首页 > 最新文献

IEEE Transactions on Multimedia最新文献

英文 中文
Invisible Intruders: Label-Consistent Backdoor Attack Using Re-Parameterized Noise Trigger 隐形入侵者使用重新参数化噪声触发器的标签一致后门攻击
IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-12 DOI: 10.1109/TMM.2024.3412388
Bo Wang;Fei Yu;Fei Wei;Yi Li;Wei Wang
Aremarkable number of backdoor attack methods have been proposed in the literature on deep neural networks (DNNs). However, it hasn't been sufficiently addressed in the existing methods of achieving true senseless backdoor attacks that are visually invisible and label-consistent. In this paper, we propose a new backdoor attack method where the labels of the backdoor images are perfectly aligned with their content, ensuring label consistency. Additionally, the backdoor trigger is meticulously designed, allowing the attack to evade DNN model checks and human inspection. Our approach employs an auto-encoder (AE) to conduct representation learning of benign images and interferes with salient classification features to increase the dependence of backdoor image classification on backdoor triggers. To ensure visual invisibility, we implement a method inspired by image steganography that embeds trigger patterns into the image using the DNN and enable sample-specific backdoor triggers. We conduct comprehensive experiments on multiple benchmark datasets and network architectures to verify the effectiveness of our proposed method under the metric of attack success rate and invisibility. The results also demonstrate satisfactory performance against a variety of defense methods.
关于深度神经网络(DNN)的文献中提出了大量后门攻击方法。然而,在现有的方法中,还没有充分解决如何实现真正的无感知后门攻击的问题,这种攻击在视觉上是不可见的,而且标签是一致的。在本文中,我们提出了一种新的后门攻击方法,在这种方法中,后门图像的标签与其内容完全一致,确保了标签的一致性。此外,后门触发器经过精心设计,使攻击能够躲避 DNN 模型检查和人工检测。我们的方法采用自动编码器(AE)对良性图像进行表征学习,并干扰显著的分类特征,以增加后门图像分类对后门触发器的依赖性。为了确保视觉隐蔽性,我们采用了一种受图像隐写术启发的方法,利用 DNN 将触发模式嵌入图像,并启用特定于样本的后门触发器。我们在多个基准数据集和网络架构上进行了综合实验,以验证我们提出的方法在攻击成功率和隐蔽性指标下的有效性。实验结果还证明,我们的方法在与各种防御方法的对抗中表现令人满意。
{"title":"Invisible Intruders: Label-Consistent Backdoor Attack Using Re-Parameterized Noise Trigger","authors":"Bo Wang;Fei Yu;Fei Wei;Yi Li;Wei Wang","doi":"10.1109/TMM.2024.3412388","DOIUrl":"10.1109/TMM.2024.3412388","url":null,"abstract":"Aremarkable number of backdoor attack methods have been proposed in the literature on deep neural networks (DNNs). However, it hasn't been sufficiently addressed in the existing methods of achieving true senseless backdoor attacks that are visually invisible and label-consistent. In this paper, we propose a new backdoor attack method where the labels of the backdoor images are perfectly aligned with their content, ensuring label consistency. Additionally, the backdoor trigger is meticulously designed, allowing the attack to evade DNN model checks and human inspection. Our approach employs an auto-encoder (AE) to conduct representation learning of benign images and interferes with salient classification features to increase the dependence of backdoor image classification on backdoor triggers. To ensure visual invisibility, we implement a method inspired by image steganography that embeds trigger patterns into the image using the DNN and enable sample-specific backdoor triggers. We conduct comprehensive experiments on multiple benchmark datasets and network architectures to verify the effectiveness of our proposed method under the metric of attack success rate and invisibility. The results also demonstrate satisfactory performance against a variety of defense methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10766-10778"},"PeriodicalIF":8.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Point Clouds Are Specialized Images: A Knowledge Transfer Approach for 3D Understanding 点云是专业图像:三维理解的知识转移方法
IF 7.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-11 DOI: 10.1109/tmm.2024.3412330
Jiachen Kang, Wenjing Jia, Xiangjian He, Kin Man Lam
