首页 > 最新文献

IEEE Transactions on Information Theory最新文献

英文 中文
IEEE Transactions on Information Theory Information for Authors IEEE信息理论汇刊:作者信息
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-25 DOI: 10.1109/TIT.2025.3632187
{"title":"IEEE Transactions on Information Theory Information for Authors","authors":"","doi":"10.1109/TIT.2025.3632187","DOIUrl":"https://doi.org/10.1109/TIT.2025.3632187","url":null,"abstract":"","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 12","pages":"C3-C3"},"PeriodicalIF":2.9,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11268980","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrections to “Nonparametric Two-Sample Testing by Betting” 对“非参数双样本投注检验”的修正
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-25 DOI: 10.1109/TIT.2025.3614420
Shubhanshu Shekhar;Aaditya Ramdas
Lemma 2 of Shekhar and Ramdas (2024), which was used to derive the upper bound on the expected stopping time stated in (12), contains an error. In this note, we fix this error and provide the correct justification of (12), whose expression remains unchanged up to small constants.
用于推导式(12)中期望停止时间上界的Shekhar和Ramdas(2024)的引理2包含一个错误。在本文中,我们修复了这个错误,并提供了(12)的正确解释,其表达式直到小常数都保持不变。
{"title":"Corrections to “Nonparametric Two-Sample Testing by Betting”","authors":"Shubhanshu Shekhar;Aaditya Ramdas","doi":"10.1109/TIT.2025.3614420","DOIUrl":"https://doi.org/10.1109/TIT.2025.3614420","url":null,"abstract":"<xref>Lemma 2</xref> of Shekhar and Ramdas (2024), which was used to derive the upper bound on the expected stopping time stated in <xref>(12)</xref>, contains an error. In this note, we fix this error and provide the correct justification of <xref>(12)</xref>, whose expression remains unchanged up to small constants.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"71 12","pages":"9804-9806"},"PeriodicalIF":2.9,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11268981","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Optimal Memory-Rate Tradeoff of Demand-Private Coded Caching 需求-私有编码缓存的最优内存速率权衡
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-20 DOI: 10.1109/TIT.2025.3635388
Qinyi Lu;Nan Liu;Wei Kang;Chunguo Li
We investigate the demand-private coded caching problem, in which K users, each equipped with a cache of size M, access a library of N files under a privacy constraint. This constraint requires that no user obtain any information about the demands of others. We first present a new virtual-user-based achievable scheme for arbitrary numbers of users and files, which yields tighter order-optimal guarantees when $N le K$ and $M le 1$ . Next, we further focus on the case $N le K$ . On the achievability side, for cache size $M in left [{{0, frac {N}{(K+1)(N-1)} }}right] $ , we propose a novel demand-private scheme based on the idea that each user’s decoding process should depend only on their own demand. In terms of converse, we derive a new converse bound that is applicable for $N leq K$ and arbitrary M. Comparing the proposed achievability and converse, we find the optimal memory-rate tradeoff of the demand-private coded caching problem for $M in left [{{0, frac {N}{(K+1)(N-1)} }}right] $ where $N le K le 2N-2$ , and the optimal memory-rate tradeoff for $M in left [{{0, frac {1}{K+1} }}right] $ where $ K gt 2N-2$ . Moreover, for the case of 2 files and arbitrary number of users, by deriving another new converse bound, the optimal memory-rate tradeoff is characterized for $Min left [{{0,frac {2}{K}}}right] cup left [{{frac {2(K-1)}{K+1},2}}right]$ . Finally, we provide the optimal memory-rate tradeoff of the demand-private coded caching problem for 2 files and 3 users under arbitrary cache size M.
