首页 > 最新文献

Image Journal of Advanced Materials and Technologies最新文献

英文 中文
“Boron + vacancy” complexes on the hydrogenated diamond surface С(100)-(2×1) 氢化金刚石表面“硼+空位”配合物С(100)-(2×1)
Pub Date : 2021-01-01 DOI: 10.17277/jamt.2021.04.pp.256-266
A. I. Digurova, N. Lvova
The paper presents the results of quantum-chemical modeling of structural and electronic states of “boron + vacancy” complex defects on the hydrogenated and clean diamond surface, with a variation in the position of BV complexes in the upper six surface layers. Neutral, positive and negatively charged states of the complexes are considered. Two different positions of impurity and intrinsic defects in the composition of the BV complex have been considered for the third and fourth layers: under the dimer row and between the rows. The influence of the surface passivation on the position of BV complexes on the energy scale is analyzed. It has been found that hydrogenation of the surface leads to a change in the configuration of the most stable BV complex. The formation of a local graphite-like structure with π-conjugation is the main stabilizing factor for the defect structures, regardless of the considered charge state. It was shown that the distribution of the spin density of the studied negative BV complexes located directly in the near-surface layers of the clean and hydrogenated surface is similar to the spin properties of complexes in the bulk of diamond.
本文介绍了氢化和清洁金刚石表面“硼+空位”复合缺陷的结构和电子态的量子化学建模结果,以及BV配合物在表面上六层位置的变化。考虑了配合物的中性、正电荷和负电荷状态。在BV配合物的第三层和第四层中,考虑了杂质和本征缺陷的两种不同位置:二聚体行下和行之间。分析了表面钝化对BV配合物在能量标度上位置的影响。已经发现,表面的氢化导致最稳定的BV配合物的构型发生变化。无论考虑何种电荷状态,具有π共轭的局部类石墨结构的形成是缺陷结构的主要稳定因素。结果表明,所研究的负BV配合物直接位于清洁和氢化表面近表层的自旋密度分布与金刚石体中配合物的自旋特性相似。
{"title":"“Boron + vacancy” complexes \u0000on the hydrogenated diamond surface С(100)-(2×1)","authors":"A. I. Digurova, N. Lvova","doi":"10.17277/jamt.2021.04.pp.256-266","DOIUrl":"https://doi.org/10.17277/jamt.2021.04.pp.256-266","url":null,"abstract":"The paper presents the results of quantum-chemical modeling of structural and electronic states of “boron + vacancy” complex defects on the hydrogenated and clean diamond surface, with a variation in the position of BV complexes in the upper six surface layers. Neutral, positive and negatively charged states of the complexes are considered. Two different positions of impurity and intrinsic defects in the composition of the BV complex have been considered for the third and fourth layers: under the dimer row and between the rows. The influence of the surface passivation on the position of BV complexes on the energy scale is analyzed. It has been found that hydrogenation of the surface leads to a change in the configuration of the most stable BV complex. The formation of a local graphite-like structure with π-conjugation is the main stabilizing factor for the defect structures, regardless of the considered charge state. It was shown that the distribution of the spin density of the studied negative BV complexes located directly in the near-surface layers of the clean and hydrogenated surface is similar to the spin properties of complexes in the bulk of diamond.","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74228326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of Dzyaloshinskii–Moriya interaction on direct and backward transition between magnetic states of Pt/Co/Ir/Co/Pr synthetic ferrimagnet Dzyaloshinskii-Moriya相互作用对Pt/Co/Ir/Co/Pr合成铁磁体磁态直接和反向跃迁的影响
Pub Date : 2021-01-01 DOI: 10.17277/jamt.2021.03.pp.167-178
A. Talantsev, E. Kunitsyna, R. Morgunov
In this paper, we present the study of domain structure accompanying interstate transitions in Pt/Co/Ir/Co/Pr synthetic ferrimagnet (SF) of 1.1 nm thick and 0.6 – 1.0 nm thin ferromagnetic Co layers. Variation in the thickness of the thin layer causes noticeable changes in the domain structure and mechanism of magnetization reversal revealed by MOKE (Magneto-Optical Kerr Effect) technique. Magnetization reversal includes coherent rotation of magnetization of the ferromagnetic layers, generation of magnetic nuclei, spreading of domain walls (DW), and development of areas similar with strip domains, dependently on thickness of the thin layer. Inequivalence of the direct and backward transitions between magnetic states of SF with parallel and antiparallel magnetizations was observed in sample with thin layer thicknesses 0.8 nm and 1.0 nm. Asymmetry of the transition between these states is expressed in difference fluctuation fields and shapes of reversal magnetization nucleus contributing to the correspondent forward and backward transitions. We proposed simple model based on asymmetry of Dzyaloshinskii–Moriya interaction. This model explains competition between nucleation and domain wall propagation due to increase/decrease of the DW energy dependently on direction of the spin rotation into the DW in respect to external field.
