首页 > 最新文献

Indian Journal of Chemical Technology最新文献

英文 中文
Study of the thermal behaviour of a derivative based on a zirconium agent (modified montmorillonite) and determination of the physical characteristics 锆衍生物(改性蒙脱土)的热行为研究及物理特性测定
IF 0.5 4区 工程技术 Q4 CHEMISTRY, APPLIED Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i2.64537
{"title":"Study of the thermal behaviour of a derivative based on a zirconium agent (modified montmorillonite) and determination of the physical characteristics","authors":"","doi":"10.56042/ijct.v30i2.64537","DOIUrl":"https://doi.org/10.56042/ijct.v30i2.64537","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equilibrium, kinetic and thermodynamic study for the efficient removal of malachite green dye onto untreated Morus nigra L. (mulberry tree) leaves powder and its biochar 桑树叶粉及其生物炭高效脱除孔雀石绿染料的平衡、动力学和热力学研究
IF 0.5 4区 工程技术 Q4 CHEMISTRY, APPLIED Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i2.66355
{"title":"Equilibrium, kinetic and thermodynamic study for the efficient removal of malachite green dye onto untreated Morus nigra L. (mulberry tree) leaves powder and its biochar","authors":"","doi":"10.56042/ijct.v30i2.66355","DOIUrl":"https://doi.org/10.56042/ijct.v30i2.66355","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasonication pretreatment of real-field pulping wastewater from bagasse-based paper mill 蔗渣造纸厂现场制浆废水的超声预处理
IF 0.5 4区 工程技术 Q4 CHEMISTRY, APPLIED Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i2.66923
{"title":"Ultrasonication pretreatment of real-field pulping wastewater from bagasse-based paper mill","authors":"","doi":"10.56042/ijct.v30i2.66923","DOIUrl":"https://doi.org/10.56042/ijct.v30i2.66923","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mn3O4 and Ag2MnO4 nanoparticles loaded on g-C3N4 as magnetically catalysts for sonodegradation of dyes g-C3N4负载纳米Mn3O4和Ag2MnO4作为染料超声降解的磁性催化剂
4区 工程技术 Q4 CHEMISTRY, APPLIED Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i5.5210
New magnetic Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites have been synthesized based on Mn(II) Schiff base complex and used for sonodegradation of methylene blue (MB) and methyl orange (MO) dyes in aqueous solution. Ag2MnO4 nanoparticles (NPs) have been synthesized from Mn3O4 NPs and AgNO3 under ultrasonic irradiation for the first time. The results indicate that the sonodegradation method of dyes in the presence of Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites is better than solar degradation processes. The better photodegradation rates for MB and MO dyes observed in the presence of Ag2MnO4/g-C3N4 (k= 0.0916 min-1) and Mn3O4/g-C3N4 (k= 0.0381 min-1), as compared to pure Mn3O4 and Ag2MnO4 compounds The synthesized nanocomposites are good fluorescent materials.
以Mn(II)席夫碱配合物为基料,合成了新型磁性Mn3O4/g-C3N4和Ag2MnO4/g-C3N4纳米复合材料,并用于水溶液中亚甲基蓝(MB)和甲基橙(MO)染料的超声降解。本文首次在超声辐照下,以mn3o4nps和AgNO3为原料合成了Ag2MnO4纳米颗粒。结果表明,在Mn3O4/g-C3N4和Ag2MnO4/g-C3N4纳米复合材料存在下,超声降解染料的方法优于太阳降解方法。Ag2MnO4/g-C3N4 (k= 0.0916 min-1)和Mn3O4/g-C3N4 (k= 0.0381 min-1)对MB和MO染料的光降解率均优于纯Mn3O4和Ag2MnO4,所合成的纳米复合材料是良好的荧光材料。
{"title":"Mn3O4 and Ag2MnO4 nanoparticles loaded on g-C3N4 as magnetically catalysts for sonodegradation of dyes","authors":"","doi":"10.56042/ijct.v30i5.5210","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5210","url":null,"abstract":"New magnetic Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites have been synthesized based on Mn(II) Schiff base complex and used for sonodegradation of methylene blue (MB) and methyl orange (MO) dyes in aqueous solution. Ag2MnO4 nanoparticles (NPs) have been synthesized from Mn3O4 NPs and AgNO3 under ultrasonic irradiation for the first time. The results indicate that the sonodegradation method of dyes in the presence of Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites is better than solar degradation processes. The better photodegradation rates for MB and MO dyes observed in the presence of Ag2MnO4/g-C3N4 (k= 0.0916 min-1) and Mn3O4/g-C3N4 (k= 0.0381 min-1), as compared to pure Mn3O4 and Ag2MnO4 compounds The synthesized nanocomposites are good fluorescent materials.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal and mechanical properties of nanofilled poly(methyl methacrylate) nanocomposites produced by two ultrasonic methods 两种超声法制备纳米填充聚甲基丙烯酸甲酯纳米复合材料的热力学性能
4区 工程技术 Q4 CHEMISTRY, APPLIED Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i5.5216
