Pub Date : 2024-05-30DOI: 10.1109/tmm.2024.3407698
Linxia Zhu, Jun Cheng, Xu Wang, Honglei Su, Huan Yang, Hui Yuan, Jari Korhonen
{"title":"3DTA: No-Reference 3D Point Cloud Quality Assessment with Twin Attention","authors":"Linxia Zhu, Jun Cheng, Xu Wang, Honglei Su, Huan Yang, Hui Yuan, Jari Korhonen","doi":"10.1109/tmm.2024.3407698","DOIUrl":"https://doi.org/10.1109/tmm.2024.3407698","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"96 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1109/tmm.2024.3407697
Dan Zhang, Zhekai Du, Jingjing Li, Lei Zhu, Heng Tao Shen
{"title":"Domain-adaptive Energy-based Models for Generalizable Face Anti-Spoofing","authors":"Dan Zhang, Zhekai Du, Jingjing Li, Lei Zhu, Heng Tao Shen","doi":"10.1109/tmm.2024.3407697","DOIUrl":"https://doi.org/10.1109/tmm.2024.3407697","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"58 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141198374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-27DOI: 10.1109/tmm.2024.3405664
Yanyang Xiao, Tieyi Zhang, Juan Cao, Zhonggui Chen
{"title":"Accelerated Lloyd's Method for Resampling 3D Point Clouds","authors":"Yanyang Xiao, Tieyi Zhang, Juan Cao, Zhonggui Chen","doi":"10.1109/tmm.2024.3405664","DOIUrl":"https://doi.org/10.1109/tmm.2024.3405664","url":null,"abstract":"","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"2016 1","pages":""},"PeriodicalIF":7.3,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141170528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyperspectral image (HSI) clustering is challenging to divide all pixels into different clusters because of the absent labels, large spectral variability and complex spatial distribution. Anchor strategy provides an attractive solution to the computational bottleneck of graph-based clustering for large HSIs. However, most existing methods require separated learning procedures and ignore noisy as well as spatial information. In this paper, we propose a bipartite graph-based projected clustering (BGPC) method with local region guidance for HSI data. To take full advantage of spatial information, HSI denoising to alleviate noise interference and anchor initialization to construct bipartite graph are conducted within each generated superpixel. With the denoised pixels and initial anchors, projection learning and structured bipartite graph learning are simultaneously performed in a one-step learning model with connectivity constraint to directly provide clustering results. An alternating optimization algorithm is devised to solve the formulated model. The advantage of BGPC is the joint learning of projection and bipartite graph with local region guidance to exploit spatial information and linear time complexity to lessen computational burden. Extensive experiments demonstrate the superiority of the proposed BGPC over the state-of-the-art HSI clustering methods.
{"title":"Bipartite Graph-Based Projected Clustering With Local Region Guidance for Hyperspectral Imagery","authors":"Yongshan Zhang;Guozhu Jiang;Zhihua Cai;Yicong Zhou","doi":"10.1109/TMM.2024.3394975","DOIUrl":"10.1109/TMM.2024.3394975","url":null,"abstract":"Hyperspectral image (HSI) clustering is challenging to divide all pixels into different clusters because of the absent labels, large spectral variability and complex spatial distribution. Anchor strategy provides an attractive solution to the computational bottleneck of graph-based clustering for large HSIs. However, most existing methods require separated learning procedures and ignore noisy as well as spatial information. In this paper, we propose a bipartite graph-based projected clustering (BGPC) method with local region guidance for HSI data. To take full advantage of spatial information, HSI denoising to alleviate noise interference and anchor initialization to construct bipartite graph are conducted within each generated superpixel. With the denoised pixels and initial anchors, projection learning and structured bipartite graph learning are simultaneously performed in a one-step learning model with connectivity constraint to directly provide clustering results. An alternating optimization algorithm is devised to solve the formulated model. The advantage of BGPC is the joint learning of projection and bipartite graph with local region guidance to exploit spatial information and linear time complexity to lessen computational burden. Extensive experiments demonstrate the superiority of the proposed BGPC over the state-of-the-art HSI clustering methods.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"9551-9563"},"PeriodicalIF":8.4,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140831409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-30DOI: 10.1109/TMM.2024.3394682
Sen Xu;Shikui Wei;Tao Ruan;Lixin Liao;Yao Zhao
Audio-visual segmentation (AVS) aims to segment the object instances that produce sound at the time of the video frames. Existing related solutions focus on designing cross-modal interaction mechanisms, which try to learn audio-visual correlations and simultaneously segment objects. Despite effectiveness, the close-coupling network structures become increasingly complex and hard to analyze. To address these problems, we propose a simple but effective method, ‘Each P