首页 > 最新文献

IEEE Transactions on Medical Imaging最新文献

英文 中文
Translation Consistent Semi-supervised Segmentation for 3D Medical Images 三维医学图像的翻译一致性半监督分割
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-26 DOI: 10.1109/tmi.2024.3468896
Yuyuan Liu, Yu Tian, Chong Wang, Yuanhong Chen, Fengbei Liu, Vasileios Belagiannis, Gustavo Carneiro
{"title":"Translation Consistent Semi-supervised Segmentation for 3D Medical Images","authors":"Yuyuan Liu, Yu Tian, Chong Wang, Yuanhong Chen, Fengbei Liu, Vasileios Belagiannis, Gustavo Carneiro","doi":"10.1109/tmi.2024.3468896","DOIUrl":"https://doi.org/10.1109/tmi.2024.3468896","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142325309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Source Imaging Method based on Spatial Smoothing and Edge Sparsity (SISSES) and Its Application to OPM-MEG 基于空间平滑和边缘稀疏性(SISSES)的源成像方法及其在 OPM-MEG 中的应用
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-25 DOI: 10.1109/tmi.2024.3467377
Wen Li, Nan An, Fuzhi Cao, Wenli Wang, Chunhui Wang, Weinan Xu, Yang Gao, Xiaolin Ning
{"title":"Source Imaging Method based on Spatial Smoothing and Edge Sparsity (SISSES) and Its Application to OPM-MEG","authors":"Wen Li, Nan An, Fuzhi Cao, Wenli Wang, Chunhui Wang, Weinan Xu, Yang Gao, Xiaolin Ning","doi":"10.1109/tmi.2024.3467377","DOIUrl":"https://doi.org/10.1109/tmi.2024.3467377","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Explainable Unified Framework of Spatio-Temporal Coupling Learning with Application to Dynamic Brain Functional Connectivity Analysis 可解释的时空耦合学习统一框架在动态脑功能连接分析中的应用
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-25 DOI: 10.1109/tmi.2024.3467384
Bin Gao, Aiju Yu, Chen Qiao, Vince D. Calhoun, Julia M. Stephen, Tony W. Wilson, Yu-Ping Wang
{"title":"An Explainable Unified Framework of Spatio-Temporal Coupling Learning with Application to Dynamic Brain Functional Connectivity Analysis","authors":"Bin Gao, Aiju Yu, Chen Qiao, Vince D. Calhoun, Julia M. Stephen, Tony W. Wilson, Yu-Ping Wang","doi":"10.1109/tmi.2024.3467384","DOIUrl":"https://doi.org/10.1109/tmi.2024.3467384","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UTSRMorph: A Unified Transformer and Superresolution Network for Unsupervised Medical Image Registration UTSRMorph:用于无监督医学图像配准的统一变换器和超分辨率网络
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-25 DOI: 10.1109/tmi.2024.3467919
Runshi Zhang, Hao Mo, Junchen Wang, Bimeng Jie, Yang He, Nenghao Jin, Liang Zhu
{"title":"UTSRMorph: A Unified Transformer and Superresolution Network for Unsupervised Medical Image Registration","authors":"Runshi Zhang, Hao Mo, Junchen Wang, Bimeng Jie, Yang He, Nenghao Jin, Liang Zhu","doi":"10.1109/tmi.2024.3467919","DOIUrl":"https://doi.org/10.1109/tmi.2024.3467919","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Multimodal Low-rank Embedding based Feature Selection Model for Multimodal Alzheimer's Disease Diagnosis. 基于低等级嵌入的增强型多模态特征选择模型用于多模态阿尔茨海默病诊断
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-20 DOI: 10.1109/tmi.2024.3464861
Zhi Chen,Yongguo Liu,Yun Zhang,Jiajing Zhu,Qiaoqin Li,Xindong Wu
Identification of Alzheimer's disease (AD) with multimodal neuroimaging data has been receiving increasing attention. However, the presence of numerous redundant features and corrupted neuroimages within multimodal datasets poses significant challenges for existing methods. In this paper, we propose a feature selection method named Enhanced Multimodal Low-rank Embedding (EMLE) for multimodal AD diagnosis. Unlike previous methods utilizing convex relaxations of the ℓ2,0-norm, EMLE exploits an ℓ2,γ-norm regularized projection matrix to obtain an embedding representation and select informative features jointly for each modality. The ℓ2,γ-norm, employing an upper-bounded nonconvex Minimax Concave Penalty (MCP) function to characterize sparsity, offers a superior approximation for the ℓ2,0-norm compared to other convex relaxations. Next, a similarity graph is learned based on the self-expressiveness property to increase the robustness to corrupted data. As the approximation coefficient vectors of samples from the same class should be highly correlated, an MCP function introduced norm, i.e., matrix γ-norm, is applied to constrain the rank of the graph. Furthermore, recognizing that diverse modalities should share an underlying structure related to AD, we establish a consensus graph for all modalities to unveil intrinsic structures across multiple modalities. Finally, we fuse the embedding representations of all modalities into the label space to incorporate supervisory information. The results of extensive experiments on the Alzheimer's Disease Neuroimaging Initiative datasets verify the discriminability of the features selected by EMLE.