PPMANC1 and PMMANC2 nanocomposites have been fabricated using two reactive clays by two methods and characterized in order to estimate the impact of the different dispersion states on the mechanical properties. A simple and economical process of polymerisation is adopted to develop PMMANC nanocomposites using an Algerian clay, trying to optimize the distribution of PMMA in the clay layers. Two distinct types of organic clays have been mined, labelled as (i) benzyltrimethyl ammonium chloride (BTBA-Mag (1CEC)) and (ii) hexadecyltrimethylammonium bromide (HDTAB-MagCTA (2.5CEC)). Evaluation of the properties of the PMMANC1 and PMMANC2 nanocomposites are carried out using different physicochemical techniques. The results obtained by XRD, transmission electron microscopy reveal that the modified maghnite are well dispersed in the matrix and significant improvements in thermal properties are observed from thermal analysis. The Young module, impact resistance and tensile strength of the nanocomposites incorporating 5% organoargile are the most effective compared to the two synthesis processes.
以两种活性粘土为原料,采用两种方法制备了PPMANC1和PMMANC2纳米复合材料,并对其进行了表征,以评估不同分散状态对其力学性能的影响。采用一种简单而经济的聚合工艺,利用阿尔及利亚粘土制备PMMANC纳米复合材料,试图优化PMMA在粘土层中的分布。已经开采出两种不同类型的有机粘土,标记为(i)苄基三甲基氯化铵(BTBA-Mag (1CEC))和(ii)十六烷基三甲基溴化铵(HDTAB-MagCTA (2.5CEC))。采用不同的物理化学技术对PMMANC1和PMMANC2纳米复合材料的性能进行了评价。XRD、透射电镜分析结果表明,改性后的磁铁矿在基体中分散良好,热性能有明显改善。与两种合成工艺相比,Young模块、含5%有机凝胶的纳米复合材料的抗冲击性和抗拉强度是最有效的。
{"title":"Thermal and mechanical properties of nanofilled poly(methyl methacrylate) nanocomposites produced by two ultrasonic methods","authors":"","doi":"10.56042/ijct.v30i5.5216","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5216","url":null,"abstract":"PPMANC1 and PMMANC2 nanocomposites have been fabricated using two reactive clays by two methods and characterized in order to estimate the impact of the different dispersion states on the mechanical properties. A simple and economical process of polymerisation is adopted to develop PMMANC nanocomposites using an Algerian clay, trying to optimize the distribution of PMMA in the clay layers. Two distinct types of organic clays have been mined, labelled as (i) benzyltrimethyl ammonium chloride (BTBA-Mag (1CEC)) and (ii) hexadecyltrimethylammonium bromide (HDTAB-MagCTA (2.5CEC)). Evaluation of the properties of the PMMANC1 and PMMANC2 nanocomposites are carried out using different physicochemical techniques. The results obtained by XRD, transmission electron microscopy reveal that the modified maghnite are well dispersed in the matrix and significant improvements in thermal properties are observed from thermal analysis. The Young module, impact resistance and tensile strength of the nanocomposites incorporating 5% organoargile are the most effective compared to the two synthesis processes.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis and process simulation of biodiesel production from biomass sources 生物质生产生物柴油的综合分析与过程模拟
4区 工程技术 Q4 CHEMISTRY, APPLIED Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i5.5203
The present research work entails the process simulation of biodiesel production on a large scale using the ASPEN process simulator. Catalytic transesterification and non-catalytic supercritical mode of transesterification are simulated with experimental results and compared to determine the efficient mode of transesterification under different initial feedstock raw material conditions. It is found that the supercritical method (280℃; 276.4 atm; 42:1 for alcohol and oil ratio) is efficient in terms of cost and product quality for the feedstocks with high Free Fatty Acid (FFA) content. For feedstocks with a negligible amount of FFA, alkali-catalyzed homogeneous transesterification (60-65℃; 4atm; 6:1- alcohol: oil ratio) is efficient in terms of product quality and yield although the cost is similar to that of the supercritical mode of transesterification. Pre-treatment steps like simple esterification and glycerolysis for high FFA-contained feedstocks are studied using the ASPEN simulation to understand better the overall process by which the pre-treatment is carried out. Finally, the combustion characteristics of the biodiesel blend along with n-heptane (a surrogate for Petro-diesel) are studied using the Python scripted Cantera combustion chamber and it is found that the amount of soot and carbon monoxide emission is very less indicating complete and efficient combustion. This simulation study is carried out with the help of DWSIM simulation software.