我们研究了需求-私有编码缓存问题,其中K个用户,每个用户配备一个大小为M的缓存,在隐私约束下访问N个文件库。这个约束要求用户不能获得关于其他用户需求的任何信息。我们首先针对任意数量的用户和文件提出了一个新的基于虚拟用户的可实现方案,该方案在$N le K$和$M le 1$时产生更严格的顺序最优保证。接下来,我们进一步关注案例$N le K$。在可实现性方面,对于缓存大小$M in left [{{0, frac {N}{(K+1)(N-1)} }}right] $,我们提出了一种新颖的需求私有方案,该方案基于每个用户的解码过程应该只依赖于他们自己的需求。在逆向方面,我们推导了一个适用于$N leq K$和任意m的新逆向界。比较所提出的可实现性和逆向,我们发现需求私有编码缓存问题的最佳内存率权衡对于$M in left [{{0, frac {N}{(K+1)(N-1)} }}right] $ ($N le K le 2N-2$)和对于$M in left [{{0, frac {1}{K+1} }}right] $ ($ K gt 2N-2$)的最佳内存率权衡。此外,对于2个文件和任意数量的用户的情况,通过推导另一个新的逆界,表征为$Min left [{{0,frac {2}{K}}}right] cup left [{{frac {2(K-1)}{K+1},2}}right]$的最优内存率权衡。最后,我们在任意缓存大小M下为2个文件和3个用户提供了需求私有编码缓存问题的最佳内存率权衡。
{"title":"On the Optimal Memory-Rate Tradeoff of Demand-Private Coded Caching","authors":"Qinyi Lu;Nan Liu;Wei Kang;Chunguo Li","doi":"10.1109/TIT.2025.3635388","DOIUrl":"https://doi.org/10.1109/TIT.2025.3635388","url":null,"abstract":"We investigate the demand-private coded caching problem, in which <italic>K</i> users, each equipped with a cache of size <italic>M</i>, access a library of <italic>N</i> files under a privacy constraint. This constraint requires that no user obtain any information about the demands of others. We first present a new virtual-user-based achievable scheme for arbitrary numbers of users and files, which yields tighter order-optimal guarantees when <inline-formula> <tex-math>$N le K$ </tex-math></inline-formula> and <inline-formula> <tex-math>$M le 1$ </tex-math></inline-formula>. Next, we further focus on the case <inline-formula> <tex-math>$N le K$ </tex-math></inline-formula>. On the achievability side, for cache size <inline-formula> <tex-math>$M in left [{{0, frac {N}{(K+1)(N-1)} }}right] $ </tex-math></inline-formula>, we propose a novel demand-private scheme based on the idea that each user’s decoding process should depend only on their own demand. In terms of converse, we derive a new converse bound that is applicable for <inline-formula> <tex-math>$N leq K$ </tex-math></inline-formula> and arbitrary <italic>M</i>. Comparing the proposed achievability and converse, we find the optimal memory-rate tradeoff of the demand-private coded caching problem for <inline-formula> <tex-math>$M in left [{{0, frac {N}{(K+1)(N-1)} }}right] $ </tex-math></inline-formula> where <inline-formula> <tex-math>$N le K le 2N-2$ </tex-math></inline-formula>, and the optimal memory-rate tradeoff for <inline-formula> <tex-math>$M in left [{{0, frac {1}{K+1} }}right] $ </tex-math></inline-formula> where <inline-formula> <tex-math>$ K gt 2N-2$ </tex-math></inline-formula>. Moreover, for the case of 2 files and arbitrary number of users, by deriving another new converse bound, the optimal memory-rate tradeoff is characterized for <inline-formula> <tex-math>$Min left [{{0,frac {2}{K}}}right] cup left [{{frac {2(K-1)}{K+1},2}}right]$ </tex-math></inline-formula>. Finally, we provide the optimal memory-rate tradeoff of the demand-private coded caching problem for 2 files and 3 users under arbitrary cache size <italic>M</i>.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"664-690"},"PeriodicalIF":2.9,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical Inference for Linear Functionals of Online Least-Squares SGD When t ≳ d1+δ t≥d1+δ时在线最小二乘SGD线性泛函的统计推断
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-20 DOI: 10.1109/TIT.2025.3635118
Bhavya Agrawalla;Krishnakumar Balasubramanian;Promit Ghosal
Stochastic Gradient Descent (SGD) has become a cornerstone method in modern data science. However, deploying SGD in high-stakes applications necessitates rigorous quantification of its inherent uncertainty. In this work, we establish non-asymptotic Berry–Esseen bounds for linear functionals of online least-squares SGD, thereby providing a Gaussian Central Limit Theorem (CLT) in a growing-dimensional regime. Existing approaches to high-dimensional inference for projection parameters, such as Chang et al., 2023, rely on inverting empirical covariance matrices and require at least $t gtrsim d^{3/2}$ iterations to achieve finite-sample Berry–Esseen guarantees, rendering them computationally expensive and restrictive in the allowable dimensional scaling. In contrast, we show that a CLT holds for SGD iterates when the number of iterations grows as $t gtrsim d^{1+delta }$ for any $delta gt 0$ , significantly extending the dimensional regime permitted by prior works while improving computational efficiency. The proposed online SGD-based procedure operates in $mathcal {O}(td)$ time and requires only $mathcal {O}(d)$ memory, in contrast to the $mathcal {O}(td^{2} + d^{3})$ runtime of covariance-inversion methods. To render the theory practically applicable, we further develop an online variance estimator for the asymptotic variance appearing in the CLT and establish high-probability deviation bounds for this estimator. Collectively, these results yield the first fully online and data-driven framework for constructing confidence intervals for SGD iterates in the near-optimal scaling regime $t gtrsim d^{1+delta }$ .