本文研究了厚度为1.1 nm、厚度为0.6 ~ 1.0 nm的Pt/Co/Ir/Co/Pr合成铁磁体(SF)的畴间跃迁结构。磁光克尔效应(MOKE)技术揭示了薄层厚度的变化会引起畴结构和磁化反转机制的显著变化。磁化反转包括铁磁层磁化的相干旋转、磁核的产生、畴壁(DW)的扩展以及与带状畴相似的区域的发展,这取决于薄层的厚度。在薄层厚度分别为0.8 nm和1.0 nm的样品中,观察到平行磁化和反平行磁化的SF磁态之间的正向和反向跃迁不相等。这些态之间跃迁的不对称性表现在涨落场和反转磁化核形状的差异上,从而导致相应的正向和反向跃迁。我们提出了基于Dzyaloshinskii-Moriya相互作用不对称性的简单模型。该模型解释了由于自旋进入DW的方向与外场有关,DW能量的增加/减少导致成核和畴壁传播之间的竞争。
{"title":"The effect of Dzyaloshinskii–Moriya interaction on direct and backward transition between magnetic states of Pt/Co/Ir/Co/Pr synthetic ferrimagnet","authors":"A. Talantsev, E. Kunitsyna, R. Morgunov","doi":"10.17277/jamt.2021.03.pp.167-178","DOIUrl":"https://doi.org/10.17277/jamt.2021.03.pp.167-178","url":null,"abstract":"In this paper, we present the study of domain structure accompanying interstate transitions in Pt/Co/Ir/Co/Pr synthetic ferrimagnet (SF) of 1.1 nm thick and 0.6 – 1.0 nm thin ferromagnetic Co layers. Variation in the thickness of the thin layer causes noticeable changes in the domain structure and mechanism of magnetization reversal revealed by MOKE (Magneto-Optical Kerr Effect) technique. Magnetization reversal includes coherent rotation of magnetization of the ferromagnetic layers, generation of magnetic nuclei, spreading of domain walls (DW), and development of areas similar with strip domains, dependently on thickness of the thin layer. Inequivalence of the direct and backward transitions between magnetic states of SF with parallel and antiparallel magnetizations was observed in sample with thin layer thicknesses 0.8 nm and 1.0 nm. Asymmetry of the transition between these states is expressed in difference fluctuation fields and shapes of reversal magnetization nucleus contributing to the correspondent forward and backward transitions. We proposed simple model based on asymmetry of Dzyaloshinskii–Moriya interaction. This model explains competition between nucleation and domain wall propagation due to increase/decrease of the DW energy dependently on direction of the spin rotation into the DW in respect to external field.","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88449348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study of the structure and morphology of the graphite electrochemical exfoliation products 石墨电化学剥离产物的结构和形貌研究
Pub Date : 2021-01-01 DOI: 10.17277/jamt.2021.04.pp.267-278
Y. Khan, T. Dyachkova, E. Bakunin, E. Obraztsova, A. Rukhov, S. Morais
The paper presents a generalized analysis of the results of scanning electron microscopy, energy dispersive spectroscopy, and TG/DSC analysis of electrochemical exfoliation products from two types of initial graphite raw materials at different process temperatures in solutions of potassium hydroxide (KOH) and sulfuric acid (H2SO4). It is shown that an increase in the concentration of an alkaline electrolyte in the range from 0.1 to 1.0 molL–1 promotes the intensification of the process of separation and splitting of graphite into fragments. In the case of the formation of large fragments, the product contains a significant amount of intercalated potassium ions, which are not removed when the material is washed off. The products of electrochemical exfoliation of the spent electrocontact graphite material demonstrate structural