Human brain functional connectivity (FC) is often measured as the similarity of functional MRI responses across brain regions when a brain is either resting or performing a task. This paper aims to statistically analyze the dynamic nature of FC by representing the collective time-series data, over a set of brain regions, as a trajectory on the space of covariance matrices, or symmetric-positive definite matrices (SPDMs). We use a recently developed metric on the space of SPDMs for quantifying differences across FC observations, and for clustering and classification of FC trajectories. To facilitate large scale and high-dimensional data analysis, we propose a novel, metric-based dimensionality reduction technique to reduce data from large SPDMs to small SPDMs. We illustrate this comprehensive framework using data from the Human Connectome Project (HCP) database for multiple subjects and tasks, with task classification rates that match or outperform state-of-the-art techniques.
Electromagnetic brain imaging is the reconstruction of brain activity from non-invasive recordings of the magnetic fields and electric potentials. An enduring challenge in this imaging modality is estimating the number, location, and time course of sources, especially for the reconstruction of distributed brain sources with complex spatial extent. Here, we introduce a novel robust empirical Bayesian algorithm that enables better reconstruction of distributed brain source activity with two key ideas: kernel smoothing and hyperparameter tiling. Since the proposed algorithm builds upon many of the performance features of the sparse source reconstruction algorithm - Champagne and we refer to this algorithm as Smooth Champagne. Smooth Champagne is robust to the effects of high levels of noise, interference, and highly correlated brain source activity. Simulations demonstrate excellent performance of Smooth Champagne when compared to benchmark algorithms in accurately determining the spatial extent of distributed source activity. Smooth Champagne also accurately reconstructs real MEG and EEG data.