随机梯度下降法(SGD)已成为现代数据科学的基础方法。然而,在高风险应用中部署SGD需要对其固有的不确定性进行严格的量化。在这项工作中,我们建立了在线最小二乘SGD的线性泛函的非渐近Berry-Esseen界,从而提供了增长维域中的高斯中心极限定理(CLT)。现有的投影参数高维推理方法,如Chang等人,2023,依赖于反转经验协方差矩阵,并且需要至少$t gtrsim d^{3/2}$迭代才能实现有限样本Berry-Esseen保证,这使得它们在计算上昂贵,并且在允许的维度缩放方面受到限制。相反,我们表明,当迭代次数为$t gtrsim d^{1+delta}$时,对于SGD迭代,CLT保持不变,对于任何$delta gt 0$,显著扩展了先前工作允许的维度范围,同时提高了计算效率。所提出的基于sgd的在线过程在$mathcal {O}(td)$时间内运行,并且只需要$mathcal {O}(d)$内存,而不需要$mathcal {O}(td^{2} + d^{3})$运行时间。为了使理论实际应用,我们进一步开发了CLT中出现的渐近方差的在线方差估计量,并为该估计量建立了高概率偏差界。总的来说,这些结果产生了第一个完全在线和数据驱动的框架,用于在接近最优的缩放体系$t gtrsim d^{1+delta}$中构造SGD迭代的置信区间。
{"title":"Statistical Inference for Linear Functionals of Online Least-Squares SGD When t ≳ d1+δ","authors":"Bhavya Agrawalla;Krishnakumar Balasubramanian;Promit Ghosal","doi":"10.1109/TIT.2025.3635118","DOIUrl":"https://doi.org/10.1109/TIT.2025.3635118","url":null,"abstract":"Stochastic Gradient Descent (SGD) has become a cornerstone method in modern data science. However, deploying SGD in high-stakes applications necessitates rigorous quantification of its inherent uncertainty. In this work, we establish <italic>non-asymptotic Berry–Esseen bounds</i> for linear functionals of online least-squares SGD, thereby providing a Gaussian Central Limit Theorem (CLT) in a <italic>growing-dimensional regime</i>. Existing approaches to high-dimensional inference for projection parameters, such as Chang et al., 2023, rely on inverting empirical covariance matrices and require at least <inline-formula> <tex-math>$t gtrsim d^{3/2}$ </tex-math></inline-formula> iterations to achieve finite-sample Berry–Esseen guarantees, rendering them computationally expensive and restrictive in the allowable dimensional scaling. In contrast, we show that a CLT holds for SGD iterates when the number of iterations grows as <inline-formula> <tex-math>$t gtrsim d^{1+delta }$ </tex-math></inline-formula> for any <inline-formula> <tex-math>$delta gt 0$ </tex-math></inline-formula>, significantly extending the dimensional regime permitted by prior works while improving computational efficiency. The proposed online SGD-based procedure operates in <inline-formula> <tex-math>$mathcal {O}(td)$ </tex-math></inline-formula> time and requires only <inline-formula> <tex-math>$mathcal {O}(d)$ </tex-math></inline-formula> memory, in contrast to the <inline-formula> <tex-math>$mathcal {O}(td^{2} + d^{3})$ </tex-math></inline-formula> runtime of covariance-inversion methods. To render the theory practically applicable, we further develop an <italic>online variance estimator</i> for the asymptotic variance appearing in the CLT and establish <italic>high-probability deviation bounds</i> for this estimator. Collectively, these results yield the first fully online and data-driven framework for constructing confidence intervals for SGD iterates in the near-optimal scaling regime <inline-formula> <tex-math>$t gtrsim d^{1+delta }$ </tex-math></inline-formula>.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"447-477"},"PeriodicalIF":2.9,"publicationDate":"2025-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Mean Change Point Testing in High-Dimensional Data With Heavy Tails 具有重尾的高维数据鲁棒均值变点检验
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-18 DOI: 10.1109/TIT.2025.3634207
Mengchu Li;Yudong Chen;Tengyao Wang;Yi Yu
We study mean change point testing problems for high-dimensional data, with exponentially- or polynomially-decaying tails. In each case, depending on the $ell _{0}$ -norm of the mean change vector, we separately consider dense and sparse regimes. We characterise the boundary between the dense and sparse regimes under the above two tail conditions for the first time in the change point literature and propose novel testing procedures that attain optimal rates in each of the four regimes up to a poly-iterated logarithmic factor. To be specific, when the error distributions possess exponentially-decaying tails, a near-optimal CUSUM-type statistic is considered. As for polynomially-decaying tails, admitting bounded $alpha $ -th moments for some $alpha geq 4$ , we introduce a median-of-means-type test statistic that achieves a near-optimal testing rate in both dense and sparse regimes. Our investigation in the even more challenging case of $2 leq alpha lt 4$ , unveils a new phenomenon that the minimax testing rate has no sparse regime, i.e. testing sparse changes is information-theoretically as hard as testing dense changes. Finally, we consider various extensions where we also obtain near-optimal performances, including testing against multiple change points, allowing temporal dependence as well as fewer than two finite moments in the data generating mechanisms. We also show how sub-Gaussian rates can be achieved when an additional minimal spacing condition is imposed under the alternative hypothesis.
