首页 > 最新文献

IEEE Transactions on Medical Imaging最新文献

英文 中文
SurgPETL: Parameter-Efficient Image-to-Surgical-Video Transfer Learning for Surgical Phase Recognition 外科手术阶段识别的参数高效图像-手术-视频转移学习
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-10-01 DOI: 10.1109/tmi.2025.3615967
Shu Yang, Zhiyuan Cai, Luyang Luo, Ning Ma, Shuchang Xu, Hao Chen
{"title":"SurgPETL: Parameter-Efficient Image-to-Surgical-Video Transfer Learning for Surgical Phase Recognition","authors":"Shu Yang, Zhiyuan Cai, Luyang Luo, Ning Ma, Shuchang Xu, Hao Chen","doi":"10.1109/tmi.2025.3615967","DOIUrl":"https://doi.org/10.1109/tmi.2025.3615967","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"19 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145203247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BrainSMM: Lifespan Brain Segmentation Model with Metadata-Driven Prompt Learning 基于元数据驱动提示学习的寿命脑分割模型
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-10-01 DOI: 10.1109/tmi.2025.3616586
Lin Teng, Zihao Zhao, Yulin Wang, Feng Shi, Dinggang Shen
{"title":"BrainSMM: Lifespan Brain Segmentation Model with Metadata-Driven Prompt Learning","authors":"Lin Teng, Zihao Zhao, Yulin Wang, Feng Shi, Dinggang Shen","doi":"10.1109/tmi.2025.3616586","DOIUrl":"https://doi.org/10.1109/tmi.2025.3616586","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"160 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145203246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trustworthy Multi-Modal Ultrasound Fusion via Uncertainty Calibration and Conflict Resolution 基于不确定度校准和冲突解决的可信多模态超声融合
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-09-29 DOI: 10.1109/tmi.2025.3615589
Peng Wan, Limei Wei, Shukang Zhang, Haiyan Xue, Wei Shao, Wentao Kong, Daoqiang Zhang
{"title":"Trustworthy Multi-Modal Ultrasound Fusion via Uncertainty Calibration and Conflict Resolution","authors":"Peng Wan, Limei Wei, Shukang Zhang, Haiyan Xue, Wei Shao, Wentao Kong, Daoqiang Zhang","doi":"10.1109/tmi.2025.3615589","DOIUrl":"https://doi.org/10.1109/tmi.2025.3615589","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"30 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145188343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double-Decomposition Motion Tracking of Intraoperative 3D Structures via Cross-Spatio-Temporal Semantics Alignment 基于跨时空语义对齐的术中三维结构双分解运动跟踪
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-09-29 DOI: 10.1109/tmi.2025.3615802
Haixiao Geng, Jingfan Fan, Shuo Yang, Danni Ai, Deqiang Xiao, Tianyu Fu, Hong Song, Xiaohui Li, Feng Duan, Yongtian Wang, Jian Yang
{"title":"Double-Decomposition Motion Tracking of Intraoperative 3D Structures via Cross-Spatio-Temporal Semantics Alignment","authors":"Haixiao Geng, Jingfan Fan, Shuo Yang, Danni Ai, Deqiang Xiao, Tianyu Fu, Hong Song, Xiaohui Li, Feng Duan, Yongtian Wang, Jian Yang","doi":"10.1109/tmi.2025.3615802","DOIUrl":"https://doi.org/10.1109/tmi.2025.3615802","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"26 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145188344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endoscopic Adaptive Transformer for Enhanced Polyp Segmentation in Endoscopic Imaging 内镜下自适应变压器增强息肉内镜成像分割
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-09-29 DOI: 10.1109/tmi.2025.3615677
Yan Pang, Yucheng Long, Zibin Chen, Ying Hu, Hao Chen, Qiong Wang
