Pub Date : 2024-06-27DOI: 10.1109/tmi.2024.3419780
Chengkang Shen, Hao Zhu, You Zhou, Yu Liu, Si Yi, Lili Dong, Weipeng Zhao, David J. Brady, Xun Cao, Zhan Ma, Yi Lin
{"title":"Continuous 3D Myocardial Motion Tracking via Echocardiography","authors":"Chengkang Shen, Hao Zhu, You Zhou, Yu Liu, Si Yi, Lili Dong, Weipeng Zhao, David J. Brady, Xun Cao, Zhan Ma, Yi Lin","doi":"10.1109/tmi.2024.3419780","DOIUrl":"https://doi.org/10.1109/tmi.2024.3419780","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141462351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at 5× and 6× accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.
并行成像是加速磁共振成像(MRI)数据采集的常用技术。从数学上讲,并行磁共振成像重建可表述为一个将稀疏采样的 k 空间测量值与所需磁共振成像图像相关联的逆问题。尽管许多现有的重建算法都取得了成功,但要从高度缩小的 k 空间测量数据中可靠地重建出高质量的图像,仍然是一项挑战。最近,隐式神经表征作为一种强大的范例出现了,它能利用部分获取数据的内部信息和物理特性生成所需的对象。在这项研究中,我们引入了 IMJENSE,这是一种基于特定扫描的隐式神经表征方法,用于改进并行 MRI 重建。具体来说,基础 MRI 图像和线圈灵敏度被建模为空间坐标的连续函数,分别由神经网络和多项式参数化。神经网络中的权重和多项式中的系数同时直接从稀疏获取的 k 空间测量数据中学习,而不需要完全采样的地面实况数据进行训练。得益于强大的连续表示法以及对磁共振成像和线圈灵敏度的联合估计,IMJENSE 优于传统的图像或 k 空间域重建算法。在校准数据极其有限的情况下,IMJENSE 比无监督校准和基于校准的深度学习方法更加稳定。结果表明,在二维笛卡尔采集中,IMJENSE 仅用 4 或 8 条校准线就能稳健地重建以 5 倍和 6 倍加速度采集的图像,这相当于 22.0% 和 19.5% 的欠采样率。高质量的结果和扫描特异性使所提出的方法有望进一步加速并行磁共振成像的数据采集。
{"title":"IMJENSE: Scan-specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI","authors":"Rui-jun Feng, Qing Wu, Jie Feng, Huajun She, Chunlei Liu, Yuyao Zhang, Hongjiang Wei","doi":"10.48550/arXiv.2311.12892","DOIUrl":"https://doi.org/10.48550/arXiv.2311.12892","url":null,"abstract":"Parallel imaging is a commonly used technique to accelerate magnetic resonance imaging (MRI) data acquisition. Mathematically, parallel MRI reconstruction can be formulated as an inverse problem relating the sparsely sampled k-space measurements to the desired MRI image. Despite the success of many existing reconstruction algorithms, it remains a challenge to reliably reconstruct a high-quality image from highly reduced k-space measurements. Recently, implicit neural representation has emerged as a powerful paradigm to exploit the internal information and the physics of partially acquired data to generate the desired object. In this study, we introduced IMJENSE, a scan-specific implicit neural representation-based method for improving parallel MRI reconstruction. Specifically, the underlying MRI image and coil sensitivities were modeled as continuous functions of spatial coordinates, parameterized by neural networks and polynomials, respectively. The weights in the networks and coefficients in the polynomials were simultaneously learned directly from sparsely acquired k-space measurements, without fully sampled ground truth data for training. Benefiting from the powerful continuous representation and joint estimation of the MRI image and coil sensitivities, IMJENSE outperforms conventional image or k-space domain reconstruction algorithms. With extremely limited calibration data, IMJENSE is more stable than supervised calibrationless and calibration-based deep-learning methods. Results show that IMJENSE robustly reconstructs the images acquired at 5× and 6× accelerations with only 4 or 8 calibration lines in 2D Cartesian acquisitions, corresponding to 22.0% and 19.5% undersampling rates. The high-quality results and scanning specificity make the proposed method hold the potential for further accelerating the data acquisition of parallel MRI.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139254245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To understand the biological characteristics of neurological disorders with functional connectivity (FC), recent studies have widely utilized deep learning-based models to identify the disease and conducted post-hoc analyses via explainable models to discover disease-related biomarkers. Most existing frameworks consist of three stages, namely, feature selection, feature extraction for classification, and analysis, where each stage is implemented separately. However, if the results at each stage lack reliability, it can cause misdiagnosis and incorrect analysis in afterward stages. In this study, we propose a novel unified framework that systemically integrates diagnoses (i.e., feature selection and feature extraction) and explanations. Notably, we devised an adaptive attention network as a feature selection approach to identify individual-specific disease-related connections. We also propose a functional network relational encoder that summarizes the global topological properties of FC by learning the inter-network relations without pre-defined edges between functional networks. Last but not least, our framework provides a novel explanatory power for neuroscientific interpretation, also termed counter-condition analysis. We simulated the FC that reverses the diagnostic information (i.e., counter-condition FC): converting a normal brain to be abnormal and vice versa. We validated the effectiveness of our framework by using two large resting-state functional magnetic resonance imaging (fMRI) datasets, Autism Brain Imaging Data Exchange (ABIDE) and REST-meta-MDD, and demonstrated that our framework outperforms other competing methods for disease identification. Furthermore, we analyzed the disease-related neurological patterns based on counter-condition analysis.