我们研究了具有指数或多项式衰减尾的高维数据的均值变化点检验问题。在每种情况下,根据平均变化向量的$ell _{0}$ -范数,我们分别考虑密集和稀疏状态。我们首次在变化点文献中描述了上述两种尾部条件下密集和稀疏状态之间的边界,并提出了新的测试程序,该程序可以在四种状态中的每一种状态中获得最佳速率,直至一个多迭代对数因子。具体地说,当误差分布具有指数衰减的尾部时,考虑一个接近最优的cusum型统计量。对于多项式衰减的尾部,允许某些$alpha geq 4$的有界$alpha $ -矩,我们引入了一个中位数型检验统计量,该统计量在密集和稀疏状态下都实现了接近最优的检验率。我们在更具挑战性的$2 leq alpha lt 4$案例中的调查揭示了一个新的现象,即极小极大测试率没有稀疏状态,即测试稀疏变化在理论上和测试密集变化一样困难。最后,我们考虑了各种扩展,其中我们也获得了接近最优的性能,包括针对多个更改点的测试,允许时间依赖性以及数据生成机制中的少于两个有限时刻。我们还展示了当在备选假设下施加额外的最小间距条件时如何实现亚高斯率。
{"title":"Robust Mean Change Point Testing in High-Dimensional Data With Heavy Tails","authors":"Mengchu Li;Yudong Chen;Tengyao Wang;Yi Yu","doi":"10.1109/TIT.2025.3634207","DOIUrl":"https://doi.org/10.1109/TIT.2025.3634207","url":null,"abstract":"We study mean change point testing problems for high-dimensional data, with exponentially- or polynomially-decaying tails. In each case, depending on the <inline-formula> <tex-math>$ell _{0}$ </tex-math></inline-formula>-norm of the mean change vector, we separately consider dense and sparse regimes. We characterise the boundary between the dense and sparse regimes under the above two tail conditions for the first time in the change point literature and propose novel testing procedures that attain optimal rates in each of the four regimes up to a poly-iterated logarithmic factor. To be specific, when the error distributions possess exponentially-decaying tails, a near-optimal CUSUM-type statistic is considered. As for polynomially-decaying tails, admitting bounded <inline-formula> <tex-math>$alpha $ </tex-math></inline-formula>-th moments for some <inline-formula> <tex-math>$alpha geq 4$ </tex-math></inline-formula>, we introduce a median-of-means-type test statistic that achieves a near-optimal testing rate in both dense and sparse regimes. Our investigation in the even more challenging case of <inline-formula> <tex-math>$2 leq alpha lt 4$ </tex-math></inline-formula>, unveils a new phenomenon that the minimax testing rate has no sparse regime, i.e. testing sparse changes is information-theoretically as hard as testing dense changes. Finally, we consider various extensions where we also obtain near-optimal performances, including testing against multiple change points, allowing temporal dependence as well as fewer than two finite moments in the data generating mechanisms. We also show how sub-Gaussian rates can be achieved when an additional minimal spacing condition is imposed under the alternative hypothesis.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"571-609"},"PeriodicalIF":2.9,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Quantum Weight Enumerators From the n-Qubit Parallelized SWAP Test 从n-量子位并行SWAP测试探索量子权重枚举数
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-18 DOI: 10.1109/TIT.2025.3634135
Fei Shi;Kaiyi Guo;Xiande Zhang;Qi Zhao
Quantum weight enumerators are fundamental tools for analyzing quantum error-correcting codes and multipartite entanglement, offering insights into the existence of quantum error-correcting codes and $k$ -uniform states. In this work, we establish a connection between quantum weight enumerators and the $n$ -qubit parallelized SWAP test. We demonstrate that each shadow enumerator corresponds to a probability derived from this test, providing a physical interpretation for the shadow enumerators. Leveraging the non-negativity of these probabilities, we present an elegant proof for the shadow inequalities. Additionally, we show that the Shor-Laflamme weight enumerators and the Rains unitary enumerators can be calculated using the $n$ -qubit parallelized SWAP test. For applications, we utilize this test to compute the distances of quantum error-correcting codes, determine the $k$ -uniformity of pure states, and evaluate multipartite entanglement measures. Our results indicate that quantum weight enumerators can be efficiently estimated on quantum computers, opening a path to calculate and verify the distances of quantum error-correcting codes.