{"title":"Endoscopic Adaptive Transformer for Enhanced Polyp Segmentation in Endoscopic Imaging","authors":"Yan Pang, Yucheng Long, Zibin Chen, Ying Hu, Hao Chen, Qiong Wang","doi":"10.1109/tmi.2025.3615677","DOIUrl":"https://doi.org/10.1109/tmi.2025.3615677","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"54 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145188486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-to-end Spatiotemporal Analysis of Color Doppler Echocardiograms: Application for Rheumatic Heart Disease Detection 彩色多普勒超声心动图的端到端时空分析:在风湿性心脏病检测中的应用
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-09-29 DOI: 10.1109/tmi.2025.3615574
Pooneh Roshanitabrizi, Vishwesh Nath, Kelsey Brown, Taylor Gloria Broudy, Zhifan Jiang, Abhijeet Parida, Joselyn Rwebembera, Emmy Okello, Andrea Beaton, Holger R. Roth, Craig A. Sable, Marius George Linguraru
{"title":"End-to-end Spatiotemporal Analysis of Color Doppler Echocardiograms: Application for Rheumatic Heart Disease Detection","authors":"Pooneh Roshanitabrizi, Vishwesh Nath, Kelsey Brown, Taylor Gloria Broudy, Zhifan Jiang, Abhijeet Parida, Joselyn Rwebembera, Emmy Okello, Andrea Beaton, Holger R. Roth, Craig A. Sable, Marius George Linguraru","doi":"10.1109/tmi.2025.3615574","DOIUrl":"https://doi.org/10.1109/tmi.2025.3615574","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"5 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145188349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Mutual Learning among Partially Labeled Datasets for Multi-Organ Segmentation. 基于部分标记数据集的深度互学习多器官分割。
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-09-26 DOI: 10.1109/tmi.2025.3614853
Xiaoyu Liu,Linhao Qu,Ziyue Xie,Yonghong Shi,Zhijian Song
Labeling multiple organs for segmentation is a complex and time-consuming process, resulting in a scarcity of comprehensively labeled multi-organ datasets while the emergence of numerous partially labeled datasets. Current methods face three critical limitations: incomplete exploitation of available supervision; complex inference, and insufficient validation of generalization capabilities. This paper proposes a new framework based on mutual learning, aiming to improve multi-organ segmentation performance by complementing information among partially labeled datasets. Specifically, this method consists of three key components: (1) partial-organ segmentation models training with Difference Mutual Learning, (2) pseudo-label generation and filtering, and (3) full-organ segmentation models training enhanced by Similarity Mutual Learning. Difference Mutual Learning enables each partial-organ segmentation model to utilize labels and features from other datasets as complementary signals, improving cross-dataset organ detection for better pseudo labels. Similarity Mutual Learning augments each full-organ segmentation model training with two additional supervision sources: inter-dataset ground truths and dynamic reliable transferred features, significantly boosting segmentation accuracy. The model obtained by this method achieves both high accuracy and efficient inference for multi-organ segmentation. Extensive experiments conducted on nine datasets spanning the head-neck, chest, abdomen, and pelvis demonstrate that the proposed method achieves SOTA performance.