{"title":"A Learnable Counter-condition Analysis Framework for Functional Connectivity-based Neurological Disorder Diagnosis","authors":"Eunsong Kang, Da-Woon Heo, Jiwon Lee, Heung-Il Suk","doi":"10.48550/arXiv.2310.03964","DOIUrl":"https://doi.org/10.48550/arXiv.2310.03964","url":null,"abstract":"To understand the biological characteristics of neurological disorders with functional connectivity (FC), recent studies have widely utilized deep learning-based models to identify the disease and conducted post-hoc analyses via explainable models to discover disease-related biomarkers. Most existing frameworks consist of three stages, namely, feature selection, feature extraction for classification, and analysis, where each stage is implemented separately. However, if the results at each stage lack reliability, it can cause misdiagnosis and incorrect analysis in afterward stages. In this study, we propose a novel unified framework that systemically integrates diagnoses (i.e., feature selection and feature extraction) and explanations. Notably, we devised an adaptive attention network as a feature selection approach to identify individual-specific disease-related connections. We also propose a functional network relational encoder that summarizes the global topological properties of FC by learning the inter-network relations without pre-defined edges between functional networks. Last but not least, our framework provides a novel explanatory power for neuroscientific interpretation, also termed counter-condition analysis. We simulated the FC that reverses the diagnostic information (i.e., counter-condition FC): converting a normal brain to be abnormal and vice versa. We validated the effectiveness of our framework by using two large resting-state functional magnetic resonance imaging (fMRI) datasets, Autism Brain Imaging Data Exchange (ABIDE) and REST-meta-MDD, and demonstrated that our framework outperforms other competing methods for disease identification. Furthermore, we analyzed the disease-related neurological patterns based on counter-condition analysis.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139322196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-25DOI: 10.48550/arXiv.2306.14129
Jingxiong Li, S. Zheng, Zhongyi Shui, Shichuan Zhang, Linyi Yang, Yuxuan Sun, Yunlong Zhang, Honglin Li, Y. Ye, P. V. Ooijen, Kang Li, Lin Yang
Karyotyping is of importance for detecting chromosomal aberrations in human disease. However, chromosomes easily appear curved in microscopic images, which prevents cytogeneticists from analyzing chromosome types. To address this issue, we propose a framework for chromosome straightening, which comprises a preliminary processing algorithm and a generative model called masked conditional variational autoencoders (MC-VAE). The processing method utilizes patch rearrangement to address the difficulty in erasing low degrees of curvature, providing reasonable preliminary results for the MC-VAE. The MC-VAE further straightens the results by leveraging chromosome patches conditioned on their curvatures to learn the mapping between banding patterns and conditions. During model training, we apply a masking strategy with a high masking ratio to train the MC-VAE with eliminated redundancy. This yields a non-trivial reconstruction task, allowing the model to effectively preserve chromosome banding patterns and structure details in the reconstructed results. Extensive experiments on three public datasets with two stain styles show that our framework surpasses the performance of state-of-the-art methods in retaining banding patterns and structure details. Compared to using real-world bent chromosomes, the use of high-quality straightened chromosomes generated by our proposed method can improve the performance of various deep learning models for chromosome classification by a large margin. Such a straightening approach has the potential to be combined with other karyotyping systems to assist cytogeneticists in chromosome analysis.