量子权重枚举数是分析量子纠错码和多部纠缠的基本工具,提供了对量子纠错码和$k$均匀态存在性的见解。在这项工作中,我们建立了量子权重枚举器和$n$ -量子比特并行SWAP测试之间的联系。我们演示了每个影子枚举数对应于从该测试中得出的概率,为影子枚举数提供了物理解释。利用这些概率的非负性,我们给出了影子不等式的一个优雅的证明。此外,我们还证明了short - laflamme权重枚举数和Rains一元枚举数可以使用$n$量子位并行SWAP测试来计算。在应用方面,我们利用该测试来计算量子纠错码的距离,确定纯态的k均匀性,并评估多方纠缠措施。我们的研究结果表明,量子权重枚举数可以在量子计算机上有效地估计,为计算和验证量子纠错码的距离开辟了一条途径。
{"title":"Exploring Quantum Weight Enumerators From the n-Qubit Parallelized SWAP Test","authors":"Fei Shi;Kaiyi Guo;Xiande Zhang;Qi Zhao","doi":"10.1109/TIT.2025.3634135","DOIUrl":"https://doi.org/10.1109/TIT.2025.3634135","url":null,"abstract":"Quantum weight enumerators are fundamental tools for analyzing quantum error-correcting codes and multipartite entanglement, offering insights into the existence of quantum error-correcting codes and <inline-formula> <tex-math>$k$ </tex-math></inline-formula>-uniform states. In this work, we establish a connection between quantum weight enumerators and the <inline-formula> <tex-math>$n$ </tex-math></inline-formula>-qubit parallelized SWAP test. We demonstrate that each shadow enumerator corresponds to a probability derived from this test, providing a physical interpretation for the shadow enumerators. Leveraging the non-negativity of these probabilities, we present an elegant proof for the shadow inequalities. Additionally, we show that the Shor-Laflamme weight enumerators and the Rains unitary enumerators can be calculated using the <inline-formula> <tex-math>$n$ </tex-math></inline-formula>-qubit parallelized SWAP test. For applications, we utilize this test to compute the distances of quantum error-correcting codes, determine the <inline-formula> <tex-math>$k$ </tex-math></inline-formula>-uniformity of pure states, and evaluate multipartite entanglement measures. Our results indicate that quantum weight enumerators can be efficiently estimated on quantum computers, opening a path to calculate and verify the distances of quantum error-correcting codes.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 2","pages":"1220-1231"},"PeriodicalIF":2.9,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146015942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large Sets of Quasi-Complementary Sequences From Polynomials Over Finite Fields and Gaussian Sums 有限域上多项式的大拟互补序列集与高斯和
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-18 DOI: 10.1109/TIT.2025.3634168
Ziling Heng;Peng Wang;Chunlei Xie;Haiyan Zhou
In recent years, quasi-complementary sequence sets (QCSSs) have attracted widespread attention as they can support more users in MC-CDMA communications than perfect complementary sequence sets (PCSSs). The objective of this paper is to present three novel constructions of asymptotically optimal or near-optimal periodic QCSSs based on algebraic methods. Firstly, we propose a generic construction of QCSSs with small alphabet size p from polynomials over finite fields. Using the quadratic and cubic polynomials, we then respectively derive an infinite family of asymptotically optimal QCSSs and an infinite family of asymptotically near-optimal periodic QCSSs with large set sizes. Secondly, we give a construction of periodic QCSSs based on Gaussian sums which have smaller periodic tolerance than that of a known family of QCSSs. Thirdly, we present a construction of periodic QCSSs from permutation polynomials and complementary sets, yielding an infinite family of QCSSs with large set size, small periodic tolerance and low column sequence peak-to-average power ratio (PAPR).
