Introduction: In the last decade, an immuno-modulatory effect of vitamin D supplementation have emerged as a potential therapeutic approach for some inflammatory and autoimmune diseases. As previously reported, vitamin D deficiency was strongly linked to several diseases as Behçet's disease (BD). BD is a chronic systemic inflammatory disorder with autoimmunity, genetic and environmental factors involvement. The aim of our current study is to set up a new therapeutic strategy in BD, combining conventional therapy and vitamin D supplementation.
Materials and methods: Blood samples were collected from active and inactive BD patients and healthy controls (HC) to evaluate 25(OH) vitamin D levels using an electrochemiluminescence method. All deficient and insufficient vitamin D BD patients' were supplemented with vitamin D3 (CHOLECALCIFEROL, 200 000 UI/1 ml). In this context, NO, IL-17A and IL-10 levels were evaluated in patients and HC in vivo and ex vivo using Griess and ELISA methods respectively.
Results: Before supplementation, we noted with interest that BD patients had vitamin D deficiency, associated with elevated in vivo and ex vivo NO and IL-17A levels compared to HC. Conversely, low IL-10 levels were observed in the same BD patients in comparison to HC. Interestingly, restored vitamin D status in supplemented BD patients was related to the decreased NO levels. In the same way, the IL-10/IL-17A ratio was improved.
Conclusions: Collectively, our data suggest that vitamin D supplementation in combination with conventional treatments has a beneficial effect and could constitute a good therapeutic candidate for alleviating inflammatory responses during Behçet disease.
Objectives: Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats.
Materials and methods: VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg.
Results: VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1β levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins.
Conclusion: Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.
Objective: This study aimed to investigate the underlying molecular mechanisms of Withaferin A (WA) in hepatocellular carcinoma (HCC).
Materials and methods: The gene and protein expression were analyzed using RT-qPCR and western blot, respectively. The proliferation of HCC cells was evaluated by CCK-8 assays. The migrative ability of HCC cells was measured by transwell assays.
Results: We revealed that WA suppressed the proliferation and migration of HCC cells and inhibited IGF2BP3 (insulin like growth factor 2 mRNA binding protein 3) expression. IGF2BP3 abundance reversed the reactive oxygen species (ROS) accumulation and suppression of HCC cell proliferation and migration induced by WA. Besides, IGF2BP3 suppressed ROS production to promote the growth and migration of HCC cells. Furthermore, we found that IGF2BP3 exerted its tumor-promotive and ROS-suppressive effect on HCC cells by regulating the expression of FOXO1 (forkhead box O1). In addition, IGF2BP3-stimulated activation of JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) phosphorylation effectively decreased the transcription of FOXO1. FOXO1 abundance decreased the phosphorylation of JAK2 and STAT3 by increasing ROS level, forming a feedback loop for the inhibition of JAK2/STAT3 signaling activated by IGF2BP3.
Conclusions: WA-induced ROS inhibited HCC cell growth and migration through the inhibition of IGF2BP3 to deactivate JAK2/STAT3 signaling, resulting in increased FOXO1 expression to further stimulate ROS production and inhibit JAK2/STAT3 signaling.
Objective: Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation and joint damage, leading to pain and reduced joint function. Icariin, a flavonoid compound, has been studied for its potential therapeutic role in RA due to its anti-inflammatory and anti-proliferative effects. Here, we aimed to investigate the action mechanism of icariin in regulating RA.
Materials and methods: Fibroblast-like synoviocytes (FLS) were obtained from RA and trauma patients, generating RA-FLS and normal FLS. The cells were treated with varying concentrations of icariin (0, 10, 20, 40, 80 μM). We assessed the effects of icariin on cell proliferation, apoptosis, and levels of inflammatory factors using the CCK-8 assay, flow cytometry, and enzyme-linked immunosorbent assay, qRT-PCR, and western blotting.
Results: Icariin treatment had no significant impact on the cell proliferation of normal FLS. However, it dose-dependently repressed cell proliferation, reduced TNF-α, IL-6, and IL-1β levels, and increased apoptosis in RA-FLS. The expression of GAREM1, p-p38, and p-ERK1/2 was upregulated in RA-FLS, which was reversed by icariin treatment. Overexpression of GAREM1 reversed the inhibitory effects of icariin on cell proliferation and inflammatory factor levels in RA-FLS.
