Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i1.63358
{"title":"Efficient coal concentration using a short-chain amine-type compound as collector reagent: Flotation and optimization studies","authors":"","doi":"10.56042/ijct.v30i1.63358","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.63358","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i1.63539
{"title":"Experimental investigation of new compound adsorption on carbon steel in 1M HCl","authors":"","doi":"10.56042/ijct.v30i1.63539","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.63539","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i1.62034
{"title":"Corrosion inhibition of carbon steel by acridine orange in HCl solution: Electrochemical and weight loss studies","authors":"","doi":"10.56042/ijct.v30i1.62034","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.62034","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i2.67293
{"title":"Synthesis, DFT and antioxidant studies of 2-(alkylamino)-4-(naphth-2-yl) thiazole","authors":"","doi":"10.56042/ijct.v30i2.67293","DOIUrl":"https://doi.org/10.56042/ijct.v30i2.67293","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i4.70867
A. Chakraborty, N. Chatterjee, S. Dey, P. Dhar
Innumerable health-beneficial properties of sesame lignans like sesamol, sesamolin, sesamin and sesaminol make them lucrative agents in the pharmaceutical industry. To specify the mode of action of these phytochemicals, detailed computational physicochemical properties evaluation, and toxicity assessment (using free web servers and databases), as well as binding interactions with physiological inflammatory effectors (such as COX-2, TNF-α , IL-1 β , IL-6) by means of rigid ligand-receptor docking (using software), have been thoroughly investigated. Interestingly, sesame lignans are conformed to have drug-likeness, indicating their efficacy and suitability like established therapeutics. These bioactive lignans possess drug-like attributes and effectively act as ligands in the present in-silico study. The basic pharmacokinetic profile of these compounds has suggested non-polar solvents or delivery systems for them to enhance their bioavailability in physiological systems. However, all the sesame lignans are toxic to the liver cells with a50 % lethal dose in the range of 500-1500 mg/kg. Toxicity study indicated minimum toxicity of lignans to normal cellular milieu, but noticeable cytotoxic effects against several cancerous cell lines suggesting their anti-carcinogenic properties. Finally, the findings of the molecular docking study have depicted a high affinity of these ligands for target proteins, even better than traditional anti-inflammatory drugs-Indomethacin and Ibuprofen. The molecular interactions have represented sesaminol as the most effective and Sesamol as the least potent ligand for target receptor whereas COX-2 seems to be the most vulnerable target. The docking scores varied widely (-4.7 to -11.0 kcal/mol). The present in-silico approach is expected to provide valuable resources for optimizing bioactive molecules as future-generation therapeutics before pre-clinical and clinical studies.
{"title":"Sesame lignans as promising anti-inflammatory agent: Exploring novel therapeutic avenues with in silico and computational approach","authors":"A. Chakraborty, N. Chatterjee, S. Dey, P. Dhar","doi":"10.56042/ijct.v30i4.70867","DOIUrl":"https://doi.org/10.56042/ijct.v30i4.70867","url":null,"abstract":"Innumerable health-beneficial properties of sesame lignans like sesamol, sesamolin, sesamin and sesaminol make them lucrative agents in the pharmaceutical industry. To specify the mode of action of these phytochemicals, detailed computational physicochemical properties evaluation, and toxicity assessment (using free web servers and databases), as well as binding interactions with physiological inflammatory effectors (such as COX-2, TNF-α , IL-1 β , IL-6) by means of rigid ligand-receptor docking (using software), have been thoroughly investigated. Interestingly, sesame lignans are conformed to have drug-likeness, indicating their efficacy and suitability like established therapeutics. These bioactive lignans possess drug-like attributes and effectively act as ligands in the present in-silico study. The basic pharmacokinetic profile of these compounds has suggested non-polar solvents or delivery systems for them to enhance their bioavailability in physiological systems. However, all the sesame lignans are toxic to the liver cells with a50 % lethal dose in the range of 500-1500 mg/kg. Toxicity study indicated minimum toxicity of lignans to normal cellular milieu, but noticeable cytotoxic effects against several cancerous cell lines suggesting their anti-carcinogenic properties. Finally, the findings of the molecular docking study have depicted a high affinity of these ligands for target proteins, even better than traditional anti-inflammatory drugs-Indomethacin and Ibuprofen. The molecular interactions have represented sesaminol as the most effective and Sesamol as the least potent ligand for target receptor whereas COX-2 seems to be the most vulnerable target. The docking scores varied widely (-4.7 to -11.0 kcal/mol). The present in-silico approach is expected to provide valuable resources for optimizing bioactive molecules as future-generation therapeutics before pre-clinical and clinical studies.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70702291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i4.70915
G. K. Çılgı
In this study thermal decomposition routes and kinetics of lead acetate triydrate are compared in inert (nitrogen) and reactive (oxygen) atmospheres by using thermogravimetric method. The decomposition proceeds with five consecutive stages in the both the atmospheres. The first four stages occur similarly in nitrogen and oxygen atmospheres and the same intermediates are formed. However, the last stage, differs according to the furnace atmosphere. The mixture of PbO and small amount metallic Pb is the final product in nitrogen atmosphere whereas the mixture of PbO and Pb 3 O 4 is the final product in oxygen atmosphere. X-ray powder diffraction method is used in identify of these products. Kinetic calculations of all stages are realized by using Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) model free methods. These methods are combined with modeling equations to find the effective model and to calculate thermodynamic parameters. It is found that all reactions show good harmony with the nucleation models although their indexes are different.
