralization of both TLR4 and TNFR1 might provide new insights in establishing an alternative therapeutic strategy for LPS-sepsis.
{"title":"TLR4/TNFR1 blockade suppresses STAT1/STAT3 expression and increases SOCS3 expression in modulation of LPS-induced macrophage responses","authors":"Ritasha Sawoo, Biswadev Bishayi","doi":"10.1016/j.imbio.2024.152840","DOIUrl":"10.1016/j.imbio.2024.152840","url":null,"abstract":"<div><p>Due to the urgent need to create appropriate treatment techniques, which are currently unavailable, LPS-induced sepsis has become a serious concern on a global scale. The primary active component in the pathophysiology of inflammatory diseases such as sepsis is the Gram-negative bacterial lipopolysaccharide (LPS). LPS interacts with cell surface TLR4 in macrophages, causing the formation of reactive oxygen species (ROS), TNF-α, IL-1β and oxidative stress. It also significantly activates the MAPKs and NF-κB pathway. Excessive production of pro-inflammatory cytokines is one of the primary characteristic features in the onset and progression of inflammation. Cytokines mainly signal through the JAK/STAT pathway. We hypothesize that blocking of TLR4 along with TNFR1 might be beneficial in suppressing the effects of STAT1/STAT3 due to the stimulation of SOCS3 proteins. Prior to the LPS challenge, the macrophages were treated with antibodies against TLR4 and TNFR1 either individually or in combination. On analysis of the macrophage populations by flowcytometry, it was seen that receptor blockade facilitated the phenotypic shift of the M1 macrophages towards M2 resulting in lowered oxidative stress. Blocking of TLR4/TNFR1 upregulated the SOCS3 and mTOR expressions that enabled the transition of inflammatory M1 macrophages towards the anti-inflammatory M2 phenotype, which might be crucial in curbing the inflammatory responses. Also the reduction in the production of inflammatory cytokines such as IL-6, IL-1β due to the reduction in the activation of the STAT1 and STAT3 molecules was observed in our combination treatment group. All these results indicated that neutralization of both TLR4 and TNFR1 might provide new insights in establishing an alternative therapeutic strategy for LPS-sepsis.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 5","pages":"Article 152840"},"PeriodicalIF":2.5,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171298524000585/pdfft?md5=6fa21168b1f9f1a7014808462aaf447f&pid=1-s2.0-S0171298524000585-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141912445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-02DOI: 10.1016/j.imbio.2024.152841
Guixiong Zhang , Yitai Xiao , Hang Liu , Yanqin Wu , Miao Xue , Jiaping Li
Hepatocellular carcinoma (HCC) stands as one of the most prevalent malignancies. While PD-1 immune checkpoint inhibitors have demonstrated promising therapeutic efficacy in HCC, not all patients exhibit a favorable response to these treatments. Glutamine is a crucial immune cell regulatory factor, and tumor cells exhibit glutamine dependence. In this study, HCC patients were divided into two subtypes (C1 and C2) based on glutamine metabolism-related genes via consensus clustering. The C1 pattern, in contrast to C2, was associated with a lower survival probability among HCC patients. Additionally, the C1 pattern exhibited higher proportions of patients with advanced tumor stages. The activity of C1 in glutamine metabolism and transport is significantly enhanced, while its oxidative phosphorylation activity is reduced. And, C1 was mainly involved in the progression-related pathway of HCC. Furthermore, C1 exhibited high levels of immunosuppressive cells, cytokine-receptor interactions and immune checkpoint genes, suggesting C1 as an immunosuppressive subtype. After stepwise selection based on integrated four machine learning methods, SLC1A5 was finally identified as the pivotal gene that distinguishes the subtypes. The expression of SLC1A5 was significantly positively correlated with immunosuppressive status. SLC1A5 showed the most significant correlation with macrophage infiltration, and this correlation was confirmed through the RNA-seq data of CLCA project and our cohort. Low-SLC1A5-expression samples had better immunogenicity and responsiveness to immunotherapy. As expected, SubMap and survival analysis indicated that individuals with low SLC1A5 expression were more responsive to anti-PD1 therapy. Collectively, this study categorized HCC patients based on glutamine metabolism-related genes and proposed two subclasses with different clinical traits, biological behavior, and immune status. Machine learning was utilized to identify the hub gene SLC1A5 for HCC classification, which also could predict immunotherapy response.