{"title":"Masked conditional variational autoencoders for chromosome straightening","authors":"Jingxiong Li, S. Zheng, Zhongyi Shui, Shichuan Zhang, Linyi Yang, Yuxuan Sun, Yunlong Zhang, Honglin Li, Y. Ye, P. V. Ooijen, Kang Li, Lin Yang","doi":"10.48550/arXiv.2306.14129","DOIUrl":"https://doi.org/10.48550/arXiv.2306.14129","url":null,"abstract":"Karyotyping is of importance for detecting chromosomal aberrations in human disease. However, chromosomes easily appear curved in microscopic images, which prevents cytogeneticists from analyzing chromosome types. To address this issue, we propose a framework for chromosome straightening, which comprises a preliminary processing algorithm and a generative model called masked conditional variational autoencoders (MC-VAE). The processing method utilizes patch rearrangement to address the difficulty in erasing low degrees of curvature, providing reasonable preliminary results for the MC-VAE. The MC-VAE further straightens the results by leveraging chromosome patches conditioned on their curvatures to learn the mapping between banding patterns and conditions. During model training, we apply a masking strategy with a high masking ratio to train the MC-VAE with eliminated redundancy. This yields a non-trivial reconstruction task, allowing the model to effectively preserve chromosome banding patterns and structure details in the reconstructed results. Extensive experiments on three public datasets with two stain styles show that our framework surpasses the performance of state-of-the-art methods in retaining banding patterns and structure details. Compared to using real-world bent chromosomes, the use of high-quality straightened chromosomes generated by our proposed method can improve the performance of various deep learning models for chromosome classification by a large margin. Such a straightening approach has the potential to be combined with other karyotyping systems to assist cytogeneticists in chromosome analysis.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47136654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-23DOI: 10.48550/arXiv.2305.14301
Fangda Li, Zhiqiang Hu, Wen Chen, A. Kak
Hematoxylin and Eosin (H&E) staining is a widely used sample preparation procedure for enhancing the saturation of tissue sections and the contrast between nuclei and cytoplasm in histology images for medical diagnostics. However, various factors, such as the differences in the reagents used, result in high variability in the colors of the stains actually recorded. This variability poses a challenge in achieving generalization for machine-learning based computer-aided diagnostic tools. To desensitize the learned models to stain variations, we propose the Generative Stain Augmentation Network (G-SAN) - a GAN-based framework that augments a collection of cell images with simulated yet realistic stain variations. At its core, G-SAN uses a novel and highly computationally efficient Laplacian Pyramid (LP) based generator architecture, that is capable of disentangling stain from cell morphology. Through the task of patch classification and nucleus segmentation, we show that using G-SAN-augmented training data provides on average 15.7% improvement in F1 score and 7.3% improvement in panoptic quality, respectively. Our code is available at https://github.com/lifangda01/GSAN-Demo.
{"title":"A Laplacian Pyramid Based Generative H&E Stain Augmentation Network","authors":"Fangda Li, Zhiqiang Hu, Wen Chen, A. Kak","doi":"10.48550/arXiv.2305.14301","DOIUrl":"https://doi.org/10.48550/arXiv.2305.14301","url":null,"abstract":"Hematoxylin and Eosin (H&E) staining is a widely used sample preparation procedure for enhancing the saturation of tissue sections and the contrast between nuclei and cytoplasm in histology images for medical diagnostics. However, various factors, such as the differences in the reagents used, result in high variability in the colors of the stains actually recorded. This variability poses a challenge in achieving generalization for machine-learning based computer-aided diagnostic tools. To desensitize the learned models to stain variations, we propose the Generative Stain Augmentation Network (G-SAN) - a GAN-based framework that augments a collection of cell images with simulated yet realistic stain variations. At its core, G-SAN uses a novel and highly computationally efficient Laplacian Pyramid (LP) based generator architecture, that is capable of disentangling stain from cell morphology. Through the task of patch classification and nucleus segmentation, we show that using G-SAN-augmented training data provides on average 15.7% improvement in F1 score and 7.3% improvement in panoptic quality, respectively. Our code is available at https://github.com/lifangda01/GSAN-Demo.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46662981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-11DOI: 10.48550/arXiv.2305.06739
Veronika Spieker, H. Eichhorn, K. Hammernik, D. Rueckert, C. Preibisch, D. Karampinos, J. Schnabel
Motion represents one of the major challenges in magnetic resonance imaging (MRI). Since the MR signal is acquired in frequency space, any motion of the imaged object leads to complex artefacts in the reconstructed image in addition to other MR imaging artefacts. Deep learning has been frequently proposed for motion correction at several stages of the reconstruction process. The wide range of MR acquisition sequences, anatomies and pathologies of interest, and motion patterns (rigid vs. deformable and random vs. regular) makes a comprehensive solution unlikely. To facilitate the transfer of ideas between different applications, this review provides a detailed overview of proposed methods for learning-based motion correction in MRI together with their common challenges and potentials. This review identifies differences and synergies in underlying data usage, architectures, training and evaluation strategies. We critically discuss general trends and outline future directions, with the aim to enhance interaction between different application areas and research fields.