Conclusion: Our findings suggest that icariin treatment can alleviate the development of RA by reducing cell proliferation and inflammation in RA-FLS through the regulation of the GAREM1/MAPK signaling pathway. These results support the potential of icariin as a therapeutic agent for RA treatment. As icariin is safe and well-tolerated in previous studies, further research is warranted to explore its efficacy in clinical settings.
Objectives: The study investigated the prognostic and immune predictive potential of major histocompatibility complex class I (MHC-I) in lung adenocarcinoma (LUAD).
Materials and methods: With The Cancer Genome Atlas (TCGA)-LUAD and Gene Expression Omnibus datasets (GSE26939, GSE72094) as the training and validation sets, respectively, we used Cox regression analysis to construct a prognostic model, and verified independence of riskscore. The predictive capacity of the model was assessed in both sets using the receiver operating characteristic curve and Kaplan-Meier survival curves. Immune analysis was performed by using ssGSEA. Additionally, immune checkpoint blockade therapy was assessed by using immunophenoscore, Tumor Immune Dysfunction and Exclusion score. Based on the cMAP database, effective small molecule compounds were predicted.
Results: A prognostic model was established based on 8 MHC-I-related genes, and the predictive capacity of the model was accurate. Immune analysis results revealed that patients classified as high-risk had lower levels of immune cell infiltration and impaired immune function. The low-risk group possessed a better response to immune checkpoint blockade therapy. Theobromine and pravastatin were identified as having great potential in improving the prognosis of LUAD.
Conclusion: Overall, the study revealed MHC-I-related molecular prognostic biomarkers as robust indicators for LUAD prognosis and immune therapy response.
Background: Splenomegaly can exacerbate liver cirrhosis and portal hypertension. We have previously demonstrated that cyclooxygenase-2 (COX-2) inhibitor can attenuate cirrhotic splenomegaly. However, the mechanism of cirrhotic splenomegaly remains unclear, thus becoming the focus of the present study.
Materials and methods: Thioacetamide (TAA) intraperitoneal injection was used to induce cirrhotic splenomegaly. Rats were randomized into the control, TAA and TAA + celecoxib groups. Histological analysis and high-throughput RNA sequencing of the spleen were conducted. Splenic collagen III, α-SMA, Ki-67, and VEGF were quantified.
Results: A total of 1461 differentially expressed genes (DEGs) were identified in the spleens of the TAA group compared to the control group. The immune response and immune cell activation might be the major signaling pathways involved in the pathogenesis of cirrhotic splenomegaly. With its immunoregulatory effect, celecoxib presents to ameliorate cirrhotic splenomegaly and liver cirrhosis. Furthermore, 304 coexisting DEGs were obtained between TAA vs. control and TAA + celecoxib vs. TAA. Gene ontology (GO) and KEGG analyses collectively indicated that celecoxib may attenuate cirrhotic splenomegaly through the suppression of splenic immune cell proliferation, inflammation, immune regulation, and fibrogenesis. The impacts on these factors were subsequently validated by the decreased splenic Ki-67-positive cells, macrophages, fibrotic areas, and mRNA levels of collagen III and α-SMA.
Conclusions: Celecoxib attenuates cirrhotic splenomegaly by inhibiting splenic immune cell proliferation, inflammation, and fibrogenesis. The current study sheds light on the therapeutic strategy of liver cirrhosis by targeting splenic abnormalities and provides COX-2 inhibitors as a novel medical treatment for cirrhotic splenomegaly.
Objective: To study the reeducation effect of copper thiol complexes on macrophage morphology and cytokine expression.
Methods: The effect of copper thiol complexes was assessed on murine macrophages by the cell morphology observed through optical microscopy, while the expression of cytokines by protein abundance after stimulation. A viability experiment was performed on PMBC to confirm that copper complexes do not affect other cells.