{"title":"Integrated machine learning screened glutamine metabolism-associated biomarker SLC1A5 to predict immunotherapy response in hepatocellular carcinoma","authors":"Guixiong Zhang , Yitai Xiao , Hang Liu , Yanqin Wu , Miao Xue , Jiaping Li","doi":"10.1016/j.imbio.2024.152841","DOIUrl":"10.1016/j.imbio.2024.152841","url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) stands as one of the most prevalent malignancies. While PD-1 immune checkpoint inhibitors have demonstrated promising therapeutic efficacy in HCC, not all patients exhibit a favorable response to these treatments. Glutamine is a crucial immune cell regulatory factor, and tumor cells exhibit glutamine dependence. In this study, HCC patients were divided into two subtypes (C1 and C2) based on glutamine metabolism-related genes via consensus clustering. The C1 pattern, in contrast to C2, was associated with a lower survival probability among HCC patients. Additionally, the C1 pattern exhibited higher proportions of patients with advanced tumor stages. The activity of C1 in glutamine metabolism and transport is significantly enhanced, while its oxidative phosphorylation activity is reduced. And, C1 was mainly involved in the progression-related pathway of HCC. Furthermore, C1 exhibited high levels of immunosuppressive cells, cytokine-receptor interactions and immune checkpoint genes, suggesting C1 as an immunosuppressive subtype. After stepwise selection based on integrated four machine learning methods, SLC1A5 was finally identified as the pivotal gene that distinguishes the subtypes. The expression of SLC1A5 was significantly positively correlated with immunosuppressive status. SLC1A5 showed the most significant correlation with macrophage infiltration, and this correlation was confirmed through the RNA-seq data of CLCA project and our cohort. Low-SLC1A5-expression samples had better immunogenicity and responsiveness to immunotherapy. As expected, SubMap and survival analysis indicated that individuals with low SLC1A5 expression were more responsive to anti-PD1 therapy. Collectively, this study categorized HCC patients based on glutamine metabolism-related genes and proposed two subclasses with different clinical traits, biological behavior, and immune status. Machine learning was utilized to identify the hub gene SLC1A5 for HCC classification, which also could predict immunotherapy response.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 5","pages":"Article 152841"},"PeriodicalIF":2.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171298524000597/pdfft?md5=9b728266aff2bc1d2b2340dc90eeaa7f&pid=1-s2.0-S0171298524000597-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1016/j.imbio.2024.152839
Lei zhang , Houru Liu , Jie Shen , Wenting Liu , Dahai Liu , Liansheng Cheng , Bei Huang
4-1BB agonists for cancer immunotherapy have shown good preliminary efficacy in clinical trials, but several of the first-generation 4-1BB agonistic antibodies entering the clinic have failed due to safety issues. Selenium nanoparticles (SeNPs) exhibit anti-inflammatory, anti-tumor, antioxidant, and immune-modulating properties. In addition, they have been shown to have detoxifying effects and prevent oxidative liver damage. In this study, we used an anti-4-1BB antibody in combination with SeNPs to evaluate the anti-lung cancer effects in in vitro and in vivo experiments and explore the underlying mechanisms by pathological analyses, quantitative PCR, and enzyme-linked immunoassay. We found that 5 μmol·L–1 anti-4-1BB antibody combined with 1 μmol·L–1 SeNPs increased the expression of IFN-γ and promoted the killing effects of peripheral blood mononuclear cells on Lewis lung carcinoma cells, with a lethality rate up to 56.88 %. Experiments in tumor-bearing mice showed that the tumor inhibition rate was 58.61 % after treatment with 3.5 mg/kg anti-4-1BB antibody combined with 0.25 mg/kg SeNPs, and the liver function index returned to normal. When the combined treatment was compared with the antibody treatment alone, detection of immune relevant factors demonstrated that the expression of FOXP3, IL-2, IL-12, and TNF-α in the spleen was downregulated, whereas the expression of IFN-γ in the spleen, serum, and tumor was upregulated, accompanied by increased Fas ligand expression in the tumor tissues. Based on these findings, we get the conclusion that anti-4-1BB antibody combined with SeNPs may alleviate the immunosuppression of regulatory T cells, promote the immune cell proliferation and metastasis to synergistically kill tumor cells. This combination also reduces the inflammatory damage to normal tissues and slows overstimulation of the splenic immune response.
{"title":"Selenium nanoparticles enhance the anti-tumor immune responses of anti-4-1BB antibody and alleviate the adverse effects on mice","authors":"Lei zhang , Houru Liu , Jie Shen , Wenting Liu , Dahai Liu , Liansheng Cheng , Bei Huang","doi":"10.1016/j.imbio.2024.152839","DOIUrl":"10.1016/j.imbio.2024.152839","url":null,"abstract":"<div><p>4-1BB agonists for cancer immunotherapy have shown good preliminary efficacy in clinical trials, but several of the first-generation 4-1BB agonistic antibodies entering the clinic have failed due to safety issues. Selenium nanoparticles (SeNPs) exhibit anti-inflammatory, anti-tumor, antioxidant, and immune-modulating properties. In addition, they have been shown to have detoxifying effects and prevent oxidative liver damage. In this study, we used an anti-4-1BB antibody in combination with SeNPs to evaluate the anti-lung cancer effects in <em>in vitro</em> and <em>in vivo</em> experiments and explore the underlying mechanisms by pathological analyses, quantitative PCR, and enzyme-linked immunoassay. We found that 5 μmol·L<sup>–1</sup> anti-4-1BB antibody combined with 1 μmol·L<sup>–1</sup> SeNPs increased the expression of IFN-γ and promoted the killing effects of peripheral blood mononuclear cells on Lewis lung carcinoma cells, with a lethality rate up to 56.88 %. Experiments in tumor-bearing mice showed that the tumor inhibition rate was 58.61 % after treatment with 3.5 mg/kg anti-4-1BB antibody combined with 0.25 mg/kg SeNPs, and the liver function index returned to normal. When the combined treatment was compared with the antibody treatment alone, detection of immune relevant factors demonstrated that the expression of FOXP3, IL-2, IL-12, and TNF-α in the spleen was downregulated, whereas the expression of IFN-γ in the spleen, serum, and tumor was upregulated, accompanied by increased Fas ligand expression in the tumor tissues. Based on these findings, we get the conclusion that anti-4-1BB antibody combined with SeNPs may alleviate the immunosuppression of regulatory T cells, promote the immune cell proliferation and metastasis to synergistically kill tumor cells. This combination also reduces the inflammatory damage to normal tissues and slows overstimulation of the splenic immune response.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 5","pages":"Article 152839"},"PeriodicalIF":2.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171298524000573/pdfft?md5=e7ee470ed05e4a73e78719f7e0747e2e&pid=1-s2.0-S0171298524000573-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141878645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1016/j.imbio.2024.152838
Rahsan Ilikci-Sagkan , Dilara Fatma Akin , Recep Liman , Muhammad Muddassir Ali
Aim
Twenty to thirty percent of non-small cell lung cancers (NSCLC) are caused by lung squamous cell carcinoma (LUSC), especially in smokers and there has been limited study previously evaluating the situation in terms of the genome and gene expression profile, which demonstrates the relationship among DEL-1, leucocyte recruitment, and pro-inflammatory cytokines in LUSC.