{"title":"Point Clouds Are Specialized Images: A Knowledge Transfer Approach for 3D Understanding","authors":"Jiachen Kang, Wenjing Jia, Xiangjian He, Kin Man Lam","doi":"10.1109/tmm.2024.3412330","DOIUrl":"https://doi.org/10.1109/tmm.2024.3412330","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"112 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
InfoUCL: Learning Informative Representations for Unsupervised Continual Learning InfoUCL:为无监督持续学习学习信息表征
IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-11 DOI: 10.1109/TMM.2024.3412389
Liang Zhang;Jiangwei Zhao;Qingbo Wu;Lili Pan;Hongliang Li
Unsupervised continual learning (UCL) has made remarkable progress over the past two years, significantly expanding the application of continual learning (CL). However, existing UCL approaches have only focused on transferring continual strategies from supervised to unsupervised. They have overlooked the relationship issue between visual features and representational continuity. This work draws attention to the texture bias problem in existing UCL methods. To address this problem, we propose a new UCL framework called InfoUCL, in which we develop InfoDrop contrastive loss to guide continual learners to extract more informative shape features of objects and discard useless texture features simultaneously. The proposed InfoDrop contrastive loss is general and can be combined with various UCL methods. Extensive experiments on various benchmarks have demonstrated that our InfoUCL framework can lead to higher classification accuracy and superior robustness to catastrophic forgetting.
过去两年,无监督持续学习(UCL)取得了显著进展,极大地扩展了持续学习(CL)的应用范围。然而,现有的 UCL 方法只关注将持续策略从有监督转向无监督。它们忽略了视觉特征与表征连续性之间的关系问题。这项工作提请人们注意现有 UCL 方法中的纹理偏差问题。为了解决这个问题,我们提出了一个名为 InfoUCL 的新 UCL 框架,其中我们开发了 InfoDrop 对比损失,以引导连续学习者提取物体更多的信息形状特征,并同时舍弃无用的纹理特征。所提出的 InfoDrop 对比损失具有通用性,可以与各种 UCL 方法相结合。在各种基准上进行的广泛实验表明,我们的 InfoUCL 框架可以提高分类准确率,并对灾难性遗忘具有卓越的鲁棒性。
{"title":"InfoUCL: Learning Informative Representations for Unsupervised Continual Learning","authors":"Liang Zhang;Jiangwei Zhao;Qingbo Wu;Lili Pan;Hongliang Li","doi":"10.1109/TMM.2024.3412389","DOIUrl":"10.1109/TMM.2024.3412389","url":null,"abstract":"Unsupervised continual learning (UCL) has made remarkable progress over the past two years, significantly expanding the application of continual learning (CL). However, existing UCL approaches have only focused on transferring continual strategies from supervised to unsupervised. They have overlooked the relationship issue between visual features and representational continuity. This work draws attention to the texture bias problem in existing UCL methods. To address this problem, we propose a new UCL framework called InfoUCL, in which we develop InfoDrop contrastive loss to guide continual learners to extract more informative shape features of objects and discard useless texture features simultaneously. The proposed InfoDrop contrastive loss is general and can be combined with various UCL methods. Extensive experiments on various benchmarks have demonstrated that our InfoUCL framework can lead to higher classification accuracy and superior robustness to catastrophic forgetting.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10779-10791"},"PeriodicalIF":8.4,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Label-Guided Dynamic Spatial-Temporal Fusion for Video-Based Facial Expression Recognition 标签引导的动态时空融合技术用于基于视频的面部表情识别
IF 7.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-10 DOI: 10.1109/tmm.2024.3407693
Ziyang Zhang, Xiang Tian, Yuan Zhang, Kailing Guo, Xiangmin Xu
{"title":"Label-Guided Dynamic Spatial-Temporal Fusion for Video-Based Facial Expression Recognition","authors":"Ziyang Zhang, Xiang Tian, Yuan Zhang, Kailing Guo, Xiangmin Xu","doi":"10.1109/tmm.2024.3407693","DOIUrl":"https://doi.org/10.1109/tmm.2024.3407693","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"91 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlation-guided Distribution and Geometry Alignments for Heterogeneous Domain Adaptation 相关性指导下的分布和几何对齐,实现异构领域自适应