多器官标记用于分割是一个复杂且耗时的过程,导致全面标记的多器官数据集稀缺,而部分标记的数据集大量出现。目前的方法面临三个关键的局限性:对现有监督的不充分利用;推理复杂,泛化能力验证不足。本文提出了一种新的基于相互学习的多器官分割框架,通过部分标记数据集之间的信息互补来提高多器官分割的性能。具体来说,该方法由三个关键部分组成:(1)基于差异互学习的部分器官分割模型训练;(2)伪标签生成与过滤;(3)基于相似互学习的全器官分割模型训练。差分互学习使每个部分器官分割模型能够利用来自其他数据集的标签和特征作为互补信号,从而改进跨数据集器官检测以获得更好的伪标签。相似互学习为每个全器官分割模型训练增加了两个额外的监督来源:数据集间的真实情况和动态可靠的转移特征,显著提高了分割精度。该方法得到的模型对多器官分割具有较高的准确率和高效的推理能力。在头颈、胸部、腹部和骨盆的9个数据集上进行的大量实验表明,该方法达到了SOTA的性能。
{"title":"Deep Mutual Learning among Partially Labeled Datasets for Multi-Organ Segmentation.","authors":"Xiaoyu Liu,Linhao Qu,Ziyue Xie,Yonghong Shi,Zhijian Song","doi":"10.1109/tmi.2025.3614853","DOIUrl":"https://doi.org/10.1109/tmi.2025.3614853","url":null,"abstract":"Labeling multiple organs for segmentation is a complex and time-consuming process, resulting in a scarcity of comprehensively labeled multi-organ datasets while the emergence of numerous partially labeled datasets. Current methods face three critical limitations: incomplete exploitation of available supervision; complex inference, and insufficient validation of generalization capabilities. This paper proposes a new framework based on mutual learning, aiming to improve multi-organ segmentation performance by complementing information among partially labeled datasets. Specifically, this method consists of three key components: (1) partial-organ segmentation models training with Difference Mutual Learning, (2) pseudo-label generation and filtering, and (3) full-organ segmentation models training enhanced by Similarity Mutual Learning. Difference Mutual Learning enables each partial-organ segmentation model to utilize labels and features from other datasets as complementary signals, improving cross-dataset organ detection for better pseudo labels. Similarity Mutual Learning augments each full-organ segmentation model training with two additional supervision sources: inter-dataset ground truths and dynamic reliable transferred features, significantly boosting segmentation accuracy. The model obtained by this method achieves both high accuracy and efficient inference for multi-organ segmentation. Extensive experiments conducted on nine datasets spanning the head-neck, chest, abdomen, and pelvis demonstrate that the proposed method achieves SOTA performance.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"77 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145153397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Motion simulation of radio-labeled cells in whole-body positron emission tomography 全身正电子发射断层扫描中放射性标记细胞的运动模拟
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-09-26 DOI: 10.1109/tmi.2025.3614767
Nils Marquardt, Tobias Hengsbach, Marco Mauritz, Benedikt Wirth, Klaus Schäfers
{"title":"Motion simulation of radio-labeled cells in whole-body positron emission tomography","authors":"Nils Marquardt, Tobias Hengsbach, Marco Mauritz, Benedikt Wirth, Klaus Schäfers","doi":"10.1109/tmi.2025.3614767","DOIUrl":"https://doi.org/10.1109/tmi.2025.3614767","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"5 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145153907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional Virtual Imaging for Few-Shot Vascular Image Segmentation. 基于条件虚拟成像的少镜头血管图像分割。
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-09-25 DOI: 10.1109/tmi.2025.3608467
Yanglong He,Rongjun Ge,Hui Tang,Yuxin Liu,Mengqing Su,Jean-Louis Coatrieux,Huazhong Shu,Yang Chen,Yuting He
In the field of medical image processing, vascular image segmentation plays a crucial role in clinical diagnosis, treatment planning, prognosis, and medical decision-making. Accurate and automated segmentation of vascular images can assist clinicians in understanding the vascular network structure, leading to more informed medical decisions. However, manual annotation of vascular images is time-consuming and challenging due to the fine and low-contrast vascular branches, especially in the medical imaging domain where annotation requires specialized knowledge and clinical expertise. Data-driven deep learning models struggle to achieve good performance when only a small number of annotated vascular images are available. To address this issue, this paper proposes a novel Conditional Virtual Imaging (CVI) framework for few-shot vascular image segmentation learning. The framework combines limited annotated data with extensive unlabeled data to generate high-quality images, effectively improving the accuracy and robustness of segmentation learning. Our approach primarily includes two innovations: First, aligned image-mask pair generation, which leverages the powerful image generation capabilities of large pre-trained models to produce high-quality vascular images with complex structures using only a few training images; Second, the Dual-Consistency Learning (DCL) strategy, which simultaneously trains the generator and segmentation model, allowing them to learn from each other and maximize the utilization of limited data. Experimental results demonstrate that our CVI framework can generate high-quality medical images and effectively enhance the performance of segmentation models in few-shot scenarios. Our code will be made publicly available online.