Results: The M1 shape was reported after treatment with copper thiol complexes at 1-200 µM, while M2 behavior was documented between 50 and 800 µM. Surprisingly, a thin elongate morphology was observed between 400-800 µM like the M2 shape. The expression of M1 cytokines was noted ranging from 1 to 100 µM, with the highest yield at 1 µM (2243 pg/µL) for the copper-penicillamine complex. M2 production behavior was observed at 1-800 µM, with the highest abundance close to 1150 pg/µL (200-400 µM) was quantified from the copper-cysteine complex. Finally, LCCu complexes did not induce a cytotoxic response on PBMC while exhibiting a high IL-4 and IL-10 production, similar to their gold analogs.
Conclusions: The capacity of copper thiol complexes to reeducate M1 to M2 morphoexpression can be promising for cell protection by using copper thiol penicillamine or immuno-regeneration of tissues when using copper thiol cysteine.
Objectives: Periodontitis is a chronic inflammatory disease induced by periodontal disease-causing bacteria. It has been shown that excessive immune response against bacteria is involved in periodontal tissue destruction including alveolar bone resorption. Erucin is a biologically active substance found in cruciferous plants such as arugula and is classified as an isothiocyanate. No previous studies have attempted to use erucin in the treatment of periodontitis, and there are no papers that have examined the effects of erucin on periodontal resident cells. The purpose of this study was to analyze the effects of erucin on the production of inflammatory and antioxidant mediators produced by tumor necrosis factor (TNF)-α-stimulated TR146 cells, an oral epithelial cell line, including its effects on signaling molecules.
Methods: Cytokine and chemokine levels were measured by ELISA. Protein expression in TR146 cells and activations of signal transduction pathway were determined by Western blotting.
Results: Our results indicate that erucin suppresses interleukin-6 and CXC-chemokine ligand 10 production and vascular cell adhesion molecule-1 expression in TNF-α-stimulated TR146 cells. In addition, erucin induced the production of the antioxidant enzymes, Heme Oxygenase-1 and NAD(P)H quinone dehydrogenase 1 in TR146 cells. Furthermore, erucin suppressed TNF-α-stimulated nuclear factor-κB, signal transducer and activator of transcription3, and phospho-70S6 Kinase-S6 ribosomal protein signaling pathways in TR146 cells. We have shown that erucin has anti-inflammatory effects on oral epithelial cells and also induces the production of antioxidant mediators.
Conclusions: These results suggest that erucin may provide a new anti-inflammatory agent that can be used in the treatment of periodontitis.
Objective: Hydroxychloroquine (HCQ) is a US Food and Drug Administration (FDA)-approved treatment for systemic lupus erythematosus (SLE) through inhibition of antigen presentation and subsequent reduction in T cell activation. Psoriasis relapse after antimalarial therapy have been reported in up to 18% of patients with psoriasis. Here, we explored the role of HCQ on exacerbating dermatitis utilizing an imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model.
Methods: Thirty-six C57BL/6 female mice were divided into six groups: wild-type control, IMQ-Only, pre-treat HCQ (30 mg/kg and 60 mg/kg HCQ), and co-treat HCQ with IMQ (30 mg/kg and 60 mg/kg HCQ). Besides control, all were topically treated with IMQ for 5 days. Pharmacological effects and mechanisms of HCQ were assessed by clinical severity of dermatitis, histopathology, and flow cytometry. HaCaT cells were co-treated with both HCQ and recombinant IL-17A, followed by the detection of proinflammatory cytokine expression and gene profiles through enzyme-linked immunosorbent assay and next-generation sequencing.
Results: In the pre-treated and co-treated HCQ groups, skin redness and scaling were significantly increased compared to the IMQ-Only group, and Th17 cell expression was also upregulated. Acanthosis and CD11b+IL23+ dendritic cell (DC) infiltration were observed in the HCQ treatment group. IL-6 overexpression was detected in both the HaCaT cells and skin from the experimental mice. Psoriasis-related genes were regulated after being co-treated with HCQ and recombinant IL-17A in HaCaT cells.
Conclusions: HCQ exacerbates psoriasis-like skin inflammation by increasing the expression of IL-6, stimulating DC infiltration, and promoting Th17 expression in the microenvironment of the skin.
Key messages: This study provided possible mechanisms for inducing psoriasis during HCQ treatment through an animal model.