IF 7.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-07 DOI: 10.1109/tmm.2024.3411316
Wai Keung Wong, Dewei Lin, Yuwu Lu, Jiajun Wen, Zhihui Lai, Xuelong Li
{"title":"Correlation-guided Distribution and Geometry Alignments for Heterogeneous Domain Adaptation","authors":"Wai Keung Wong, Dewei Lin, Yuwu Lu, Jiajun Wen, Zhihui Lai, Xuelong Li","doi":"10.1109/tmm.2024.3411316","DOIUrl":"https://doi.org/10.1109/tmm.2024.3411316","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"6 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning to Evaluate the Artness of AI-generated Images 学习评估人工智能生成图像的艺术性
IF 7.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-06 DOI: 10.1109/tmm.2024.3410672
Junyu Chen, Jie An, Hanjia Lyu, Christopher Kanan, Jiebo Luo
{"title":"Learning to Evaluate the Artness of AI-generated Images","authors":"Junyu Chen, Jie An, Hanjia Lyu, Christopher Kanan, Jiebo Luo","doi":"10.1109/tmm.2024.3410672","DOIUrl":"https://doi.org/10.1109/tmm.2024.3410672","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"22 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight Model Pre-Training Via Language Guided Knowledge Distillation 通过语言引导知识提炼实现轻量级模型预训练
IF 7.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-06 DOI: 10.1109/tmm.2024.3410532
Mingsheng Li, Lin Zhang, Mingzhen Zhu, Zilong Huang, Gang Yu, Jiayuan Fan, Tao Chen
{"title":"Lightweight Model Pre-Training Via Language Guided Knowledge Distillation","authors":"Mingsheng Li, Lin Zhang, Mingzhen Zhu, Zilong Huang, Gang Yu, Jiayuan Fan, Tao Chen","doi":"10.1109/tmm.2024.3410532","DOIUrl":"https://doi.org/10.1109/tmm.2024.3410532","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"39 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint-Limb Compound Triangulation With Co-Fixing for Stereoscopic Human Pose Estimation 利用共固定的关节-肢体复合三角测量法进行立体人体姿态估计
IF 7.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-06 DOI: 10.1109/tmm.2024.3410514
Zhuo Chen, Xiaoyue Wan, Yiming Bao, Xu Zhao
{"title":"Joint-Limb Compound Triangulation With Co-Fixing for Stereoscopic Human Pose Estimation","authors":"Zhuo Chen, Xiaoyue Wan, Yiming Bao, Xu Zhao","doi":"10.1109/tmm.2024.3410514","DOIUrl":"https://doi.org/10.1109/tmm.2024.3410514","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"14 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VirPNet: A Multimodal Virtual Point Generation Network for 3D Object Detection VirPNet:用于 3D 物体检测的多模态虚拟点生成网络
IF 7.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-05 DOI: 10.1109/tmm.2024.3410117
Lin Wang, Shiliang Sun, Jing Zhao
{"title":"VirPNet: A Multimodal Virtual Point Generation Network for 3D Object Detection","authors":"Lin Wang, Shiliang Sun, Jing Zhao","doi":"10.1109/tmm.2024.3410117","DOIUrl":"https://doi.org/10.1109/tmm.2024.3410117","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"74 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IBFusion: An Infrared and Visible Image Fusion Method Based on Infrared Target Mask and Bimodal Feature Extraction Strategy IBFusion:基于红外目标掩码和双模特征提取策略的红外与可见光图像融合方法
IF 7.3 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2024-06-05 DOI: 10.1109/tmm.2024.3410113
Yang Bai, Meijing Gao, Shiyu Li, Ping Wang, Ning Guan, Haozheng Yin, Yonghao Yan
{"title":"IBFusion: An Infrared and Visible Image Fusion Method Based on Infrared Target Mask and Bimodal Feature Extraction Strategy","authors":"Yang Bai, Meijing Gao, Shiyu Li, Ping Wang, Ning Guan, Haozheng Yin, Yonghao Yan","doi":"10.1109/tmm.2024.3410113","DOIUrl":"https://doi.org/10.1109/tmm.2024.3410113","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"14 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Multimedia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1