heterogeneity, contain a significant amount of functional groups and impurities of the amorphous phase. Thermogravimetric curves have several sections of sample weight reduction. After heating these materials in an inert atmosphere to 900 °C, the total weight loss reaches 66 %. From a thermally expanded graphite foil, samples of nanographites, extremely homogeneous in chemical composition, with increased thermal stability and a minimum number of surface defects were obtained. The total weight loss of the samples when heated in an inert atmosphere to 900 °C does not exceed 17 %. It was shown that the replacement of an alkaline electrolyte with a sulfuric acid solution leads to an increase in the number of defects in the product.
本文对两种石墨原料在氢氧化钾(KOH)和硫酸(H2SO4)溶液中不同工艺温度下的电化学剥离产物的扫描电镜、能谱和热重/DSC分析结果进行了综合分析。结果表明,当碱性电解质浓度在0.1 ~ 1.0 mol范围内增加时,石墨的分离和分裂过程会加剧。在形成大碎片的情况下,产品含有大量的插入钾离子,当材料被洗掉时,这些离子不会被去除。废电接触石墨材料的电化学剥离产物具有结构不均匀性,含有大量的官能团和非晶相杂质。热重曲线有几段样品减重。这些材料在惰性气氛中加热到900℃后,总重量损失达到66%。从热膨胀石墨箔中,获得了化学成分极其均匀的纳米石墨样品,具有更高的热稳定性和最小数量的表面缺陷。在惰性气氛中加热到900℃时,样品的总重量损失不超过17%。结果表明,用硫酸溶液代替碱性电解液会导致产品缺陷数量的增加。
{"title":"A study of the structure and morphology \u0000of the graphite electrochemical exfoliation products","authors":"Y. Khan, T. Dyachkova, E. Bakunin, E. Obraztsova, A. Rukhov, S. Morais","doi":"10.17277/jamt.2021.04.pp.267-278","DOIUrl":"https://doi.org/10.17277/jamt.2021.04.pp.267-278","url":null,"abstract":"The paper presents a generalized analysis of the results of scanning electron microscopy, energy dispersive spectroscopy, and TG/DSC analysis of electrochemical exfoliation products from two types of initial graphite raw materials at different process temperatures in solutions of potassium hydroxide (KOH) and sulfuric acid (H2SO4). It is shown that an increase in the concentration of an alkaline electrolyte in the range from 0.1 to 1.0 molL–1 promotes the intensification of the process of separation and splitting of graphite into fragments. In the case of the formation of large fragments, the product contains a significant amount of intercalated potassium ions, which are not removed when the material is washed off. The products of electrochemical exfoliation of the spent electrocontact graphite material demonstrate structural heterogeneity, contain a significant amount of functional groups and impurities of the amorphous phase. Thermogravimetric curves have several sections of sample weight reduction. After heating these materials in an inert atmosphere to 900 °C, the total weight loss reaches 66 %. From a thermally expanded graphite foil, samples of nanographites, extremely homogeneous in chemical composition, with increased thermal stability and a minimum number of surface defects were obtained. The total weight loss of the samples when heated in an inert atmosphere to 900 °C does not exceed 17 %. It was shown that the replacement of an alkaline electrolyte with a sulfuric acid solution leads to an increase in the number of defects in the product.","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"s3-16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90808689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic Devices: High‐Throughput Separation of Microvesicles from Whole Blood Components Using Viscoelastic Fluid (Adv. Mater. Technol. 12/2020) 微流体装置:使用粘弹性流体从全血成分中高通量分离微囊泡。抛光工艺。12/2020)
