Due to the limited number of stable image feature descriptors and the simplistic concatenation approach to hash generation, existing hashing methods have not achieved a satisfactory balance between robustness and discrimination. To this end, a novel perceptual hashing method is proposed in this paper using feature fusion of fractional-order continuous orthogonal moments (FrCOMs). Specifically, two robust image descriptors, i.e., fractional-order Chebyshev Fourier moments (FrCHFMs) and fractional-order radial harmonic Fourier moments (FrRHFMs), are used to extract global structural features of a color image. Then, the canonical correlation analysis (CCA) strategy is employed to fuse these features during the final hash generation process. Compared to direct concatenation, CCA excels in eliminating redundancies between feature vectors, resulting in a shorter hash sequence and higher authentication performance. A series of experiments demonstrate that the proposed method achieves satisfactory robustness, discrimination and security. Particularly, the proposed method exhibits better tampering detection ability and robustness against combined content-preserving manipulations in practical applications.
{"title":"Perceptual Image Hashing Using Feature Fusion of Orthogonal Moments","authors":"Xinran Li;Zichi Wang;Guorui Feng;Xinpeng Zhang;Chuan Qin","doi":"10.1109/TMM.2024.3405660","DOIUrl":"10.1109/TMM.2024.3405660","url":null,"abstract":"Due to the limited number of stable image feature descriptors and the simplistic concatenation approach to hash generation, existing hashing methods have not achieved a satisfactory balance between robustness and discrimination. To this end, a novel perceptual hashing method is proposed in this paper using feature fusion of fractional-order continuous orthogonal moments (FrCOMs). Specifically, two robust image descriptors, i.e., fractional-order Chebyshev Fourier moments (FrCHFMs) and fractional-order radial harmonic Fourier moments (FrRHFMs), are used to extract global structural features of a color image. Then, the canonical correlation analysis (CCA) strategy is employed to fuse these features during the final hash generation process. Compared to direct concatenation, CCA excels in eliminating redundancies between feature vectors, resulting in a shorter hash sequence and higher authentication performance. A series of experiments demonstrate that the proposed method achieves satisfactory robustness, discrimination and security. Particularly, the proposed method exhibits better tampering detection ability and robustness against combined content-preserving manipulations in practical applications.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10041-10054"},"PeriodicalIF":8.4,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141517083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1109/TMM.2024.3416831
Wei Jiang;Peirong Ning;Jiayu Yang;Yongqi Zhai;Feng Gao;Ronggang Wang
The effective receptive field (ERF) plays an important role in transform coding, which determines how much redundancy can be removed during transform and how many spatial priors can be utilized to synthesize textures during inverse transform. Existing methods rely on stacks of small kernels, whose ERFs remain insufficiently large, or heavy non-local attention mechanisms, which limit the potential of high-resolution image coding. To tackle this issue, we propose Large Receptive Field Transform Coding with Adaptive Weights for Learned Image Compression (LLIC). Specifically, for the first