近年来,准互补序列集(QCSSs)因其在MC-CDMA通信中比完全互补序列集(pcss)支持更多的用户而受到广泛关注。本文的目的是提出三种基于代数方法的渐近最优或近最优周期QCSSs的新结构。首先,我们从有限域上的多项式中提出了一个具有小字母大小p的qcss的一般构造。然后,利用二次多项式和三次多项式,我们分别导出了无穷族的渐近最优qcss和无穷族的具有大集大小的渐近近最优周期qcss。其次,我们给出了一个基于高斯和的周期QCSSs的构造,它比已知的QCSSs族具有更小的周期容差。第三,利用置换多项式和互补集构造周期QCSSs,得到了一个集大、周期容差小、列序列峰均功率比(PAPR)低的无限族QCSSs。
{"title":"Large Sets of Quasi-Complementary Sequences From Polynomials Over Finite Fields and Gaussian Sums","authors":"Ziling Heng;Peng Wang;Chunlei Xie;Haiyan Zhou","doi":"10.1109/TIT.2025.3634168","DOIUrl":"https://doi.org/10.1109/TIT.2025.3634168","url":null,"abstract":"In recent years, quasi-complementary sequence sets (QCSSs) have attracted widespread attention as they can support more users in MC-CDMA communications than perfect complementary sequence sets (PCSSs). The objective of this paper is to present three novel constructions of asymptotically optimal or near-optimal periodic QCSSs based on algebraic methods. Firstly, we propose a generic construction of QCSSs with small alphabet size <italic>p</i> from polynomials over finite fields. Using the quadratic and cubic polynomials, we then respectively derive an infinite family of asymptotically optimal QCSSs and an infinite family of asymptotically near-optimal periodic QCSSs with large set sizes. Secondly, we give a construction of periodic QCSSs based on Gaussian sums which have smaller periodic tolerance than that of a known family of QCSSs. Thirdly, we present a construction of periodic QCSSs from permutation polynomials and complementary sets, yielding an infinite family of QCSSs with large set size, small periodic tolerance and low column sequence peak-to-average power ratio (PAPR).","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"729-741"},"PeriodicalIF":2.9,"publicationDate":"2025-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Universal Discrete Filtering With Lookahead or Delay 具有前瞻或延迟的通用离散滤波
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-17 DOI: 10.1109/TIT.2025.3633236
Pumiao Yan;Jiwon Jeong;Naomi Sagan;Tsachy Weissman
We consider the universal discrete filtering problem, where an input sequence generated by an unknown source passes through a discrete memoryless channel, and the goal is to estimate its components based on the output sequence, with limited lookahead or delay. We propose and establish the universality of a family of schemes for this setting. These schemes are induced by universal Sequential Probability Assignments (SPAs), and inherit their computational properties. We show that the schemes induced by LZ78 (a Lempel-Ziv compression algorithm) are practically implementable and well-suited for scenarios with limited computational resources and latency constraints. As a byproduct of our analysis, we obtain novel upper and lower bounds in the purely Bayesian setting using some of the intermediate results.
