Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i6.3654
The requirement for petroleum fuel has amplified due to the growth of automobile industries and population growth. To meet fossil fuel demand in the future, alternative fuel for diesel fuel is necessary. The technique for engine modification is also considered as the latest advance in engine research aimed to complete combustion. The engine has been coated with a mixture of a ceramic thermal barrier material of 88% Yttria Stabilized Zirconia (YSZ), 4% Magnesium oxide (MgO), and 8% Titanium oxide (TiO 2 ) of 150 μ m thickness by the plasma spray process. After engine modification, the coated engine has been analyzed with the mixing of Copper oxide (CuO) nanoadditive to the B20 Punnai Methyl Ester. The structural and chemical constituents of the biofuel are determined using Fourier transform infrared spectroscopy and gas chromatography. The test result noted that brake thermal efficiency is increased by 17.14% for the coated engine as compared to the uncoated engine. The brake specific fuel consumption for the tested fuel used in the coated engine is decreased by 11.16%. Engine emission parameters are reduced especially oxides of nitrogen (NO x ) emission of 10.84% for the tested fuel in the coated engine.
{"title":"Effect of CuO nano additive with novel punnai methyl ester in a TBC CI engine","authors":"","doi":"10.56042/ijct.v30i6.3654","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.3654","url":null,"abstract":"The requirement for petroleum fuel has amplified due to the growth of automobile industries and population growth. To meet fossil fuel demand in the future, alternative fuel for diesel fuel is necessary. The technique for engine modification is also considered as the latest advance in engine research aimed to complete combustion. The engine has been coated with a mixture of a ceramic thermal barrier material of 88% Yttria Stabilized Zirconia (YSZ), 4% Magnesium oxide (MgO), and 8% Titanium oxide (TiO 2 ) of 150 μ m thickness by the plasma spray process. After engine modification, the coated engine has been analyzed with the mixing of Copper oxide (CuO) nanoadditive to the B20 Punnai Methyl Ester. The structural and chemical constituents of the biofuel are determined using Fourier transform infrared spectroscopy and gas chromatography. The test result noted that brake thermal efficiency is increased by 17.14% for the coated engine as compared to the uncoated engine. The brake specific fuel consumption for the tested fuel used in the coated engine is decreased by 11.16%. Engine emission parameters are reduced especially oxides of nitrogen (NO x ) emission of 10.84% for the tested fuel in the coated engine.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i6.6548
{"title":"Catalytic activities of green synthesized silver, gold and bimetallic (Ag-Au) nanoparticles","authors":"","doi":"10.56042/ijct.v30i6.6548","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.6548","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i1.64785
{"title":"Green carbon dots from poppy seeds with conjugated hydrogel hybrid films for detection of Fe3+","authors":"","doi":"10.56042/ijct.v30i1.64785","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.64785","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i1.65960
{"title":"Methyl orange adsorption by modified montmorillonite nanomaterials: Characterization, kinetic, isotherms and thermodynamic studies","authors":"","doi":"10.56042/ijct.v30i1.65960","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.65960","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i6.1325
Natural polymer-based hydrogels are of great interest to research community owing to their inherent characters of environment friendliness and biodegradability. Current work aims to synthesize lignosulfonate grafted sodium acrylate hydrogel (LS-g-SAH) and investigate its application in urea release behaviour. The hydrogel has been characterized by different techniques. The release kinetics has been analyzed by using a UV-visible spectrophotometer. The optimized composition of lignosulfonate, KPS, and N,N’-MBA has shown the highest water absorbency of 560 g g-1 in distilled water. The equilibrium swollen LS-g-SAH 12 hydrogel has slowly released 60% of loaded urea in 24 h and followed first-order release kinetics. Soil treatment with hydrogel has shown a significant effect in reducing the water evaporation rate. It also improved the seed germination and average height of wheatgrass. The synthesized LS-g-SAH is, thus, expected to have potential application in modern sustainable agriculture.