{"title":"Effect of atmospheric condition on the thermal decomposition kinetics and thermodynamics of lead acetate trihydrate","authors":"G. K. Çılgı","doi":"10.56042/ijct.v30i4.70915","DOIUrl":"https://doi.org/10.56042/ijct.v30i4.70915","url":null,"abstract":"In this study thermal decomposition routes and kinetics of lead acetate triydrate are compared in inert (nitrogen) and reactive (oxygen) atmospheres by using thermogravimetric method. The decomposition proceeds with five consecutive stages in the both the atmospheres. The first four stages occur similarly in nitrogen and oxygen atmospheres and the same intermediates are formed. However, the last stage, differs according to the furnace atmosphere. The mixture of PbO and small amount metallic Pb is the final product in nitrogen atmosphere whereas the mixture of PbO and Pb 3 O 4 is the final product in oxygen atmosphere. X-ray powder diffraction method is used in identify of these products. Kinetic calculations of all stages are realized by using Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) model free methods. These methods are combined with modeling equations to find the effective model and to calculate thermodynamic parameters. It is found that all reactions show good harmony with the nucleation models although their indexes are different.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70702355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i4.71631
{"title":"In silico analysis of cubebinol for evaluating its efficiency against menacing respiratory ailments","authors":"","doi":"10.56042/ijct.v30i4.71631","DOIUrl":"https://doi.org/10.56042/ijct.v30i4.71631","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70702486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i4.71226
R.Mariappan, S. Dinagaran, P. Srinivasan, S. Vijayakumar
The electrical impedance analysis of the ZnO films has been performed using complex impedance spectroscopy in the frequency range from 100 Hz to 1 MHz with temperature change from 70 to 175 ℃ . Combined impedance and modulus plots have been used to analyse the sample behaviour as a function of frequency at different temperatures. Temperature dependence of ac conductivity indicates that the electrical conduction in the material is a thermally activated process. The frequency dependence of the ac conduction activation energy is found to obey a mathematical formula. It is concluded that the conductivity mechanism in the ZnO sensor is controlled by surface reaction. The operating temperature of the ZnO gas sensor is 175 ℃ . The impedance spectrum also exhibited a decreased semicircle radius as the ammonia concentration is increased from 50 to 500 ppm. In addition, the impedance spectrum also exhibited a decreased semicircle radius with the exposure time increase from 0 to 20 min thereafter slightly increased. Impedance spectroscopy analysis has shown that the resistance variation due to grain boundaries significantly contributed to the gas sensor characteristics.
{"title":"Electrical impedance analysis of ZnO thin films for ammonia gas sensors","authors":"R.Mariappan, S. Dinagaran, P. Srinivasan, S. Vijayakumar","doi":"10.56042/ijct.v30i4.71226","DOIUrl":"https://doi.org/10.56042/ijct.v30i4.71226","url":null,"abstract":"The electrical impedance analysis of the ZnO films has been performed using complex impedance spectroscopy in the frequency range from 100 Hz to 1 MHz with temperature change from 70 to 175 ℃ . Combined impedance and modulus plots have been used to analyse the sample behaviour as a function of frequency at different temperatures. Temperature dependence of ac conductivity indicates that the electrical conduction in the material is a thermally activated process. The frequency dependence of the ac conduction activation energy is found to obey a mathematical formula. It is concluded that the conductivity mechanism in the ZnO sensor is controlled by surface reaction. The operating temperature of the ZnO gas sensor is 175 ℃ . The impedance spectrum also exhibited a decreased semicircle radius as the ammonia concentration is increased from 50 to 500 ppm. In addition, the impedance spectrum also exhibited a decreased semicircle radius with the exposure time increase from 0 to 20 min thereafter slightly increased. Impedance spectroscopy analysis has shown that the resistance variation due to grain boundaries significantly contributed to the gas sensor characteristics.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70702536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i5.5207
The present work investigates the Fenton degradation of commercial Auramine O dye from a model solution through advanced oxidation process (AOP). The effects of initial pH, ferrous ion and H2O2 concentration have been evaluated with respect to the extent of decolourization of the feed solution. A maximum decolourization to the tune of 91.8% is accomplished at a pH of 3.0. The effect of various doses of Fe2+ and H2O2 on the percentage reduction in chemical oxygen demand (COD) is investigated at a constant pH. 84.9% reduction of COD is obtained using a combination of 48 mL/L H2O2 and 6 g/L Fe2+. The gas chromatography-mass spectrometry analysis reveals the presence of toxic non-biodegradable Auramine O dye in the model solution before the Fenton AOP, which is degraded into several compounds including CO2 after 30 min of Fenton AOP. The spectral output from FTIR analysis corroborates the molecular rearrangement during Fenton process with consequent degradation.