Material and methods
In the current study, the m-RNA expression patterns and mutation profiles of our target genes, such as, pro-inflammatory cytokines, chemoattractant molecules, and DEL-1 genes, in 511 LUSC patients. To find the harmful mutations, the PolyPhen-2 and SNAP programs were employed. Not only gene expression was detected, but also survival analysis and correlation between DEL-1 and other target genes’ expression levels were explored too.
Results
Target genes such as, DEL-1, TNF, IL-18, IL-1, CXCL8, CXCL13, and IL-6 were found to have a total genetic anomaly carrying rate of 16.4%. Seven mutations were found, and two of those mutations have a pathogenic aspect. Deep deletion and gene amplification of the genetic anomalies were also observed. According to gene expression analysis results in the LUSC patient group; DEL-1 and IL-6 levels were significantly lower than those of the control group, whereas the CXCL13 level was found to be higher.
Conclusion
Findings of the current study revealed that, there is a significant role of DEL-1 in LUSC pathogenesis. Since present study is an in silico-centered study, this approach can give more insight on experimental studies. These events may support that one of the cancer improvement mechanisms depending on DEL-1 gene at the molecular level.
{"title":"In silico analysis of DEL-1 and inflammation-related genes in lung squamous cell carcinoma","authors":"Rahsan Ilikci-Sagkan , Dilara Fatma Akin , Recep Liman , Muhammad Muddassir Ali","doi":"10.1016/j.imbio.2024.152838","DOIUrl":"10.1016/j.imbio.2024.152838","url":null,"abstract":"<div><h3>Aim</h3><p>Twenty to thirty percent of non-small cell lung cancers (NSCLC) are caused by lung squamous cell carcinoma (LUSC), especially in smokers and there has been limited study previously evaluating the situation in terms of the genome and gene expression profile, which demonstrates the relationship among DEL-1, leucocyte recruitment, and pro-inflammatory cytokines in LUSC.</p></div><div><h3>Material and methods</h3><p>In the current study, the m-RNA expression patterns and mutation profiles of our target genes, such as, pro-inflammatory cytokines, chemoattractant molecules, and DEL-1 genes, in 511 LUSC patients. To find the harmful mutations, the PolyPhen-2 and SNAP programs were employed. Not only gene expression was detected, but also survival analysis and correlation between DEL-1 and other target genes’ expression levels were explored too.</p></div><div><h3>Results</h3><p>Target genes such as, DEL-1, TNF, IL-18, IL-1, CXCL8, CXCL13, and IL-6 were found to have a total genetic anomaly carrying rate of 16.4%. Seven mutations were found, and two of those mutations have a pathogenic aspect. Deep deletion and gene amplification of the genetic anomalies were also observed. According to gene expression analysis results in the LUSC patient group; DEL-1 and IL-6 levels were significantly lower than those of the control group, whereas the CXCL13 level was found to be higher.</p></div><div><h3>Conclusion</h3><p>Findings of the current study revealed that, there is a significant role of DEL-1 in LUSC pathogenesis. Since present study is an <em>in silico</em>-centered study, this approach can give more insight on experimental studies. These events may support that one of the cancer improvement mechanisms depending on DEL-1 gene at the molecular level.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 5","pages":"Article 152838"},"PeriodicalIF":2.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171298524000561/pdfft?md5=dd96604203daf8bde563dce322c58397&pid=1-s2.0-S0171298524000561-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141846902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.1016/j.imbio.2024.152837
Letícia Torres-Dias , Rebeca Santana Souza , Jessica Carolina Alves Moreira , Douglas de Oliveira Paggi , Jônatas Bussador do Amaral , André Luis Lacerda Bachi , Leonardo Augusto , Marina Tiemi Shio
It is known that conventional antigen presentation involves phagocytosis of antigens followed by its internalization in endocytic compartments and presentation of epitopes through MHC class II molecules for CD4 T cells. However, since 1976 a cross-presentation pathway has been studied, in which CD8 T cells are activated via MHC class I with antigens acquired through phagocytosis or endocytosis by dendritic cells (DCs). Among some important molecules involved in the cross-presentation, the C‐type lectin receptor of the Dectin‐1 cluster (CLECs), particularly the CLEC9A receptor, not only is expressed in dendritic cells but also presents a pivotal role in this context. In special, CLEC12A has been highlighted as a malaria pigment hemozoin (HZ) receptor. During Plasmodium infection, hemozoin crystals defend the parasite against heme toxicity within erythrocytes, as well as the released native HZ elicits pro-inflammatory responses and can induce cross-presentation. Particularly, this crystal can be synthesized from hematin anhydride and mimics the native form, and the gaps generated between the nanocrystal domains during its synthesis allow for substance coupling followed by its coating. Therefore, this study aimed to assess whether synthetic hemozoin (sHz) or hematin anhydride could be a nanocarrier and promote cross-presentation in dendritic cells. Firstly, it was verified that sHz can carry coated and coupled antigens, the compounds can associate to LAMP1-positive vesicles and decrease overall intracellular pH, which can potentially enhance the cross-presentation of ovalbumin and Leishmania infantum antigens. Thus, this study adds important data in the molecular intricacies of antigen presentation by showing not only the sHz immunomodulatory properties but also its potential applications as an antigen carrier.