Pub Date : 2020-12-01 DOI: 10.1002/admt.202070071
Jeonghun Nam, Jung Yoon, Hyunseul Jee, W. Jang, C. Lim
{"title":"Microfluidic Devices: High‐Throughput Separation of Microvesicles from Whole Blood Components Using Viscoelastic Fluid (Adv. Mater. Technol. 12/2020)","authors":"Jeonghun Nam, Jung Yoon, Hyunseul Jee, W. Jang, C. Lim","doi":"10.1002/admt.202070071","DOIUrl":"https://doi.org/10.1002/admt.202070071","url":null,"abstract":"","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"7 1","pages":"2070071"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89340494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchical Structures: Programmable Building Blocks via Internal Stress Engineering for 3D Collective Assembly (Adv. Mater. Technol. 12/2020) 分层结构:可编程构建块通过内应力工程为三维集体装配(硕士论文)。抛光工艺。12/2020)
Pub Date : 2020-12-01 DOI: 10.1002/admt.202070070
Woongbi Cho, D. Hahm, Jaehyun Yim, Jun Hee Lee, Y. Lee, Dong‐Gyun Kim, Yong Seok Kim, J. Wie
{"title":"Hierarchical Structures: Programmable Building Blocks via Internal Stress Engineering for 3D Collective Assembly (Adv. Mater. Technol. 12/2020)","authors":"Woongbi Cho, D. Hahm, Jaehyun Yim, Jun Hee Lee, Y. Lee, Dong‐Gyun Kim, Yong Seok Kim, J. Wie","doi":"10.1002/admt.202070070","DOIUrl":"https://doi.org/10.1002/admt.202070070","url":null,"abstract":"","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"58 1","pages":"2070070"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84061253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gas‐Phase 3D Printing: Gas‐Phase 3D Printing of Functional Materials (Adv. Mater. Technol. 12/2020) 气相3D打印:功能材料的气相3D打印(Adv. Mater.)抛光工艺。12/2020)
Pub Date : 2020-12-01 DOI: 10.1002/admt.202070074
César Masse de la Huerta, V. Nguyen, A. Sekkat, Chiara Crivello, F. Toldra-Reig, P. Veiga, Serge Quessada, C. Jiménez, D. Muñoz‐Rojas
{"title":"Gas‐Phase 3D Printing: Gas‐Phase 3D Printing of Functional Materials (Adv. Mater. Technol. 12/2020)","authors":"César Masse de la Huerta, V. Nguyen, A. Sekkat, Chiara Crivello, F. Toldra-Reig, P. Veiga, Serge Quessada, C. Jiménez, D. Muñoz‐Rojas","doi":"10.1002/admt.202070074","DOIUrl":"https://doi.org/10.1002/admt.202070074","url":null,"abstract":"","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"24 1","pages":"2070074"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73582898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Neutron Detectors: Cesium Lead Bromide (CsPbBr 3 ) Thin‐Film‐Based Solid‐State Neutron Detector Developed by a Solution‐Free Sublimation Process (Adv. Mater. Technol. 12/2020) 中子探测器:铯-溴化铅(CsPbBr 3)薄膜型固体中子探测器,采用无溶液升华工艺(Adv. Mater)开发。抛光工艺。12/2020)
Pub Date : 2020-12-01 DOI: 10.1002/admt.202070075
L. Fernández‐Izquierdo, M. G. Reyes-Banda, X. Mathew, I. R. Chavez-Urbiola, Lidia El Bouanani, Joseph Chang, C. Avila-Avendano, N. R. Mathews, M. I. Pintor-Monroy, M. Quevedo-López