目前的研究工作需要使用ASPEN过程模拟器对生物柴油的大规模生产过程进行模拟。用实验结果模拟了催化酯交换和非催化超临界酯交换模式,并对其进行了比较,确定了不同初始原料条件下的高效酯交换模式。发现超临界法(280℃;276.4 atm;对于游离脂肪酸(FFA)含量高的原料,在成本和产品质量方面是有效的。对于FFA含量可忽略不计的原料,碱催化均相酯交换反应(60-65℃;4 atm;6:1(醇油比)在产品质量和收率方面是有效的,尽管成本与超临界酯交换模式相似。使用ASPEN模拟研究了预处理步骤,如高fa含量原料的简单酯化和甘油水解,以更好地了解进行预处理的整个过程。最后,使用Python脚本Cantera燃烧室研究了生物柴油与正庚烷(石油柴油的替代品)混合的燃烧特性,发现烟尘和一氧化碳排放量非常少,表明燃烧完全有效。本仿真研究借助DWSIM仿真软件进行。
{"title":"Comprehensive analysis and process simulation of biodiesel production from biomass sources","authors":"","doi":"10.56042/ijct.v30i5.5203","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5203","url":null,"abstract":"The present research work entails the process simulation of biodiesel production on a large scale using the ASPEN process simulator. Catalytic transesterification and non-catalytic supercritical mode of transesterification are simulated with experimental results and compared to determine the efficient mode of transesterification under different initial feedstock raw material conditions. It is found that the supercritical method (280℃; 276.4 atm; 42:1 for alcohol and oil ratio) is efficient in terms of cost and product quality for the feedstocks with high Free Fatty Acid (FFA) content. For feedstocks with a negligible amount of FFA, alkali-catalyzed homogeneous transesterification (60-65℃; 4atm; 6:1- alcohol: oil ratio) is efficient in terms of product quality and yield although the cost is similar to that of the supercritical mode of transesterification. Pre-treatment steps like simple esterification and glycerolysis for high FFA-contained feedstocks are studied using the ASPEN simulation to understand better the overall process by which the pre-treatment is carried out. Finally, the combustion characteristics of the biodiesel blend along with n-heptane (a surrogate for Petro-diesel) are studied using the Python scripted Cantera combustion chamber and it is found that the amount of soot and carbon monoxide emission is very less indicating complete and efficient combustion. This simulation study is carried out with the help of DWSIM simulation software.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"269 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135444883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magneto-hybrid nanofluid (〖Al〗_2 O_3 / Cu-Oil) flow in a porous square enclosure with Cattaneo-Christov heat flow model-sensitivity analysis 用Cattaneo-Christov热流模型敏感性分析了磁杂化纳米流体(〖Al〗_2 O_3 / Cu-Oil)在多孔方框中的流动
4区 工程技术 Q4 CHEMISTRY, APPLIED Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i5.5194
The rheological behaviour of nanofluids is an important specification that has a substantial impact on the system performance. The effect of an inclined magnetic field on mixed convection in a square cavity through a porous medium has been numerically investigated in the current paper. Various levels of thermal conductivity have been maintained on each wall throughout the system. Additionally, the Cattaneo-Christov heat flow model is influenced in the energy equation. The conservation equations for primary, secondary, and mass momentum, energy, and nanoparticles with wall boundary conditions are dimensionless and coupled to proper scaling transformations. To address the dimensionless nonlinear coupled boundary value problem, a finite-difference computing methodology known as the Harlow-Welch Marker and Cell (MAC) method is used. The fundamental goal of this research is to look at the rheological behaviour of nanoparticles as base fluids in the aforementioned effects. The influence of factors on the physical framework such as Richardson number (Ri), Hartmann number (Ha), Darcy number (Da), Reynolds number (Re), and Prandtl number (Pr) is investigated graphically. The MATLAB software is used to obtain streamlined and isothermal contours. The findings indicate an enhancement in the average Nusselt number with an increase in the parameters. Furthermore, the presence of nanoparticles raises the average Nusselt number for low values of the Reynolds number. The system is analyzed with three convection stages of Richardson number, and it is also found that for mixed convection, the system holds better results. The obtained outcomes are compared with well-known existing findings to validate the present work.