众所周知,传统的抗原呈递包括吞噬抗原,然后将其内化到内细胞区,并通过 MHC II 类分子向 CD4 T 细胞呈递表位。然而,自 1976 年以来,人们开始研究一种交叉呈递途径,即 CD8 T 细胞通过 MHC I 类激活通过树突状细胞(DC)吞噬或内吞作用获得的抗原。在参与交叉呈递的一些重要分子中,Dectin-1 簇的 C 型凝集素受体(CLECs),尤其是 CLEC9A 受体,不仅在树突状细胞中表达,而且在这种情况下发挥着关键作用。特别值得一提的是,CLEC12A 是一种疟疾色素造血素(HZ)受体。在疟原虫感染期间,血色素晶体可保护寄生虫免受红细胞内血红素的毒性,释放的原生 HZ 可引起促炎反应并诱导交叉呈递。特别是,这种晶体可以用赤藓红酸酐合成,并模拟原生形态,而且在合成过程中纳米晶体结构域之间产生的间隙可以进行物质耦合,然后进行包覆。因此,本研究旨在评估合成安息香酸(sHz)或血宁酸酐能否作为纳米载体并促进树突状细胞的交叉呈递。首先,研究验证了 sHz 可携带包被抗原和偶联抗原,这些化合物可与 LAMP1 阳性囊泡结合并降低细胞内整体 pH 值,从而有可能增强卵清蛋白和幼年利什曼病抗原的交叉呈递。因此,这项研究不仅显示了 sHz 的免疫调节特性,还显示了其作为抗原载体的潜在应用,从而为抗原呈递的分子复杂性增添了重要数据。
{"title":"Synthetic hemozoin as a nanocarrier for cross-presentation","authors":"Letícia Torres-Dias , Rebeca Santana Souza , Jessica Carolina Alves Moreira , Douglas de Oliveira Paggi , Jônatas Bussador do Amaral , André Luis Lacerda Bachi , Leonardo Augusto , Marina Tiemi Shio","doi":"10.1016/j.imbio.2024.152837","DOIUrl":"10.1016/j.imbio.2024.152837","url":null,"abstract":"<div><p>It is known that conventional antigen presentation involves phagocytosis of antigens followed by its internalization in endocytic compartments and presentation of epitopes through MHC class II molecules for CD4 T cells. However, since 1976 a cross-presentation pathway has been studied, in which CD8 T cells are activated via MHC class I with antigens acquired through phagocytosis or endocytosis by dendritic cells (DCs). Among some important molecules involved in the cross-presentation, the C‐type lectin receptor of the Dectin‐1 cluster (CLECs), particularly the CLEC9A receptor, not only is expressed in dendritic cells but also presents a pivotal role in this context. In special, CLEC12A has been highlighted as a malaria pigment hemozoin (HZ) receptor. During <em>Plasmodium</em> infection, hemozoin crystals defend the parasite against heme toxicity within erythrocytes, as well as the released native HZ elicits pro-inflammatory responses and can induce cross-presentation. Particularly, this crystal can be synthesized from hematin anhydride and mimics the native form, and the gaps generated between the nanocrystal domains during its synthesis allow for substance coupling followed by its coating. Therefore, this study aimed to assess whether synthetic hemozoin (sHz) or hematin anhydride could be a nanocarrier and promote cross-presentation in dendritic cells. Firstly, it was verified that sHz can carry coated and coupled antigens, the compounds can associate to LAMP1-positive vesicles and decrease overall intracellular pH, which can potentially enhance the cross-presentation of ovalbumin and <em>Leishmania infantum</em> antigens. Thus, this study adds important data in the molecular intricacies of antigen presentation by showing not only the sHz immunomodulatory properties but also its potential applications as an antigen carrier.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 5","pages":"Article 152837"},"PeriodicalIF":2.5,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S017129852400055X/pdfft?md5=87acf7e2346f18aa9f5541b48004b136&pid=1-s2.0-S017129852400055X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141841311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dysregulation of RNA guanine-7 methyltransferase (RNMT) plays a crucial role in the tumor progression and immune responses. However, the detailed role of RNMT in pan-cancer is still unknown.
Methods
Bulk transcriptomic data of pan-cancer were obtained from the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases. Single-cell transcriptomic and proteomics data of lung squamous cell carcinoma (LUSC) were analyzed in the Tumor Immune Single-cell Hub 2 (TISCH2) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases, respectively. The correlation between RNMT expression and cancer prognosis was analyzed by Cox proportional hazards regression and Kaplan–Meier analyses. The correlation of RNMT expression with common immunoregulators, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and DNA methyltransferase (DNMT) was analyzed. Additionally, the correlation between RNMT expression and immune infiltration level was evaluated. A total of 1287 machine learning combinations were used to construct prognostic models for LUSC. qRT-PCR and Western blot were used to validate the bioinformatics findings of RNMT upregulation in LUSC.