{"title":"Neutron Detectors: Cesium Lead Bromide (CsPbBr\u0000 3\u0000 ) Thin‐Film‐Based Solid‐State Neutron Detector Developed by a Solution‐Free Sublimation Process (Adv. Mater. Technol. 12/2020)","authors":"L. Fernández‐Izquierdo, M. G. Reyes-Banda, X. Mathew, I. R. Chavez-Urbiola, Lidia El Bouanani, Joseph Chang, C. Avila-Avendano, N. R. Mathews, M. I. Pintor-Monroy, M. Quevedo-López","doi":"10.1002/admt.202070075","DOIUrl":"https://doi.org/10.1002/admt.202070075","url":null,"abstract":"","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"28 1","pages":"2070075"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81062087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
QLEDs: High‐Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffee‐Ring‐Free Quantum Dot Film (Adv. Mater. Technol. 10/2020) qled:基于电流体动力印刷和无咖啡环量子点薄膜的高分辨率像素化发光二极管。抛光工艺。10/2020)
Pub Date : 2020-10-01 DOI: 10.1002/admt.202070059
Hegeng Li, Y. Duan, Shao Zhilong, Guannan Zhang, Huayang Li, Yongan Huang, Z. Yin
{"title":"QLEDs: High‐Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffee‐Ring‐Free Quantum Dot Film (Adv. Mater. Technol. 10/2020)","authors":"Hegeng Li, Y. Duan, Shao Zhilong, Guannan Zhang, Huayang Li, Yongan Huang, Z. Yin","doi":"10.1002/admt.202070059","DOIUrl":"https://doi.org/10.1002/admt.202070059","url":null,"abstract":"","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"1 1","pages":"2070059"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85351283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Microfluidic Systems: A 3D Biohybrid Real‐Scale Model of the Brain Cancer Microenvironment for Advanced In Vitro Testing (Adv. Mater. Technol. 10/2020) 微流控系统:用于先进体外测试的脑癌微环境的三维生物混合真实比例模型。抛光工艺。10/2020)
Pub Date : 2020-10-01 DOI: 10.1002/admt.202070063
O. Tricinci, Daniele De Pasquale, Attilio Marino, M. Battaglini, C. Pucci, G. Ciofani
{"title":"Microfluidic Systems: A 3D Biohybrid Real‐Scale Model of the Brain Cancer Microenvironment for Advanced In Vitro Testing (Adv. Mater. Technol. 10/2020)","authors":"O. Tricinci, Daniele De Pasquale, Attilio Marino, M. Battaglini, C. Pucci, G. Ciofani","doi":"10.1002/admt.202070063","DOIUrl":"https://doi.org/10.1002/admt.202070063","url":null,"abstract":"","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"6 1","pages":"2070063"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84130056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Personalized Healthcare: Expandable Polymer Assisted Wearable Personalized Medicinal Platform (Adv. Mater. Technol. 10/2020) 个性化医疗保健:可膨胀聚合物辅助可穿戴个性化医疗平台。抛光工艺。10/2020)
Pub Date : 2020-10-01 DOI: 10.1002/admt.202070064
Wedyan Babatain, A. Gumus, Irmandy Wicaksono, U. Buttner, Nazek El‐atab, M. Rehman, N. Qaiser, D. Conchouso, M. Hussain
{"title":"Personalized Healthcare: Expandable Polymer Assisted Wearable Personalized Medicinal Platform (Adv. Mater. Technol. 10/2020)","authors":"Wedyan Babatain, A. Gumus, Irmandy Wicaksono, U. Buttner, Nazek El‐atab, M. Rehman, N. Qaiser, D. Conchouso, M. Hussain","doi":"10.1002/admt.202070064","DOIUrl":"https://doi.org/10.1002/admt.202070064","url":null,"abstract":"","PeriodicalId":13355,"journal":{"name":"Image Journal of Advanced Materials and Technologies","volume":"15 1","pages":"2070064"},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78448425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Image Journal of Advanced Materials and Technologies
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1