Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i2.64537
{"title":"Study of the thermal behaviour of a derivative based on a zirconium agent (modified montmorillonite) and determination of the physical characteristics","authors":"","doi":"10.56042/ijct.v30i2.64537","DOIUrl":"https://doi.org/10.56042/ijct.v30i2.64537","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i2.66355
{"title":"Equilibrium, kinetic and thermodynamic study for the efficient removal of malachite green dye onto untreated Morus nigra L. (mulberry tree) leaves powder and its biochar","authors":"","doi":"10.56042/ijct.v30i2.66355","DOIUrl":"https://doi.org/10.56042/ijct.v30i2.66355","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i2.66923
{"title":"Ultrasonication pretreatment of real-field pulping wastewater from bagasse-based paper mill","authors":"","doi":"10.56042/ijct.v30i2.66923","DOIUrl":"https://doi.org/10.56042/ijct.v30i2.66923","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i5.5210
New magnetic Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites have been synthesized based on Mn(II) Schiff base complex and used for sonodegradation of methylene blue (MB) and methyl orange (MO) dyes in aqueous solution. Ag2MnO4 nanoparticles (NPs) have been synthesized from Mn3O4 NPs and AgNO3 under ultrasonic irradiation for the first time. The results indicate that the sonodegradation method of dyes in the presence of Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites is better than solar degradation processes. The better photodegradation rates for MB and MO dyes observed in the presence of Ag2MnO4/g-C3N4 (k= 0.0916 min-1) and Mn3O4/g-C3N4 (k= 0.0381 min-1), as compared to pure Mn3O4 and Ag2MnO4 compounds The synthesized nanocomposites are good fluorescent materials.
{"title":"Mn3O4 and Ag2MnO4 nanoparticles loaded on g-C3N4 as magnetically catalysts for sonodegradation of dyes","authors":"","doi":"10.56042/ijct.v30i5.5210","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5210","url":null,"abstract":"New magnetic Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites have been synthesized based on Mn(II) Schiff base complex and used for sonodegradation of methylene blue (MB) and methyl orange (MO) dyes in aqueous solution. Ag2MnO4 nanoparticles (NPs) have been synthesized from Mn3O4 NPs and AgNO3 under ultrasonic irradiation for the first time. The results indicate that the sonodegradation method of dyes in the presence of Mn3O4/g-C3N4 and Ag2MnO4/g-C3N4 nanocomposites is better than solar degradation processes. The better photodegradation rates for MB and MO dyes observed in the presence of Ag2MnO4/g-C3N4 (k= 0.0916 min-1) and Mn3O4/g-C3N4 (k= 0.0381 min-1), as compared to pure Mn3O4 and Ag2MnO4 compounds The synthesized nanocomposites are good fluorescent materials.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i5.5216
PPMANC1 and PMMANC2 nanocomposites have been fabricated using two reactive clays by two methods and characterized in order to estimate the impact of the different dispersion states on the mechanical properties. A simple and economical process of polymerisation is adopted to develop PMMANC nanocomposites using an Algerian clay, trying to optimize the distribution of PMMA in the clay layers. Two distinct types of organic clays have been mined, labelled as (i) benzyltrimethyl ammonium chloride (BTBA-Mag (1CEC)) and (ii) hexadecyltrimethylammonium bromide (HDTAB-MagCTA (2.5CEC)). Evaluation of the properties of the PMMANC1 and PMMANC2 nanocomposites are carried out using different physicochemical techniques. The results obtained by XRD, transmission electron microscopy reveal that the modified maghnite are well dispersed in the matrix and significant improvements in thermal properties are observed from thermal analysis. The Young module, impact resistance and tensile strength of the nanocomposites incorporating 5% organoargile are the most effective compared to the two synthesis processes.
{"title":"Thermal and mechanical properties of nanofilled poly(methyl methacrylate) nanocomposites produced by two ultrasonic methods","authors":"","doi":"10.56042/ijct.v30i5.5216","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5216","url":null,"abstract":"PPMANC1 and PMMANC2 nanocomposites have been fabricated using two reactive clays by two methods and characterized in order to estimate the impact of the different dispersion states on the mechanical properties. A simple and economical process of polymerisation is adopted to develop PMMANC nanocomposites using an Algerian clay, trying to optimize the distribution of PMMA in the clay layers. Two distinct types of organic clays have been mined, labelled as (i) benzyltrimethyl ammonium chloride (BTBA-Mag (1CEC)) and (ii) hexadecyltrimethylammonium bromide (HDTAB-MagCTA (2.5CEC)). Evaluation of the properties of the PMMANC1 and PMMANC2 nanocomposites are carried out using different physicochemical techniques. The results obtained by XRD, transmission electron microscopy reveal that the modified maghnite are well dispersed in the matrix and significant improvements in thermal properties are observed from thermal analysis. The Young module, impact resistance and tensile strength of the nanocomposites incorporating 5% organoargile are the most effective compared to the two synthesis processes.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i1.68837
{"title":"Entropy generation on chemically reactive hydromagnetic oscillating flow of third grade nanofluid in a porous channel with Cattaneo-Christov heat flux","authors":"","doi":"10.56042/ijct.v30i1.68837","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.68837","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i1.58991
{"title":"Voltammetric investigations of functional dyspepsia drug acotiamide at pencil graphite electrode: An eco-friendly and cost effective stripping detection method","authors":"","doi":"10.56042/ijct.v30i1.58991","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.58991","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i3.68031
{"title":"Comparison study of COD adsorption on bentonite-based nanocomposite materials in landfill leachate treatment: Characterization, Isotherms, Kinetics and Regeneration","authors":"","doi":"10.56042/ijct.v30i3.68031","DOIUrl":"https://doi.org/10.56042/ijct.v30i3.68031","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i3.70650
{"title":"Solar light driven transition metal codoped ZnO (Ag, Ni- codoped ZnO) photocatalyst for environmental remediation","authors":"","doi":"10.56042/ijct.v30i3.70650","DOIUrl":"https://doi.org/10.56042/ijct.v30i3.70650","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i3.61561
{"title":"Hydrothermal synthesis of mesoporous TiO2 nanoparticles for enhanced photocatalytic degradation of organic dye","authors":"","doi":"10.56042/ijct.v30i3.61561","DOIUrl":"https://doi.org/10.56042/ijct.v30i3.61561","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}