Results
RNMT was widely expressed across different cancers, with significant correlation to prognosis in cancers such as kidney chromophobe (KICH) (p = 0.0033, HR = 7.12), liver hepatocellular carcinoma (LIHC) (p = 0.01, HR = 1.41), and others. Notably, RNMT participates in the regulation of the tumor microenvironment. RNMT expression positively correlated with immune cell expression (Spearman’s rank correlation, p < 0.05). Moreover, RNMT expression was strongly associated with immunoregulators, TMB, MSI, MMR, and DNMT in most cancer types. Notably, RNMT expression displayed excellent prognostic and immunological performance in LUSC. The expression of RNMT was mainly enriched in B cells of LUSC tissues. qRT–PCR and Western blot verified the high expression of RNMT in LUSC.
Conclusion
RNMT expression widely correlated with prognosis and immune infiltration in various tumors, especially LUSC. The RNMT detection may provide a new idea for future tumor immune studies and treatment strategies.
{"title":"Identification of RNMT as an immunotherapeutic and prognostic biomarker: From pan-cancer analysis to lung squamous cell carcinoma validation","authors":"Shuqiang Huang , Cuiyu Tan , Jinzhen Zheng , Zhugu Huang , Zhihong Li , Ziyin Lv , Wanru Chen , Miaoqi Chen , Xiaojun Yuan , Cairong Chen , Qiuxia Yan","doi":"10.1016/j.imbio.2024.152836","DOIUrl":"10.1016/j.imbio.2024.152836","url":null,"abstract":"<div><h3>Background</h3><p>Dysregulation of RNA guanine-7 methyltransferase (RNMT) plays a crucial role in the tumor progression and immune responses. However, the detailed role of RNMT in pan-cancer is still unknown.</p></div><div><h3>Methods</h3><p>Bulk transcriptomic data of pan-cancer were obtained from the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases. Single-cell transcriptomic and proteomics data of lung squamous cell carcinoma (LUSC) were analyzed in the Tumor Immune Single-cell Hub 2 (TISCH2) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases, respectively. The correlation between RNMT expression and cancer prognosis was analyzed by Cox proportional hazards regression and Kaplan–Meier analyses. The correlation of RNMT expression with common immunoregulators, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and DNA methyltransferase (DNMT) was analyzed. Additionally, the correlation between RNMT expression and immune infiltration level was evaluated. A total of 1287 machine learning combinations were used to construct prognostic models for LUSC. qRT-PCR and Western blot were used to validate the bioinformatics findings of RNMT upregulation in LUSC.</p></div><div><h3>Results</h3><p>RNMT was widely expressed across different cancers, with significant correlation to prognosis in cancers such as kidney chromophobe (KICH) (<em>p</em> = 0.0033, HR = 7.12), liver hepatocellular carcinoma (LIHC) (<em>p</em> = 0.01, HR = 1.41), and others. Notably, RNMT participates in the regulation of the tumor microenvironment. RNMT expression positively correlated with immune cell expression (Spearman’s rank correlation, <em>p</em> < 0.05). Moreover, RNMT expression was strongly associated with immunoregulators, TMB, MSI, MMR, and DNMT in most cancer types. Notably, RNMT expression displayed excellent prognostic and immunological performance in LUSC. The expression of RNMT was mainly enriched in B cells of LUSC tissues. qRT–PCR and Western blot verified the high expression of RNMT in LUSC.</p></div><div><h3>Conclusion</h3><p>RNMT expression widely correlated with prognosis and immune infiltration in various tumors, especially LUSC. The RNMT detection may provide a new idea for future tumor immune studies and treatment strategies.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 5","pages":"Article 152836"},"PeriodicalIF":2.5,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171298524000548/pdfft?md5=73725e141da91879048855347e08171d&pid=1-s2.0-S0171298524000548-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141630455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-06DOI: 10.1016/j.imbio.2024.152835
Zichen Rao , Geriletu Ao , Yiming Zhang , Zhifen Jiang , Liping Li , Zhidan Hua
Podocytes maintain renal filtration integrity when the glomerular filtration barrier (GFB) is integrated. Impairment or attrition of podocytes, leading to compromised GFB permeability, constitutes the primary etiology of proteinuria and is a hallmark pathological feature of diabetic nephropathy (DN). This study centers on Heterogeneous Nuclear Ribonucleoprotein I (HNRNP I), an RNA-binding protein, delineating its role in facilitating DN-induced renal damage by modulating podocyte health. Comparative analyses in renal biopsy specimens from DN patients and high-glucose-challenged podocyte models in vitro revealed a marked downregulation of HNRNP I expression relative to normal renal tissues and podocytes. In vitro assays demonstrated that high-glucose conditions precipitated a significant reduction in podocyte viability and an escalation in markers indicative of apoptosis. Conversely, HNRNP I overexpression was found to restore podocyte viability and attenuate apoptotic indices. IRAK1, a gene encoding a protein integral to inflammatory signaling, was shown to interact with HNRNP I, which promotes IRAK1 degradation. This interaction culminates in suppressing the PI3K/AKT/mTOR signaling pathway, thereby diminishing podocyte apoptosis and mitigating renal damage in DN. This investigation unveils the mechanistic role of HNRNP I in DN for the first time, potentially informing novel therapeutic strategies for DN renal impairment.