纳米流体的流变特性是对系统性能有重大影响的重要指标。本文用数值方法研究了斜磁场对多孔介质中方形腔内混合对流的影响。在整个系统中,每面墙都保持着不同程度的导热性。此外,能量方程对Cattaneo-Christov热流模型也有影响。具有壁面边界条件的初级、次级和质量动量、能量和纳米粒子的守恒方程是无因次的,并且耦合到适当的缩放变换。为了解决无量纲非线性耦合边值问题,使用了一种称为Harlow-Welch标记和单元(MAC)方法的有限差分计算方法。本研究的基本目标是观察纳米颗粒作为基础流体在上述效应中的流变行为。研究了理查德森数(Ri)、哈特曼数(Ha)、达西数(Da)、雷诺数(Re)和普朗特数(Pr)等因素对物理框架的影响。利用MATLAB软件获得了流线等温轮廓。结果表明,平均努塞尔数随着参数的增加而增加。此外,纳米颗粒的存在提高了低雷诺数时的平均努塞尔数。采用理查德森数的三个对流阶段对系统进行了分析,也发现对于混合对流,系统具有较好的效果。所得结果与已知的现有结果进行了比较,以验证目前的工作。
{"title":"Magneto-hybrid nanofluid (〖Al〗_2 O_3 / Cu-Oil) flow in a porous square enclosure with Cattaneo-Christov heat flow model-sensitivity analysis","authors":"","doi":"10.56042/ijct.v30i5.5194","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5194","url":null,"abstract":"The rheological behaviour of nanofluids is an important specification that has a substantial impact on the system performance. The effect of an inclined magnetic field on mixed convection in a square cavity through a porous medium has been numerically investigated in the current paper. Various levels of thermal conductivity have been maintained on each wall throughout the system. Additionally, the Cattaneo-Christov heat flow model is influenced in the energy equation. The conservation equations for primary, secondary, and mass momentum, energy, and nanoparticles with wall boundary conditions are dimensionless and coupled to proper scaling transformations. To address the dimensionless nonlinear coupled boundary value problem, a finite-difference computing methodology known as the Harlow-Welch Marker and Cell (MAC) method is used. The fundamental goal of this research is to look at the rheological behaviour of nanoparticles as base fluids in the aforementioned effects. The influence of factors on the physical framework such as Richardson number (Ri), Hartmann number (Ha), Darcy number (Da), Reynolds number (Re), and Prandtl number (Pr) is investigated graphically. The MATLAB software is used to obtain streamlined and isothermal contours. The findings indicate an enhancement in the average Nusselt number with an increase in the parameters. Furthermore, the presence of nanoparticles raises the average Nusselt number for low values of the Reynolds number. The system is analyzed with three convection stages of Richardson number, and it is also found that for mixed convection, the system holds better results. The obtained outcomes are compared with well-known existing findings to validate the present work.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal doping in g-C3N4 and tuning of band-gap for dye degradation using visible light g-C3N4中金属掺杂及可见光染料降解带隙调谐
4区 工程技术 Q4 CHEMISTRY, APPLIED Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i5.5211
Graphitic carbon nitride (g-C3N4), as a fascinating conjugated polymer, has been the hotspot in science as a metal-free and visible-light-responsive photocatalyst. Pure g-C3N4 suffers from insufficient sunlight absorption, low surface area and the fast recombination of photo-induced electron-hole pairs, resulting in low photocatalytic activity. Utilizing the thermal polymerization process, metal-doped g-C3N4 has been formed and the formed catalysts employed for the degradation of methyl orange under visible light. The produced catalysts have been examined using a variety of characterisation techniques and by experimental means. The lowering of band gap and improved photocatalytic activity of the as-prepared catalyst is resulted by metal doping.