利用多模态神经成像数据识别阿尔茨海默病(AD)已受到越来越多的关注。然而,多模态数据集中存在大量冗余特征和损坏的神经图像,这给现有方法带来了巨大挑战。在本文中,我们提出了一种名为增强多模态低秩嵌入(EMLE)的特征选择方法,用于多模态 AD 诊断。与以往利用ℓ2,0-norm 的凸松弛的方法不同,EMLE 利用ℓ2,γ-norm 正则化投影矩阵获得嵌入表示,并为每种模态联合选择信息特征。ℓ2,γ-norm采用上界非凸最小凹惩罚(MCP)函数来表征稀疏性,与其他凸松弛相比,ℓ2,0-norm提供了更优越的近似值。接下来,根据自表达特性学习相似性图,以提高对损坏数据的鲁棒性。由于同一类样本的近似系数向量应高度相关,因此采用了 MCP 函数引入的规范,即矩阵 γ 规范,来约束图的秩。此外,考虑到不同模态应共享与注意力缺失有关的潜在结构,我们为所有模态建立了一个共识图,以揭示跨多种模态的内在结构。最后,我们将所有模态的嵌入表征融合到标签空间中,以纳入监督信息。在阿尔茨海默病神经成像计划数据集上进行的大量实验结果验证了 EMLE 所选特征的可辨别性。
{"title":"Enhanced Multimodal Low-rank Embedding based Feature Selection Model for Multimodal Alzheimer's Disease Diagnosis.","authors":"Zhi Chen,Yongguo Liu,Yun Zhang,Jiajing Zhu,Qiaoqin Li,Xindong Wu","doi":"10.1109/tmi.2024.3464861","DOIUrl":"https://doi.org/10.1109/tmi.2024.3464861","url":null,"abstract":"Identification of Alzheimer's disease (AD) with multimodal neuroimaging data has been receiving increasing attention. However, the presence of numerous redundant features and corrupted neuroimages within multimodal datasets poses significant challenges for existing methods. In this paper, we propose a feature selection method named Enhanced Multimodal Low-rank Embedding (EMLE) for multimodal AD diagnosis. Unlike previous methods utilizing convex relaxations of the ℓ2,0-norm, EMLE exploits an ℓ2,γ-norm regularized projection matrix to obtain an embedding representation and select informative features jointly for each modality. The ℓ2,γ-norm, employing an upper-bounded nonconvex Minimax Concave Penalty (MCP) function to characterize sparsity, offers a superior approximation for the ℓ2,0-norm compared to other convex relaxations. Next, a similarity graph is learned based on the self-expressiveness property to increase the robustness to corrupted data. As the approximation coefficient vectors of samples from the same class should be highly correlated, an MCP function introduced norm, i.e., matrix γ-norm, is applied to constrain the rank of the graph. Furthermore, recognizing that diverse modalities should share an underlying structure related to AD, we establish a consensus graph for all modalities to unveil intrinsic structures across multiple modalities. Finally, we fuse the embedding representations of all modalities into the label space to incorporate supervisory information. The results of extensive experiments on the Alzheimer's Disease Neuroimaging Initiative datasets verify the discriminability of the features selected by EMLE.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IPNet: An Interpretable Network with Progressive Loss for Whole-stage Colorectal Disease Diagnosis. IPNet:用于全阶段结直肠疾病诊断的渐进损失可解释网络
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-19 DOI: 10.1109/tmi.2024.3459910
Junhu Fu,Ke Chen,Qi Dou,Yun Gao,Yiping He,Pinghong Zhou,Shengli Lin,Yuanyuan Wang,Yi Guo
Colorectal cancer plays a dominant role in cancer-related deaths, primarily due to the absence of obvious early-stage symptoms. Whole-stage colorectal disease diagnosis is crucial for assessing lesion evolution and determining treatment plans. However, locality difference and disease progression lead to intra-class disparities and inter-class similarities for colorectal lesion representation. In addition, interpretable algorithms explaining the lesion progression are still lacking, making the prediction process a "black box". In this