{"title":"Enhanced sequestration of commercial Auramine O dye in a Fenton oxidative decolourization process","authors":"","doi":"10.56042/ijct.v30i5.5207","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5207","url":null,"abstract":"The present work investigates the Fenton degradation of commercial Auramine O dye from a model solution through advanced oxidation process (AOP). The effects of initial pH, ferrous ion and H2O2 concentration have been evaluated with respect to the extent of decolourization of the feed solution. A maximum decolourization to the tune of 91.8% is accomplished at a pH of 3.0. The effect of various doses of Fe2+ and H2O2 on the percentage reduction in chemical oxygen demand (COD) is investigated at a constant pH. 84.9% reduction of COD is obtained using a combination of 48 mL/L H2O2 and 6 g/L Fe2+. The gas chromatography-mass spectrometry analysis reveals the presence of toxic non-biodegradable Auramine O dye in the model solution before the Fenton AOP, which is degraded into several compounds including CO2 after 30 min of Fenton AOP. The spectral output from FTIR analysis corroborates the molecular rearrangement during Fenton process with consequent degradation.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135444884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i5.5193
In present scenario, anthropogenic activities have degraded the quality of water bodies to an unbearable level. Discharge of untreated industrial and other effluents have made the water unconsumable. Present work is an attempt to fabricate new stimuli responsive adsorbent based on natural exudate gum sterculia, an indigenous natural gum for uptake of a cationic dye malachite green. Magnetic field responsive terculia gum–graft-poly(n-isopropylacrylamide-co-acrylamide) nanocomposite have been prepared and assessed it as adsorbents for enrichment of malachite green from aqueous solution. The nanocomposite is characterized by FTIR, TG-DTA, VSM and swelling studies. The VSM results have shown is superparamagnetic behaviour of nanocomposite with saturation magnetization of 1.5065 emu/g. The adsorption follows Temkin isotherm and results indicate maximum adsorption capacity of 19.977 (98.78%) malachite green. The desorption studies demonstrates excellent recovery ability of nanocomposite. The adsorption study confirms the prospective applications of polysaccharide based magnetic hydrogel for the fruitful and greener disposal of cationic dyes.
{"title":"Adsorptive removal of malachite green using ferromagnetic sterculia gum – graft- poly(n-isopropylacrylamide-co-acrylamide)/magnetite nanocomposite","authors":"","doi":"10.56042/ijct.v30i5.5193","DOIUrl":"https://doi.org/10.56042/ijct.v30i5.5193","url":null,"abstract":"In present scenario, anthropogenic activities have degraded the quality of water bodies to an unbearable level. Discharge of untreated industrial and other effluents have made the water unconsumable. Present work is an attempt to fabricate new stimuli responsive adsorbent based on natural exudate gum sterculia, an indigenous natural gum for uptake of a cationic dye malachite green. Magnetic field responsive terculia gum–graft-poly(n-isopropylacrylamide-co-acrylamide) nanocomposite have been prepared and assessed it as adsorbents for enrichment of malachite green from aqueous solution. The nanocomposite is characterized by FTIR, TG-DTA, VSM and swelling studies. The VSM results have shown is superparamagnetic behaviour of nanocomposite with saturation magnetization of 1.5065 emu/g. The adsorption follows Temkin isotherm and results indicate maximum adsorption capacity of 19.977 (98.78%) malachite green. The desorption studies demonstrates excellent recovery ability of nanocomposite. The adsorption study confirms the prospective applications of polysaccharide based magnetic hydrogel for the fruitful and greener disposal of cationic dyes.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135446271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}