在医学图像处理领域,血管图像分割在临床诊断、治疗计划、预后和医疗决策中起着至关重要的作用。血管图像的准确和自动分割可以帮助临床医生了解血管网络结构,从而做出更明智的医疗决策。然而,由于血管分支精细且对比度低,手工标注血管图像耗时且具有挑战性,特别是在医学成像领域,标注需要专业知识和临床专业知识。当只有少量带注释的血管图像可用时,数据驱动的深度学习模型难以达到良好的性能。为了解决这一问题,本文提出了一种新的条件虚拟成像(CVI)框架,用于小帧血管图像分割学习。该框架将有限的标注数据与大量的未标注数据相结合,生成高质量的图像,有效提高了分割学习的准确性和鲁棒性。我们的方法主要包括两个创新:第一,对齐图像掩码对生成,它利用大型预训练模型的强大图像生成能力,仅使用少量训练图像就能生成具有复杂结构的高质量血管图像;二是双一致性学习(Dual-Consistency Learning, DCL)策略,该策略同时训练生成器和分割模型,使它们相互学习,最大限度地利用有限的数据。实验结果表明,我们的CVI框架可以生成高质量的医学图像,并有效提高了少镜头场景下分割模型的性能。我们的代码将在网上公开。
{"title":"Conditional Virtual Imaging for Few-Shot Vascular Image Segmentation.","authors":"Yanglong He,Rongjun Ge,Hui Tang,Yuxin Liu,Mengqing Su,Jean-Louis Coatrieux,Huazhong Shu,Yang Chen,Yuting He","doi":"10.1109/tmi.2025.3608467","DOIUrl":"https://doi.org/10.1109/tmi.2025.3608467","url":null,"abstract":"In the field of medical image processing, vascular image segmentation plays a crucial role in clinical diagnosis, treatment planning, prognosis, and medical decision-making. Accurate and automated segmentation of vascular images can assist clinicians in understanding the vascular network structure, leading to more informed medical decisions. However, manual annotation of vascular images is time-consuming and challenging due to the fine and low-contrast vascular branches, especially in the medical imaging domain where annotation requires specialized knowledge and clinical expertise. Data-driven deep learning models struggle to achieve good performance when only a small number of annotated vascular images are available. To address this issue, this paper proposes a novel Conditional Virtual Imaging (CVI) framework for few-shot vascular image segmentation learning. The framework combines limited annotated data with extensive unlabeled data to generate high-quality images, effectively improving the accuracy and robustness of segmentation learning. Our approach primarily includes two innovations: First, aligned image-mask pair generation, which leverages the powerful image generation capabilities of large pre-trained models to produce high-quality vascular images with complex structures using only a few training images; Second, the Dual-Consistency Learning (DCL) strategy, which simultaneously trains the generator and segmentation model, allowing them to learn from each other and maximize the utilization of limited data. Experimental results demonstrate that our CVI framework can generate high-quality medical images and effectively enhance the performance of segmentation models in few-shot scenarios. Our code will be made publicly available online.","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"61 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145140266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-driven System Matrix Manipulation Enabling Fast Functional Imaging in Tomography 数据驱动的系统矩阵操作在断层扫描中实现快速功能成像
IF 10.6 1区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-09-22 DOI: 10.1109/tmi.2025.3612437
Peng Hu, Xin Tong, Li Lin, Lihong V. Wang
{"title":"Data-driven System Matrix Manipulation Enabling Fast Functional Imaging in Tomography","authors":"Peng Hu, Xin Tong, Li Lin, Lihong V. Wang","doi":"10.1109/tmi.2025.3612437","DOIUrl":"https://doi.org/10.1109/tmi.2025.3612437","url":null,"abstract":"","PeriodicalId":13418,"journal":{"name":"IEEE Transactions on Medical Imaging","volume":"59 1","pages":""},"PeriodicalIF":10.6,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145116149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Medical Imaging
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1