paper, we propose IPNet, a dual-branch interpretable network with progressive loss for whole-stage colorectal disease diagnosis. The dual-branch architecture captures unbiased features representing diverse localities to suppress intra-class variation. The progressive loss function considers inter-class relationship, using prior knowledge of disease evolution to guide classification. Furthermore, a novel Grain-CAM is designed to interpret IPNet by visualizing pixel-wise attention maps from shallow to deep layers, providing regions semantically related to IPNet's progressive classification. We conducted whole-stage diagnosis on two image modalities, i.e., colorectal lesion classification on 129,893 endoscopic optical images and rectal tumor T-staging on 11,072 endoscopic ultrasound images. IPNet is shown to surpass other state-of-the-art algorithms, accordingly achieving an accuracy of 93.15% and 89.62%. Especially, it establishes effective decision boundaries for challenges like polyp vs. adenoma and T2 vs. T3. The results demonstrate an explainable attempt for colorectal lesion classification at a whole-stage level, and rectal tumor T-staging by endoscopic ultrasound is also unprecedentedly explored. IPNet is expected to be further applied, assisting physicians in whole-stage disease diagnosis and enhancing diagnostic interpretability.
结直肠癌在癌症相关死亡中占主导地位,这主要是由于结直肠癌没有明显的早期症状。全阶段结直肠疾病诊断对于评估病变演变和确定治疗方案至关重要。然而,地域差异和疾病进展导致结直肠病变表征的类内差异和类间相似性。此外,解释病变进展的可解释算法仍然缺乏,这使得预测过程成为一个 "黑箱"。在本文中,我们提出了用于全阶段结直肠疾病诊断的具有渐进损失的双分支可解释网络 IPNet。双分支架构捕捉代表不同局部的无偏特征,以抑制类内变异。渐进损失函数考虑了类间关系,利用疾病演变的先验知识来指导分类。此外,我们还设计了一种新颖的 Grain-CAM,通过可视化从浅层到深层的像素注意力图来解释 IPNet,提供与 IPNet 渐进式分类语义相关的区域。我们对两种图像模式进行了全阶段诊断,即对 129893 张内窥镜光学图像进行结直肠病变分类,以及对 11072 张内窥镜超声图像进行直肠肿瘤 T 分期。结果表明,IPNet 超越了其他最先进的算法,准确率分别达到 93.15% 和 89.62%。特别是,它为息肉与腺瘤、T2 与 T3 等挑战建立了有效的决策边界。研究结果表明,IPNet 尝试在整个阶段对结直肠病变进行分类,并通过内窥镜超声对直肠肿瘤进行 T 型分期进行了前所未有的探索。预计 IPNet 将得到进一步应用,协助医生进行全阶段疾病诊断,并提高诊断的可解释性。
{"title":"IPNet: An Interpretable Network with Progressive Loss for Whole-stage Colorectal Disease Diagnosis.","authors":"Junhu Fu,Ke Chen,Qi Dou,Yun Gao,Yiping He,Pinghong Zhou,Shengli Lin,Yuanyuan Wang,Yi Guo","doi":"10.1109/tmi.2024.3459910","DOIUrl":"https://doi.org/10.1109/tmi.2024.3459910","url":null,"abstract":"Colorectal cancer plays a dominant role in cancer-related deaths, primarily due to the absence of obvious early-stage symptoms. Whole-stage colorectal disease diagnosis is crucial for assessing lesion evolution and determining treatment plans. However, locality difference and disease progression lead to intra-class disparities and inter-class similarities for colorectal lesion representation. In addition, interpretable algorithms explaining the lesion progression are still lacking, making the prediction process a \"black box\". In this paper, we propose IPNet, a dual-branch interpretable network with progressive loss for whole-stage colorectal disease diagnosis. The dual-branch architecture captures unbiased features representing diverse localities to suppress intra-class variation. The progressive loss function considers inter-class relationship, using prior knowledge of disease evolution to guide classification. Furthermore, a novel Grain-CAM is designed to interpret IPNet by visualizing pixel-wise attention maps from shallow to deep layers, providing regions semantically related