当肾小球滤过屏障(GFB)一体化时,荚膜细胞能维持肾脏滤过的完整性。荚膜细胞受损或萎缩导致肾小球滤过屏障通透性受损,是蛋白尿的主要病因,也是糖尿病肾病(DN)的标志性病理特征。本研究以 RNA 结合蛋白异质性核核糖核蛋白 I(HNRNP I)为中心,探讨其在通过调节荚膜细胞健康促进 DN 诱导的肾损伤中的作用。对 DN 患者肾活检标本和体外高葡萄糖挑战荚膜细胞模型的比较分析表明,与正常肾组织和荚膜细胞相比,HNRNP I 的表达明显下调。体外实验表明,高血糖会导致荚膜细胞存活率显著下降,并使凋亡标志物增加。相反,HNRNP I 的过表达可恢复荚膜细胞的活力,并减轻凋亡指数。IRAK1 是一种编码炎症信号转导不可或缺的蛋白质的基因,它与 HNRNP I 相互作用,促进了 IRAK1 的降解。这种相互作用最终抑制了 PI3K/AKT/mTOR 信号通路,从而减少了荚膜细胞凋亡,减轻了 DN 的肾损伤。这项研究首次揭示了 HNRNP I 在 DN 中的机理作用,有可能为 DN 肾损伤的新型治疗策略提供依据。
{"title":"HNRNP I promotes IRAK1 degradation to reduce podocyte apoptosis and inflammatory response alleviating renal injury in diabetic nephropathy","authors":"Zichen Rao , Geriletu Ao , Yiming Zhang , Zhifen Jiang , Liping Li , Zhidan Hua","doi":"10.1016/j.imbio.2024.152835","DOIUrl":"10.1016/j.imbio.2024.152835","url":null,"abstract":"<div><p>Podocytes maintain renal filtration integrity when the glomerular filtration barrier (GFB) is integrated. Impairment or attrition of podocytes, leading to compromised GFB permeability, constitutes the primary etiology of proteinuria and is a hallmark pathological feature of diabetic nephropathy (DN). This study centers on Heterogeneous Nuclear Ribonucleoprotein I (HNRNP I), an RNA-binding protein, delineating its role in facilitating DN-induced renal damage by modulating podocyte health. Comparative analyses in renal biopsy specimens from DN patients and high-glucose-challenged podocyte models in vitro revealed a marked downregulation of HNRNP I expression relative to normal renal tissues and podocytes. In vitro assays demonstrated that high-glucose conditions precipitated a significant reduction in podocyte viability and an escalation in markers indicative of apoptosis. Conversely, HNRNP I overexpression was found to restore podocyte viability and attenuate apoptotic indices. IRAK1, a gene encoding a protein integral to inflammatory signaling, was shown to interact with HNRNP I, which promotes IRAK1 degradation. This interaction culminates in suppressing the PI3K/AKT/mTOR signaling pathway, thereby diminishing podocyte apoptosis and mitigating renal damage in DN. This investigation unveils the mechanistic role of HNRNP I in DN for the first time, potentially informing novel therapeutic strategies for DN renal impairment.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 5","pages":"Article 152835"},"PeriodicalIF":2.5,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171298524000536/pdfft?md5=19e3f2974a6bb8d6a3a34fae220aa324&pid=1-s2.0-S0171298524000536-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1016/j.imbio.2024.152834
Lin Ji , Yuxuan Fu , Sidong Xiong
Although Bacillus Calmette-Guerin (BCG) has been used in human for centuries, tuberculosis (TB) remains one of the deadliest infectious diseases. There have been remarkable successes in the field of TB vaccine research over the past decade, but the search for a better vaccine candidate is still a challenge. Extracellular vesicles (EVs) possess a multitude of properties that make them attractive candidates for the development of novel, cell-free, non-replicative, and safe vaccine system. These properties include their small size, inherent immunogenicity, ability to be taken up by immune cells, self-adjuvant capability and the comprehensive distribution of concentrated antigens. In this study, we designed a newly chimeric antigen TB vaccine (CA) with three Mycobacterium tuberculosis (M. tb) antigens that identified from extracellular vesicle derived from M. tb-infected macrophage. We confirmed that the CA stimulated a more pronounced immune response and enhanced T-cell activation, thereby providing superior protection against Mycobacterium tuberculosis infection in comparison to the bivalent antigens. Importantly, the EVs carrying CA (EVs-CA) provided enhanced protection against M. tb infection compared to unencapsulated CA antigen. Moreover, we established an EV-carried CA system (EVs-CA) and released from a transformed cell line using endogenous loading of antigen method. This method displayed the CA could efficiently package into EVs and increased concentration of this antigen. The chimeric antigen carried by EVs induced higher levels of cytokines production and specific cytotoxic T lymphocytes, resulted in enhancing antibody response and improving protective efficacy. Our findings suggested that the potential of EVs as delivery system to carry the M. tb-specific chimeric antigen for controlling Mycobacterium tuberculosis infection.