天然聚合物基水凝胶因其固有的环境友好性和生物可降解性而受到研究界的广泛关注。本文旨在合成木质素磺酸接枝丙烯酸钠水凝胶(LS-g-SAH)并研究其在尿素释放中的应用。用不同的技术对水凝胶进行了表征。用紫外可见分光光度计对其释放动力学进行了分析。优化后的木质素磺酸盐、KPS和N,N ' -MBA在蒸馏水中的吸水性最高,为560 g g-1。平衡膨胀的LS-g-SAH 12水凝胶在24 h内缓慢释放60%的负载尿素,并遵循一级释放动力学。水凝胶处理在降低水分蒸发速率方面有显著效果。对小麦草的种子发芽率和平均株高也有促进作用。因此,合成的LS-g-SAH在现代可持续农业中具有潜在的应用前景。
{"title":"Synthesis, characterization and application of Lignosulphonate-g- poly(sodium acrylate) hydrogel","authors":"","doi":"10.56042/ijct.v30i6.1325","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.1325","url":null,"abstract":"Natural polymer-based hydrogels are of great interest to research community owing to their inherent characters of environment friendliness and biodegradability. Current work aims to synthesize lignosulfonate grafted sodium acrylate hydrogel (LS-g-SAH) and investigate its application in urea release behaviour. The hydrogel has been characterized by different techniques. The release kinetics has been analyzed by using a UV-visible spectrophotometer. The optimized composition of lignosulfonate, KPS, and N,N’-MBA has shown the highest water absorbency of 560 g g-1 in distilled water. The equilibrium swollen LS-g-SAH 12 hydrogel has slowly released 60% of loaded urea in 24 h and followed first-order release kinetics. Soil treatment with hydrogel has shown a significant effect in reducing the water evaporation rate. It also improved the seed germination and average height of wheatgrass. The synthesized LS-g-SAH is, thus, expected to have potential application in modern sustainable agriculture.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135659490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i6.6546
In this study, the adsorptive removal of methylene blue (MB) from aqueous solutions onto nickel oxide (NiO) modified montmorillonite (NiO-Mt) has been studied and compared with that of commercial bentonite. The influences of various experimental factors such as contact time, adsorbent dosage, pH of solution, initial dye concentration and temperature have been investigated. Batch adsorption studies has manifested that the maximum adsorption capacity of MB is around 99.9 mg/g in 10 min with 25 mg adsorbent mass at an initial concentration of 100 mg/L at ambient temperature of 25°C and natural pH of solution (pH = 5.8 for NiO-Mt and pH = 6.3 for commercial bentonite). The adsorption kinetics and isotherms are well fitted by pseudo-second order and Langmuir models, respectively. The thermodynamic parameters such as the changes in Gibbs free energy, enthalpy, and entropy are determined. The MB adsorption is physical, spontaneous and exothermic for both adsorbents.
{"title":"Removal of methylene blue dye from aqueous media by adsorption using nickel oxide modified montmorillonite composite","authors":"","doi":"10.56042/ijct.v30i6.6546","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.6546","url":null,"abstract":"In this study, the adsorptive removal of methylene blue (MB) from aqueous solutions onto nickel oxide (NiO) modified montmorillonite (NiO-Mt) has been studied and compared with that of commercial bentonite. The influences of various experimental factors such as contact time, adsorbent dosage, pH of solution, initial dye concentration and temperature have been investigated. Batch adsorption studies has manifested that the maximum adsorption capacity of MB is around 99.9 mg/g in 10 min with 25 mg adsorbent mass at an initial concentration of 100 mg/L at ambient temperature of 25°C and natural pH of solution (pH = 5.8 for NiO-Mt and pH = 6.3 for commercial bentonite). The adsorption kinetics and isotherms are well fitted by pseudo-second order and Langmuir models, respectively. The thermodynamic parameters such as the changes in Gibbs free energy, enthalpy, and entropy are determined. The MB adsorption is physical, spontaneous and exothermic for both adsorbents.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
An investigation has been carried out on heat and mass transport phenomena for mixed-convection flow over a vertically non-Darcy Forchheimer porous stretching/shrinking sheet considering the Soret - Dufour effects. With consideration of the appropriate similarity framework, the fundamental governing flow equations are converted into a system of non-dimensional equations. The bvp4c, a built-in solver of MATLAB software, is utilized to compute the numerical results of the flow problem. The present model is validated with previously published literature. The impacts of several related flow parameters on velocity, temperature, and concentration profiles have been displayed graphically. Also, the mass and heat transfer rates along with the coefficients of skin friction are calculated and discussed numerically. It is found that an increment in the thermal radiation parameter increases the fluid temperature, and the concentration gradient boosts up for the enhancement of the Soret number.
{"title":"Mixed convection flow over non-Darcy porous stretching/shrinking sheet","authors":"","doi":"10.56042/ijct.v30i6.487","DOIUrl":"https://doi.org/10.56042/ijct.v30i6.487","url":null,"abstract":"An investigation has been carried out on heat and mass transport phenomena for mixed-convection flow over a vertically non-Darcy Forchheimer porous stretching/shrinking sheet considering the Soret - Dufour effects. With consideration of the appropriate similarity framework, the fundamental governing flow equations are converted into a system of non-dimensional equations. The bvp4c, a built-in solver of MATLAB software, is utilized to compute the numerical results of the flow problem. The present model is validated with previously published literature. The impacts of several related flow parameters on velocity, temperature, and concentration profiles have been displayed graphically. Also, the mass and heat transfer rates along with the coefficients of skin friction are calculated and discussed numerically. It is found that an increment in the thermal radiation parameter increases the fluid temperature, and the concentration gradient boosts up for the enhancement of the Soret number.","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i1.61853
{"title":"Characterisation and microbial activity of neem oil nano-emulsions formulated by phase inversion temperature method","authors":"","doi":"10.56042/ijct.v30i1.61853","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.61853","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i1.63358
{"title":"Efficient coal concentration using a short-chain amine-type compound as collector reagent: Flotation and optimization studies","authors":"","doi":"10.56042/ijct.v30i1.63358","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.63358","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.56042/ijct.v30i1.63539
{"title":"Experimental investigation of new compound adsorption on carbon steel in 1M HCl","authors":"","doi":"10.56042/ijct.v30i1.63539","DOIUrl":"https://doi.org/10.56042/ijct.v30i1.63539","url":null,"abstract":"","PeriodicalId":13388,"journal":{"name":"Indian Journal of Chemical Technology","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70701530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}