to IPNet's progressive classification. We conducted whole-stage diagnosis on two image modalities, i.e., colorectal lesion classification on 129,893 endoscopic optical images and rectal tumor T-staging on 11,072 endoscopic ultrasound images. IPNet is shown to surpass other state-of-the-art algorithms, accordingly achieving an accuracy of 93.15% and 89.62%. Especially, it establishes effective decision boundaries for challenges like polyp vs. adenoma and T2 vs. T3. The results demonstrate an explainable attempt for colorectal lesion classification at a whole-stage level, and rectal tumor T-staging by endoscopic ultrasound is also unprecedentedly explored. IPNet is expected to be further applied, assisting physicians in whole-stage disease diagnosis and enhancing diagnostic interpretability.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Source Extent Estimation in OPM-MEG: A Two-Stage Champagne Approach OPM-MEG 中的源范围估算:两阶段香槟法
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-17 DOI: 10.1109/tmi.2024.3462415
Wen Li, Fuzhi Cao, Nan An, Wenli Wang, Chunhui Wang, Weinan Xu, Yang Gao, Xiaolin Ning
{"title":"Source Extent Estimation in OPM-MEG: A Two-Stage Champagne Approach","authors":"Wen Li, Fuzhi Cao, Nan An, Wenli Wang, Chunhui Wang, Weinan Xu, Yang Gao, Xiaolin Ning","doi":"10.1109/tmi.2024.3462415","DOIUrl":"https://doi.org/10.1109/tmi.2024.3462415","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subjective and Objective Quality Assessment of Colonoscopy Videos 结肠镜检查视频的主观和客观质量评估
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-16 DOI: 10.1109/tmi.2024.3461737
Guanghui Yue, Lixin Zhang, Jingfeng Du, Tianwei Zhou, Wei Zhou, Weisi Lin
{"title":"Subjective and Objective Quality Assessment of Colonoscopy Videos","authors":"Guanghui Yue, Lixin Zhang, Jingfeng Du, Tianwei Zhou, Wei Zhou, Weisi Lin","doi":"10.1109/tmi.2024.3461737","DOIUrl":"https://doi.org/10.1109/tmi.2024.3461737","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multi-Perspective Self-Supervised Generative Adversarial Network for FS to FFPE Stain Transfer 用于 FS 到 FFPE 染色转移的多视角自监督生成对抗网络
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-16 DOI: 10.1109/tmi.2024.3460795
Yiyang Lin, Yifeng Wang, Zijie Fang, Zexin Li, Xianchao Guan, Danling Jiang, Yongbing Zhang
{"title":"A Multi-Perspective Self-Supervised Generative Adversarial Network for FS to FFPE Stain Transfer","authors":"Yiyang Lin, Yifeng Wang, Zijie Fang, Zexin Li, Xianchao Guan, Danling Jiang, Yongbing Zhang","doi":"10.1109/tmi.2024.3460795","DOIUrl":"https://doi.org/10.1109/tmi.2024.3460795","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
M2DC: A Meta-Learning Framework for Generalizable Diagnostic Classification of Major Depressive Disorder M2DC:重度抑郁障碍通用诊断分类的元学习框架
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-09-16 DOI: 10.1109/tmi.2024.3461312
Jianpo Su, Bo Wang, Zhipeng Fan, Yifan Zhang, Ling-Li Zeng, Hui Shen, Dewen Hu
{"title":"M2DC: A Meta-Learning Framework for Generalizable Diagnostic Classification of Major Depressive Disorder","authors":"Jianpo Su, Bo Wang, Zhipeng Fan, Yifan Zhang, Ling-Li Zeng, Hui Shen, Dewen Hu","doi":"10.1109/tmi.2024.3461312","DOIUrl":"https://doi.org/10.1109/tmi.2024.3461312","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Medical Imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1