{"title":"Chimeric antigen carried by extracellular vesicles induces stronger protective immunity against Mycobacterium tuberculosis infection","authors":"Lin Ji , Yuxuan Fu , Sidong Xiong","doi":"10.1016/j.imbio.2024.152834","DOIUrl":"10.1016/j.imbio.2024.152834","url":null,"abstract":"<div><p>Although Bacillus Calmette-Guerin (BCG) has been used in human for centuries, tuberculosis (TB) remains one of the deadliest infectious diseases.<!--> <!-->There have been remarkable successes in the field of TB vaccine research over the past decade, but the search for a better vaccine candidate is still a challenge. Extracellular vesicles (EVs) possess a multitude of properties that make them attractive candidates for the development of novel, cell-free, non-replicative, and safe vaccine system. These properties include their small size, inherent immunogenicity, ability to be taken up by immune cells, self-adjuvant capability and the comprehensive distribution of concentrated antigens. In this study, we designed a newly chimeric antigen TB vaccine (CA) with three <em>Mycobacterium tuberculosis</em> (<em>M. tb</em>) antigens that identified from extracellular vesicle derived from <em>M. tb</em>-infected macrophage. We confirmed that the CA stimulated a more pronounced immune response and enhanced T-cell activation, thereby providing superior protection against <em>Mycobacterium tuberculosis</em> infection in comparison to the bivalent antigens. Importantly, the EVs carrying CA (EVs-CA) provided enhanced protection against <em>M. tb</em> infection compared to unencapsulated CA antigen. Moreover, we established an EV-carried CA system (EVs-CA) and released from a transformed cell line using endogenous loading of antigen method. This method displayed the CA could efficiently package into EVs and increased concentration of this antigen. The chimeric antigen carried by EVs induced higher levels of cytokines production and specific cytotoxic T lymphocytes, resulted in enhancing antibody response and improving protective efficacy. Our findings suggested that the potential of EVs as delivery system to carry the <em>M. tb</em>-specific chimeric antigen for controlling <em>Mycobacterium tuberculosis</em> infection.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 5","pages":"Article 152834"},"PeriodicalIF":2.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171298524000524/pdfft?md5=db6c0a642fb0a90d846e030f4f875186&pid=1-s2.0-S0171298524000524-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141537874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-29DOI: 10.1016/j.imbio.2024.152833
Florencia C. Mansilla , María C. Miraglia , Silvina S. Maidana , Randazzo Cecilia , Alejandra V. Capozzo
Innate immune cells show enhanced responsiveness to secondary challenges after an initial non-related stimulation (Trained Innate Immunity, TII). Acute NOD2 activation by Muramyl-Dipeptide (MDP) promotes TII inducing the secretion of pro-inflammatory mediators, while a sustained MDP-stimulation down-regulates the inflammatory response, restoring tolerance. Here we characterized in-vitro the response of murine macrophages to lipopolysaccharide (LPS) challenge under NOD2-chronic stimulation. RAW264.7 cells were trained with MDP (1 μg/ml, 48 h) and challenged with LPS (5 μg/ml, 24 h). Trained cells formed multinucleated giant cells with increased phagocytosis rates compared to untrained/challenged cells. They showed a reduced mitochondrial activity and a switch to aerobic glycolysis. TNF-α, ROS and NO were upregulated in both trained and untrained cultures (MDP+, MDP- cells, p > 0.05); while IL-10, IL-6 IL-12 and MHCII were upregulated only in trained cells after LPS challenge (MDP + LPS+, p < 0.05). A slight upregulation in the expression of B7.2 was also observed in this group, although differences were not statistically significant. MDP-training induced resistance to LPS challenge (p < 0.01). The relative expression of PARP-1 was downregulated after the LPS challenge, which may contribute to the regulatory milieu and to the innate memory mechanisms exhibited by MDP-trained cells. Our results demonstrate that a sustained MDP-training polarizes murine macrophages towards a M2b profile, inhibiting parthanatos. These results may impact on the development of strategies to immunomodulate processes in which inflammation should be controlled.
{"title":"Chronic NOD2 stimulation by MDP confers protection against parthanatos through M2b macrophage polarization in RAW264.7 cells","authors":"Florencia C. Mansilla , María C. Miraglia , Silvina S. Maidana , Randazzo Cecilia , Alejandra V. Capozzo","doi":"10.1016/j.imbio.2024.152833","DOIUrl":"10.1016/j.imbio.2024.152833","url":null,"abstract":"<div><p>Innate immune cells show enhanced responsiveness to secondary challenges after an initial non-related stimulation (Trained Innate Immunity, TII). Acute NOD2 activation by Muramyl-Dipeptide (MDP) promotes TII inducing the secretion of pro-inflammatory mediators, while a sustained MDP-stimulation down-regulates the inflammatory response, restoring tolerance. Here we characterized <em>in-vitro</em> the response of murine macrophages to lipopolysaccharide (LPS) challenge under NOD2-chronic stimulation. RAW264.7 cells were trained with MDP (1 μg/ml, 48 h) and challenged with LPS (5 μg/ml, 24 h). Trained cells formed multinucleated giant cells with increased phagocytosis rates compared to untrained/challenged cells. They showed a reduced mitochondrial activity and a switch to aerobic glycolysis. TNF-α, ROS and NO were upregulated in both trained and untrained cultures (MDP+, MDP- cells, p > 0.05); while IL-10, IL-6 IL-12 and MHCII were upregulated only in trained cells after LPS challenge (MDP + LPS+, p < 0.05). A slight upregulation in the expression of B7.2 was also observed in this group, although differences were not statistically significant. MDP-training induced resistance to LPS challenge (p < 0.01). The relative expression of PARP-1 was downregulated after the LPS challenge, which may contribute to the regulatory milieu and to the innate memory mechanisms exhibited by MDP-trained cells. Our results demonstrate that a sustained MDP-training polarizes murine macrophages towards a M2b profile, inhibiting parthanatos. These results may impact on the development of strategies to immunomodulate processes in which inflammation should be controlled.