我们考虑了通用离散滤波问题,其中未知源产生的输入序列通过一个离散的无记忆通道,目标是在有限的前瞻性或延迟下,根据输出序列估计其分量。我们提出并确立了这一背景下一系列方案的普遍性。这些方案是由通用序列概率赋值(SPAs)引起的,并继承了它们的计算特性。我们证明了由LZ78(一种Lempel-Ziv压缩算法)诱导的方案实际上是可实现的,并且非常适合计算资源有限和延迟约束的场景。作为我们分析的副产品,我们使用一些中间结果在纯贝叶斯设置中获得了新的上界和下界。
{"title":"Universal Discrete Filtering With Lookahead or Delay","authors":"Pumiao Yan;Jiwon Jeong;Naomi Sagan;Tsachy Weissman","doi":"10.1109/TIT.2025.3633236","DOIUrl":"https://doi.org/10.1109/TIT.2025.3633236","url":null,"abstract":"We consider the universal discrete filtering problem, where an input sequence generated by an unknown source passes through a discrete memoryless channel, and the goal is to estimate its components based on the output sequence, with limited lookahead or delay. We propose and establish the universality of a family of schemes for this setting. These schemes are induced by universal Sequential Probability Assignments (SPAs), and inherit their computational properties. We show that the schemes induced by LZ78 (a Lempel-Ziv compression algorithm) are practically implementable and well-suited for scenarios with limited computational resources and latency constraints. As a byproduct of our analysis, we obtain novel upper and lower bounds in the purely Bayesian setting using some of the intermediate results.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"791-809"},"PeriodicalIF":2.9,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Optimal Condition Number for ReLU Function ReLU函数的最优条件数
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-14 DOI: 10.1109/TIT.2025.3633042
Yu Xia;Haoyu Zhou
ReLU is a widely used activation function in deep neural networks. This paper explores the stability properties of the ReLU map. For any weight matrix $boldsymbol {A} in mathbb {R}^{m times n}$ and bias vector ${boldsymbol {b}}in mathbb {R}^{m}$ at a given layer, we define the condition number $kappa _{{boldsymbol {A}},{boldsymbol {b}}}$ as $kappa _{{boldsymbol {A}},{boldsymbol {b}}} = frac {{mathcal {U}}_{{boldsymbol {A}},{boldsymbol {b}}}}{{mathcal {L}}_{{boldsymbol {A}},{boldsymbol {b}}}}$ , where ${mathcal {U}}_{{boldsymbol {A}},{boldsymbol {b}}}$ and ${mathcal {L}}_{{boldsymbol {A}},{boldsymbol {b}}}$ are the upper and lower Lipschitz constants, respectively. We first demonstrate that for any given $boldsymbol {A}$ and $boldsymbol {b}$ , the condition number satisfies $kappa _{{boldsymbol {A}},{boldsymbol {b}}} geq sqrt {2}$ . Moreover, when the weights of the network at a given layer are initialized as random i.i.d. Gaussian variables and the bias term is set to zero, the condition number asymptotically approaches this lower bound. Our findings offer valuable insights into the characteristics of randomly initialized neural networks, contributing to a better understanding of their initial behavior and potential performance.
ReLU是深度神经网络中应用广泛的激活函数。本文探讨了ReLU映射的稳定性。对于给定层上的任何权重矩阵$boldsymbol {A} in mathbb {R}^{m times n}$和偏置向量${boldsymbol {b}}in mathbb {R}^{m}$,我们将条件数$kappa _{{boldsymbol {A}},{boldsymbol {b}}}$定义为$kappa _{{boldsymbol {A}},{boldsymbol {b}}} = frac {{mathcal {U}}_{{boldsymbol {A}},{boldsymbol {b}}}}{{mathcal {L}}_{{boldsymbol {A}},{boldsymbol {b}}}}$,其中${mathcal {U}}_{{boldsymbol {A}},{boldsymbol {b}}}$和${mathcal {L}}_{{boldsymbol {A}},{boldsymbol {b}}}$分别是上、下Lipschitz常数。我们首先证明,对于任意给定的$boldsymbol {A}$和$boldsymbol {b}$,条件数满足$kappa _{{boldsymbol {A}},{boldsymbol {b}}} geq sqrt {2}$。此外,当给定层的网络权值初始化为随机的i.i.d高斯变量,且偏差项设为零时,条件数渐近于该下界。我们的发现为随机初始化神经网络的特征提供了有价值的见解,有助于更好地理解它们的初始行为和潜在性能。
{"title":"The Optimal Condition Number for ReLU Function","authors":"Yu Xia;Haoyu Zhou","doi":"10.1109/TIT.2025.3633042","DOIUrl":"https://doi.org/10.1109/TIT.2025.3633042","url":null,"abstract":"ReLU is a widely used activation function in deep neural networks. This paper explores the stability properties of the ReLU map. For any weight matrix <inline-formula> <tex-math>$boldsymbol {A} in mathbb {R}^{m times n}$ </tex-math></inline-formula> and bias vector <inline-formula> <tex-math>${boldsymbol {b}}in mathbb {R}^{m}$ </tex-math></inline-formula> at a given layer, we define the condition number <inline-formula> <tex-math>$kappa _{{boldsymbol {A}},{boldsymbol {b}}}$ </tex-math></inline-formula> as <inline-formula> <tex-math>$kappa _{{boldsymbol {A}},{boldsymbol {b}}} = frac {{mathcal {U}}_{{boldsymbol {A}},{boldsymbol {b}}}}{{mathcal {L}}_{{boldsymbol {A}},{boldsymbol {b}}}}$ </tex-math></inline-formula>, where <inline-formula> <tex-math>${mathcal {U}}_{{boldsymbol {A}},{boldsymbol {b}}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${mathcal {L}}_{{boldsymbol {A}},{boldsymbol {b}}}$ </tex-math></inline-formula> are the upper and lower Lipschitz constants, respectively. We first demonstrate that for any given <inline-formula> <tex-math>$boldsymbol {A}$ </tex-math></inline-formula> and <inline-formula> <tex-math>$boldsymbol {b}$ </tex-math></inline-formula>, the condition number satisfies <inline-formula> <tex-math>$kappa _{{boldsymbol {A}},{boldsymbol {b}}} geq sqrt {2}$ </tex-math></inline-formula>. Moreover, when the weights of the network at a given layer are initialized as random i.i.d. Gaussian variables and the bias term is set to zero, the condition number asymptotically approaches this lower bound. Our findings offer valuable insights into the characteristics of randomly initialized neural networks, contributing to a better understanding of their initial behavior and potential performance.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"710-728"},"PeriodicalIF":2.9,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hierarchically Block-Sparse Recovery With Prior Support Information 基于先验支持信息的分层块稀疏恢复
IF 2.9 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2025-11-11 DOI: 10.1109/TIT.2025.3631735
Liyang Lu;Haochen Wu;Wenbo Xu;Zhaocheng Wang;H. Vincent Poor
We provide new recovery bounds for hierarchical compressed sensing (HCS) based on prior support information (PSI). A detailed PSI-enabled reconstruction model is formulated using various forms of PSI. The hierarchical block orthogonal matching pursuit with PSI (HiBOMP-P) algorithm is designed in a recursive form to reliably recover hierarchically block-sparse signals. We derive exact recovery conditions (ERCs) measured by the mutual incoherence property (MIP), wherein hierarchical MIP concepts are proposed, and further develop reconstructible sparsity levels to reveal sufficient conditions for ERCs. Leveraging these MIP analyses, we present several extended insights, including reliable recovery conditions in noisy scenarios and the optimal hierarchical structure for cases where sparsity is not equal to zero. Our results further confirm that HCS offers improved recovery performance even when the prior information does not overlap with the true support set, whereas existing methods heavily rely on this overlap, thereby compromising performance if it is absent.
我们基于先验支持信息(PSI)为分层压缩感知(HCS)提供了新的恢复边界。使用各种形式的PSI制定了一个详细的支持PSI的重建模型。采用递归形式设计了基于PSI的分层块正交匹配追踪算法(HiBOMP-P),以可靠地恢复分层块稀疏信号。我们推导了由互相干性(MIP)测量的精确恢复条件(ERCs),其中提出了分层MIP概念,并进一步发展了可重构稀疏度水平以揭示ERCs的充分条件。利用这些MIP分析,我们提出了几个扩展的见解,包括噪声场景下的可靠恢复条件,以及稀疏度不等于零的情况下的最佳分层结构。我们的研究结果进一步证实,即使在先验信息与真实支持集不重叠的情况下,HCS也能提供更好的恢复性能,而现有的方法严重依赖于这种重叠,因此如果没有重叠,就会影响性能。
{"title":"Hierarchically Block-Sparse Recovery With Prior Support Information","authors":"Liyang Lu;Haochen Wu;Wenbo Xu;Zhaocheng Wang;H. Vincent Poor","doi":"10.1109/TIT.2025.3631735","DOIUrl":"https://doi.org/10.1109/TIT.2025.3631735","url":null,"abstract":"We provide new recovery bounds for hierarchical compressed sensing (HCS) based on prior support information (PSI). A detailed PSI-enabled reconstruction model is formulated using various forms of PSI. The hierarchical block orthogonal matching pursuit with PSI (HiBOMP-P) algorithm is designed in a recursive form to reliably recover hierarchically block-sparse signals. We derive exact recovery conditions (ERCs) measured by the mutual incoherence property (MIP), wherein hierarchical MIP concepts are proposed, and further develop reconstructible sparsity levels to reveal sufficient conditions for ERCs. Leveraging these MIP analyses, we present several extended insights, including reliable recovery conditions in noisy scenarios and the optimal hierarchical structure for cases where sparsity is not equal to zero. Our results further confirm that HCS offers improved recovery performance even when the prior information does not overlap with the true support set, whereas existing methods heavily rely on this overlap, thereby compromising performance if it is absent.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"72 1","pages":"765-790"},"PeriodicalIF":2.9,"publicationDate":"2025-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145808591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Transactions on Information Theory
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1