{"title":"Deep Learning for Retrospective Motion Correction in MRI: A Comprehensive Review","authors":"Veronika Spieker, H. Eichhorn, K. Hammernik, D. Rueckert, C. Preibisch, D. Karampinos, J. Schnabel","doi":"10.48550/arXiv.2305.06739","DOIUrl":"https://doi.org/10.48550/arXiv.2305.06739","url":null,"abstract":"Motion represents one of the major challenges in magnetic resonance imaging (MRI). Since the MR signal is acquired in frequency space, any motion of the imaged object leads to complex artefacts in the reconstructed image in addition to other MR imaging artefacts. Deep learning has been frequently proposed for motion correction at several stages of the reconstruction process. The wide range of MR acquisition sequences, anatomies and pathologies of interest, and motion patterns (rigid vs. deformable and random vs. regular) makes a comprehensive solution unlikely. To facilitate the transfer of ideas between different applications, this review provides a detailed overview of proposed methods for learning-based motion correction in MRI together with their common challenges and potentials. This review identifies differences and synergies in underlying data usage, architectures, training and evaluation strategies. We critically discuss general trends and outline future directions, with the aim to enhance interaction between different application areas and research fields.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42662913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-26DOI: 10.48550/arXiv.2304.13672
Yan Wang, Jian Cheng, Yixin Chen, Shuai Shao, Lanyun Zhu, Zhenzhou Wu, T. Liu, Haogang Zhu
Medical image segmentation methods normally perform poorly when there is a domain shift between training and testing data. Unsupervised Domain Adaptation (UDA) addresses the domain shift problem by training the model using both labeled data from the source domain and unlabeled data from the target domain. Source-Free UDA (SFUDA) was recently proposed for UDA without requiring the source data during the adaptation, due to data privacy or data transmission issues, which normally adapts the pre-trained deep model in the testing stage. However, in real clinical scenarios of medical image segmentation, the trained model is normally frozen in the testing stage. In this paper, we propose Fourier Visual Prompting (FVP) for SFUDA of medical image segmentation. Inspired by prompting learning in natural language processing, FVP steers the frozen pre-trained model to perform well in the target domain by adding a visual prompt to the input target data. In FVP, the visual prompt is parameterized using only a small amount of low-frequency learnable parameters in the input frequency space, and is learned by minimizing the segmentation loss between the predicted segmentation of the prompted target image and reliable pseudo segmentation label of the target image under the frozen model. To our knowledge, FVP is the first work to apply visual prompts to SFUDA for medical image segmentation. The proposed FVP is validated using three public datasets, and experiments demonstrate that FVP yields better segmentation results, compared with various existing methods.