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 5","pages":"Article 152833"},"PeriodicalIF":2.5,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171298524000512/pdfft?md5=5b26f53f6b3e94bc6fe5b9a0bc161bd3&pid=1-s2.0-S0171298524000512-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141534288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-28DOI: 10.1016/j.imbio.2024.152831
Xinghua Ma , Caryl Ligan , Shijia Huang , Yirong Chen , Muxin Li , Yuanyuan Cao , Wei Zhao , Shuli Zhao
The pro-tumorigenic or anti-tumorigenic role of tumor infiltrating mast cells (TIMs) in tumors depends not only on the type of cancer and the degree of tumor progression, but also on their location in the tumor bulk. In our investigation, we employed immunohistochemistry to reveal that the mast cells (MCs) in the tumor stroma are positively correlated with metastasis of ovarian cancer (OC), but not in the tumor parenchyma. To delve deeper into the influence of different culture matrix stiffness on MCs’ biological functions within the tumor parenchymal and stromal regions, we conducted a transcriptome analysis of the mouse MC line (P815) cultured in two-dimensional (2D) or three-dimensional (3D) culture system. Further research has found that the softer 3D extracellular matrix stiffness could improve the mitochondrial activity of MCs to promote proliferation by increasing the expression levels of mitochondrial activity-related genes, namely Pet100, atp5md, and Cox7a2. Furthermore, employing LASSO regression analysis, we identified that Pet100 and Cox7a2 were closely associated with the prognosis of OC patients. These two genes were subsequently employed to construct a risk score model, which revealed that the high-risk group model as one of the prognostic factors for OC patients. Additionally, the XCell algorithm analysis showed that the high-risk group displayed a broader spectrum of immune cell infiltrations. Our research revealed that TIMs in the tumor stroma could promote the metastasis of OC, and mitochondrial activity-related proteins Pet100/Cox7a2 can serve as biomarkers for prognostic evaluation of OC.
肿瘤浸润肥大细胞(TIMs)在肿瘤中的致癌或抗癌作用不仅取决于癌症类型和肿瘤进展程度,还取决于它们在肿瘤组织中的位置。在我们的研究中,我们采用免疫组化方法发现,肿瘤基质中的肥大细胞(MCs)与卵巢癌(OC)的转移呈正相关,但与肿瘤实质中的肥大细胞无关。为了深入研究不同培养基硬度对肿瘤实质和基质区域内肥大细胞生物学功能的影响,我们对在二维(2D)或三维(3D)培养系统中培养的小鼠 MC 株(P815)进行了转录组分析。进一步的研究发现,较软的三维细胞外基质硬度可以通过增加线粒体活性相关基因(即 Pet100、atp5md 和 Cox7a2)的表达水平来提高 MC 的线粒体活性,从而促进增殖。此外,通过LASSO回归分析,我们发现Pet100和Cox7a2与OC患者的预后密切相关。随后,我们利用这两个基因构建了一个风险评分模型,发现高风险组模型是 OC 患者的预后因素之一。此外,XCell 算法分析表明,高风险组的免疫细胞浸润范围更广。我们的研究发现,肿瘤基质中的TIMs可促进OC的转移,线粒体活性相关蛋白Pet100/Cox7a2可作为OC预后评估的生物标志物。
{"title":"Mitochondrial activity related genes of mast cells identify poor prognosis and metastasis of ovarian cancer","authors":"Xinghua Ma , Caryl Ligan , Shijia Huang , Yirong Chen , Muxin Li , Yuanyuan Cao , Wei Zhao , Shuli Zhao","doi":"10.1016/j.imbio.2024.152831","DOIUrl":"10.1016/j.imbio.2024.152831","url":null,"abstract":"<div><p>The pro-tumorigenic or anti-tumorigenic role of tumor infiltrating mast cells (TIMs) in tumors depends not only on the type of cancer and the degree of tumor progression, but also on their location in the tumor bulk. In our investigation, we employed immunohistochemistry to reveal that the mast cells (MCs) in the tumor stroma are positively correlated with metastasis of ovarian cancer (OC), but not in the tumor parenchyma. To delve deeper into the influence of different culture matrix stiffness on MCs’ biological functions within the tumor parenchymal and stromal regions, we conducted a transcriptome analysis of the mouse MC line (P815) cultured in two-dimensional (2D) or three-dimensional (3D) culture system. Further research has found that the softer 3D extracellular matrix stiffness could improve the mitochondrial activity of MCs to promote proliferation by increasing the expression levels of mitochondrial activity-related genes, namely Pet100, atp5md, and Cox7a2. Furthermore, employing LASSO regression analysis, we identified that Pet100 and Cox7a2 were closely associated with the prognosis of OC patients. These two genes were subsequently employed to construct a risk score model, which revealed that the high-risk group model as one of the prognostic factors for OC patients. Additionally, the XCell algorithm analysis showed that the high-risk group displayed a broader spectrum of immune cell infiltrations. Our research revealed that TIMs in the tumor stroma could promote the metastasis of OC, and mitochondrial activity-related proteins Pet100/Cox7a2 can serve as biomarkers for prognostic evaluation of OC.</p></div>","PeriodicalId":13270,"journal":{"name":"Immunobiology","volume":"229 5","pages":"Article 152831"},"PeriodicalIF":2.5,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0171298524000494/pdfft?md5=9719b11813432b1e4d076545a00c32df&pid=1-s2.0-S0171298524000494-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141467622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}