石墨化氮化碳(g-C3N4)作为一种无金属、可见光响应的光催化剂,是一种极具吸引力的共轭聚合物,一直是科学研究的热点。纯g-C3N4存在吸收太阳光不足、比表面积小、光致电子-空穴对复合快等缺点,导致其光催化活性较低。利用热聚合工艺制备了金属掺杂g-C3N4,并将所制备的催化剂用于可见光下甲基橙的降解。使用各种表征技术和实验手段对所生产的催化剂进行了检测。金属掺杂降低了带隙,提高了催化剂的光催化活性。
{"title":"Metal doping in g-C3N4 and tuning of band-gap for dye degradation using visible light","authors":"","doi":"10.56042/ijct.v30i5.5211","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5211","url":null,"abstract":"Graphitic carbon nitride (g-C3N4), as a fascinating conjugated polymer, has been the hotspot in science as a metal-free and visible-light-responsive photocatalyst. Pure g-C3N4 suffers from insufficient sunlight absorption, low surface area and the fast recombination of photo-induced electron-hole pairs, resulting in low photocatalytic activity. Utilizing the thermal polymerization process, metal-doped g-C3N4 has been formed and the formed catalysts employed for the degradation of methyl orange under visible light. The produced catalysts have been examined using a variety of characterisation techniques and by experimental means. The lowering of band gap and improved photocatalytic activity of the as-prepared catalyst is resulted by metal doping.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"183 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An investigation of characteristics of a diesel engine with low heat rejection fuelled by spirulina algae biodiesel 以螺旋藻生物柴油为燃料的低排热柴油机特性研究
4区 工程技术 Q4 CHEMISTRY, APPLIED Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i6.4392
This study investigates the impact of magnesium oxide nanoparticles on the performance, combustion, and emissions characteristics of spirulina algae methyl ester biodiesel in a low heat rejection (LHR) engine. The cylinder head and piston of the engine are coated with a 200-micron layer of lanthanum aluminate. The results indicate promising outcomes with biodiesel in the LHR engine, showing improved thermal efficiency and reduced specific fuel consumption compared to conventional diesel engines. Tests have been conducted on B20, B20+25 ppm of MgO, and B20+50 ppm of MgO biodiesel blends with coated and untreated components. The coated piston with B20+50 ppm of MgO (LHR) demonstrate a 1.73% increase in brake thermal efficiency and a 7.2% decrease in specific fuel consumption compared to an untreated piston. Furthermore, the B20+50 ppm of MgO (LHR) in B20 experience a 5.9% reduction in-cylinder pressure and a 6.9% decrease in heat release rate. Additionally, the coated engine exhibit lower CO, HC, and smoke emissions from the biodiesel blends than the conventional engine.
{"title":"An investigation of characteristics of a diesel engine with low heat rejection fuelled by spirulina algae biodiesel","authors":"","doi":"10.56042/ijct.v30i6.4392","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.4392","url":null,"abstract":"This study investigates the impact of magnesium oxide nanoparticles on the performance, combustion, and emissions characteristics of spirulina algae methyl ester biodiesel in a low heat rejection (LHR) engine. The cylinder head and piston of the engine are coated with a 200-micron layer of lanthanum aluminate. The results indicate promising outcomes with biodiesel in the LHR engine, showing improved thermal efficiency and reduced specific fuel consumption compared to conventional diesel engines. Tests have been conducted on B20, B20+25 ppm of MgO, and B20+50 ppm of MgO biodiesel blends with coated and untreated components. The coated piston with B20+50 ppm of MgO (LHR) demonstrate a 1.73% increase in brake thermal efficiency and a 7.2% decrease in specific fuel consumption compared to an untreated piston. Furthermore, the B20+50 ppm of MgO (LHR) in B20 experience a 5.9% reduction in-cylinder pressure and a 6.9% decrease in heat release rate. Additionally, the coated engine exhibit lower CO, HC, and smoke emissions from the biodiesel blends than the conventional engine.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135661273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropy generation on chemically reactive hydromagnetic oscillating flow of third grade nanofluid in a porous channel with Cattaneo-Christov heat flux 具有Cattaneo-Christov热流通量的三级纳米流体在多孔通道中化学反应性磁振荡流动的熵生成
IF 0.5 4区 工程技术 Q4 CHEMISTRY, APPLIED Pub Date : 2023-01-01 DOI: 10.56042/ijct.v30i1.68837
{"title":"Entropy generation on chemically reactive hydromagnetic oscillating flow of third grade nanofluid in a porous channel with Cattaneo-Christov heat flux","authors":"","doi":"10.56042/ijct.v30i1.68837","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.68837","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Indian Journal of Chemical Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1