{"title":"FVP: Fourier Visual Prompting for Source-Free Unsupervised Domain Adaptation of Medical Image Segmentation","authors":"Yan Wang, Jian Cheng, Yixin Chen, Shuai Shao, Lanyun Zhu, Zhenzhou Wu, T. Liu, Haogang Zhu","doi":"10.48550/arXiv.2304.13672","DOIUrl":"https://doi.org/10.48550/arXiv.2304.13672","url":null,"abstract":"Medical image segmentation methods normally perform poorly when there is a domain shift between training and testing data. Unsupervised Domain Adaptation (UDA) addresses the domain shift problem by training the model using both labeled data from the source domain and unlabeled data from the target domain. Source-Free UDA (SFUDA) was recently proposed for UDA without requiring the source data during the adaptation, due to data privacy or data transmission issues, which normally adapts the pre-trained deep model in the testing stage. However, in real clinical scenarios of medical image segmentation, the trained model is normally frozen in the testing stage. In this paper, we propose Fourier Visual Prompting (FVP) for SFUDA of medical image segmentation. Inspired by prompting learning in natural language processing, FVP steers the frozen pre-trained model to perform well in the target domain by adding a visual prompt to the input target data. In FVP, the visual prompt is parameterized using only a small amount of low-frequency learnable parameters in the input frequency space, and is learned by minimizing the segmentation loss between the predicted segmentation of the prompted target image and reliable pseudo segmentation label of the target image under the frozen model. To our knowledge, FVP is the first work to apply visual prompts to SFUDA for medical image segmentation. The proposed FVP is validated using three public datasets, and experiments demonstrate that FVP yields better segmentation results, compared with various existing methods.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43372805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-20DOI: 10.48550/arXiv.2304.10671
Ji Yu
Despite their superior performance, deep-learning methods often suffer from the disadvantage of needing large-scale well-annotated training data. In response, recent literature has seen a proliferation of efforts aimed at reducing the annotation burden. This paper focuses on a weakly-supervised training setting for single-cell segmentation models, where the only available training label is the rough locations of individual cells. The specific problem is of practical interest due to the widely available nuclei counter-stain data in biomedical literature, from which the cell locations can be derived programmatically. Of more general interest is a proposed self-learning method called collaborative knowledge sharing, which is related to but distinct from the more well-known consistency learning methods. This strategy achieves self-learning by sharing knowledge between a principal model and a very light-weight collaborator model. Importantly, the two models are entirely different in their architectures, capacities, and model outputs: In our case, the principal model approaches the segmentation problem from an object-detection perspective, whereas the collaborator model a sematic segmentation perspective. We assessed the effectiveness of this strategy by conducting experiments on LIVECell, a large single-cell segmentation dataset of bright-field images, and on A431 dataset, a fluorescence image dataset in which the location labels are generated automatically from nuclei counter-stain data. Implementing code is available at https://github.com/jiyuuchc/lacss.
{"title":"Point-supervised Single-cell Segmentation via Collaborative Knowledge Sharing","authors":"Ji Yu","doi":"10.48550/arXiv.2304.10671","DOIUrl":"https://doi.org/10.48550/arXiv.2304.10671","url":null,"abstract":"Despite their superior performance, deep-learning methods often suffer from the disadvantage of needing large-scale well-annotated training data. In response, recent literature has seen a proliferation of efforts aimed at reducing the annotation burden. This paper focuses on a weakly-supervised training setting for single-cell segmentation models, where the only available training label is the rough locations of individual cells. The specific problem is of practical interest due to the widely available nuclei counter-stain data in biomedical literature, from which the cell locations can be derived programmatically. Of more general interest is a proposed self-learning method called collaborative knowledge sharing, which is related to but distinct from the more well-known consistency learning methods. This strategy achieves self-learning by sharing knowledge between a principal model and a very light-weight collaborator model. Importantly, the two models are entirely different in their architectures, capacities, and model outputs: In our case, the principal model approaches the segmentation problem from an object-detection perspective, whereas the collaborator model a sematic segmentation perspective. We assessed the effectiveness of this strategy by conducting experiments on LIVECell, a large single-cell segmentation dataset of bright-field images, and on A431 dataset, a fluorescence image dataset in which the location labels are generated automatically from nuclei counter-stain data. Implementing code is available at https://github.com/jiyuuchc/lacss.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42725429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-02DOI: 10.48550/arXiv.2304.00433
Weimin Zhou, Umberto Villa, M. Anastasio
Medical imaging systems are often evaluated and optimized via objective, or task-specific, measures of image quality (IQ) that quantify the performance of an observer on a specific clinically-relevant task. The performance of the Bayesian Ideal Observer (IO) sets an upper limit among all observers, numerical or human, and has been advocated for use as a figure-of-merit (FOM) for evaluating and optimizing medical imaging systems. However, the IO test statistic corresponds to the likelihood ratio that is intractable to compute in the majority of cases. A sampling-based method that employs Markov-Chain Monte Carlo (MCMC) techniques was previously proposed to estimate the IO performance. However, current applications of MCMC methods for IO approximation have been limited to a small number of situations where the considered distribution of to-be-imaged objects can be described by a relatively simple stochastic object model (SOM). As such, there remains an important need to extend the domain of applicability of MCMC methods to address a large variety of scenarios where IO-based assessments are needed but the associated SOMs have not been available. In this study, a novel MCMC method that employs a generative adversarial network (GAN)-based SOM, referred to as MCMC-GAN, is described and evaluated. The MCMC-GAN method was quantitatively validated by use of test-cases for which reference solutions were available. The results demonstrate that the MCMC-GAN method can extend the domain of applicability of MCMC methods for conducting IO analyses of medical imaging systems.
{"title":"Ideal Observer Computation by Use of Markov-Chain Monte Carlo with Generative Adversarial Networks","authors":"Weimin Zhou, Umberto Villa, M. Anastasio","doi":"10.48550/arXiv.2304.00433","DOIUrl":"https://doi.org/10.48550/arXiv.2304.00433","url":null,"abstract":"Medical imaging systems are often evaluated and optimized via objective, or task-specific, measures of image quality (IQ) that quantify the performance of an observer on a specific clinically-relevant task. The performance of the Bayesian Ideal Observer (IO) sets an upper limit among all observers, numerical or human, and has been advocated for use as a figure-of-merit (FOM) for evaluating and optimizing medical imaging systems. However, the IO test statistic corresponds to the likelihood ratio that is intractable to compute in the majority of cases. A sampling-based method that employs Markov-Chain Monte Carlo (MCMC) techniques was previously proposed to estimate the IO performance. However, current applications of MCMC methods for IO approximation have been limited to a small number of situations where the considered distribution of to-be-imaged objects can be described by a relatively simple stochastic object model (SOM). As such, there remains an important need to extend the domain of applicability of MCMC methods to address a large variety of scenarios where IO-based assessments are needed but the associated SOMs have not been available. In this study, a novel MCMC method that employs a generative adversarial network (GAN)-based SOM, referred to as MCMC-GAN, is described and evaluated. The MCMC-GAN method was quantitatively validated by use of test-cases for which reference solutions were available. The results demonstrate that the MCMC-GAN method can extend the domain of applicability of MCMC methods for conducting IO analyses of medical imaging systems.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41342898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myocardial pathology segmentation (MyoPS) is critical for the risk stratification and treatment planning of myocardial infarction (MI). Multi-sequence cardiac magnetic resonance (MS-CMR) images can provide valuable information. For instance, balanced steady-state free precession cine sequences present clear anatomical boundaries, while late gadolinium enhancement and T2-weighted CMR sequences visualize myocardial scar and edema of MI, respectively. Existing methods usually fuse anatomical and pathological information from different CMR sequences for MyoPS, but assume that these images have been spatially aligned. However, MS-CMR images are usually unaligned due to the respiratory motions in clinical practices, which poses additional challenges for MyoPS. This work presents an automatic MyoPS framework for unaligned MS-CMR images. Specifically, we design a combined computing model for simultaneous image registration and information fusion, which aggregates multi-sequence features into a common space to extract anatomical structures (i.e., myocardium). Consequently, we can highlight the informative regions in the common space via the extracted myocardium to improve MyoPS performance, considering the spatial relationship between myocardial pathologies and myocardium. Experiments on a private MS-CMR dataset and a public dataset from the MYOPS2020 challenge show that our framework could achieve promising performance for fully automatic MyoPS.
{"title":"Aligning Multi-Sequence CMR Towards Fully Automated Myocardial Pathology Segmentation","authors":"Wangbin Ding, Lei Li, Junyi Qiu, Sihan Wang, Liqin Huang, Yinyin Chen, Shan Yang, X. Zhuang","doi":"10.48550/arXiv.2302.03537","DOIUrl":"https://doi.org/10.48550/arXiv.2302.03537","url":null,"abstract":"Myocardial pathology segmentation (MyoPS) is critical for the risk stratification and treatment planning of myocardial infarction (MI). Multi-sequence cardiac magnetic resonance (MS-CMR) images can provide valuable information. For instance, balanced steady-state free precession cine sequences present clear anatomical boundaries, while late gadolinium enhancement and T2-weighted CMR sequences visualize myocardial scar and edema of MI, respectively. Existing methods usually fuse anatomical and pathological information from different CMR sequences for MyoPS, but assume that these images have been spatially aligned. However, MS-CMR images are usually unaligned due to the respiratory motions in clinical practices, which poses additional challenges for MyoPS. This work presents an automatic MyoPS framework for unaligned MS-CMR images. Specifically, we design a combined computing model for simultaneous image registration and information fusion, which aggregates multi-sequence features into a common space to extract anatomical structures (i.e., myocardium). Consequently, we can highlight the informative regions in the common space via the extracted myocardium to improve MyoPS performance, considering the spatial relationship between myocardial pathologies and myocardium. Experiments on a private MS-CMR dataset and a public dataset from the MYOPS2020 challenge show that our framework could achieve promising performance for fully automatic MyoPS.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":null,"pages":null},"PeriodicalIF":10.6,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45904269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}