Pub Date : 2024-08-01Epub Date: 2024-06-08DOI: 10.1007/s00011-024-01898-1
Marta Ciszek-Lenda, Bernadeta Nowak, Grzegorz Majka, Maciej Suski, Maria Walczewska, Angelika Fedor, Edyta Golińska, Sabina Górska, Andrzej Gamian, Rafał Olszanecki, Magdalena Strus, Janusz Marcinkiewicz
OBJECTIVE P. AERUGINOSA: (PA), the major pathogen of lung cystic fibrosis (CF), polarizes macrophages into hyperinflammatory tissue damaging phenotype. The main aim of this study was to verify whether training of macrophages with β-glucan might improve their response to P. aeruginosa infections.
Methods: To perform this task C57BL/6 mice sensitive to infections with P. aeruginosa were used. Peritoneal macrophages were trained with Saccharomyces cerevisiae β-glucan and exposed to PA57, the strong biofilm-forming bacterial strain isolated from the patient with severe lung CF. The release of cytokines and the expression of macrophage phenotypic markers were measured. A quantitative proteomic approach was used for the characterization of proteome-wide changes in macrophages. The effect of in vivo β-glucan-trained macrophages in the air pouch model of PA57 infection was investigated. In all experiments the effect of trained and naïve macrophages was compared.
Results: Trained macrophages acquired a specific phenotype with mixed pro-inflammatory and pro-resolution characteristics, however they retained anti-bacterial properties. Most importantly, transfer of trained macrophages into infected air pouches markedly ameliorated the course of infection. PA57 bacterial growth and formation of biofilm were significantly suppressed. The level of serum amyloid A (SAA), a systemic inflammation biomarker, was reduced.
Conclusions: Training of murine macrophages with S. cerevisiae β-glucan improved macrophage defense properties along with inhibition of secretion of some detrimental inflammatory agents. We suggest that training of macrophages with such β-glucans might be a new therapeutic strategy in P. aeruginosa biofilm infections, including CF, to promote eradication of pathogens and resolution of inflammation.
{"title":"Saccharomyces cerevisiae β-glucan improves the response of trained macrophages to severe P. aeruginosa infections.","authors":"Marta Ciszek-Lenda, Bernadeta Nowak, Grzegorz Majka, Maciej Suski, Maria Walczewska, Angelika Fedor, Edyta Golińska, Sabina Górska, Andrzej Gamian, Rafał Olszanecki, Magdalena Strus, Janusz Marcinkiewicz","doi":"10.1007/s00011-024-01898-1","DOIUrl":"10.1007/s00011-024-01898-1","url":null,"abstract":"<p><p>OBJECTIVE P. AERUGINOSA: (PA), the major pathogen of lung cystic fibrosis (CF), polarizes macrophages into hyperinflammatory tissue damaging phenotype. The main aim of this study was to verify whether training of macrophages with β-glucan might improve their response to P. aeruginosa infections.</p><p><strong>Methods: </strong>To perform this task C57BL/6 mice sensitive to infections with P. aeruginosa were used. Peritoneal macrophages were trained with Saccharomyces cerevisiae β-glucan and exposed to PA57, the strong biofilm-forming bacterial strain isolated from the patient with severe lung CF. The release of cytokines and the expression of macrophage phenotypic markers were measured. A quantitative proteomic approach was used for the characterization of proteome-wide changes in macrophages. The effect of in vivo β-glucan-trained macrophages in the air pouch model of PA57 infection was investigated. In all experiments the effect of trained and naïve macrophages was compared.</p><p><strong>Results: </strong>Trained macrophages acquired a specific phenotype with mixed pro-inflammatory and pro-resolution characteristics, however they retained anti-bacterial properties. Most importantly, transfer of trained macrophages into infected air pouches markedly ameliorated the course of infection. PA57 bacterial growth and formation of biofilm were significantly suppressed. The level of serum amyloid A (SAA), a systemic inflammation biomarker, was reduced.</p><p><strong>Conclusions: </strong>Training of murine macrophages with S. cerevisiae β-glucan improved macrophage defense properties along with inhibition of secretion of some detrimental inflammatory agents. We suggest that training of macrophages with such β-glucans might be a new therapeutic strategy in P. aeruginosa biofilm infections, including CF, to promote eradication of pathogens and resolution of inflammation.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1283-1297"},"PeriodicalIF":4.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Tumor microenvironment (TME) heterogeneity is an important factor affecting the treatment response of immune checkpoint inhibitors (ICI). However, the TME heterogeneity of melanoma is still widely characterized.
Methods: We downloaded the single-cell sequencing data sets of two melanoma patients from the GEO database, and used the "Scissor" algorithm and the "BayesPrism" algorithm to comprehensively analyze the characteristics of microenvironment cells based on single-cell and bulk RNA-seq data. The prediction model of immunotherapy response was constructed by machine learning and verified in three cohorts of GEO database.
Results: We identified seven cell types. In the Scissor+ subtype cell population, the top three were T cells, B cells and melanoma cells. In the Scissor- subtype, there are more macrophages. By quantifying the characteristics of TME, significant differences in B cells between responders and non-responders were observed. The higher the proportion of B cells, the better the prognosis. At the same time, macrophages in the non-responsive group increased significantly. Finally, nine gene features for predicting ICI response were constructed, and their predictive performance was superior in three external validation groups.
Conclusion: Our study revealed the heterogeneity of melanoma TME and found a new predictive biomarker, which provided theoretical support and new insights for precise immunotherapy of melanoma patients.
{"title":"Comprehensive analysis of single cell and bulk RNA sequencing reveals the heterogeneity of melanoma tumor microenvironment and predicts the response of immunotherapy.","authors":"Yuan Zhang, Cong Zhang, Jing He, Guichuan Lai, Wenlong Li, Haijiao Zeng, Xiaoni Zhong, Biao Xie","doi":"10.1007/s00011-024-01905-5","DOIUrl":"10.1007/s00011-024-01905-5","url":null,"abstract":"<p><strong>Background: </strong>Tumor microenvironment (TME) heterogeneity is an important factor affecting the treatment response of immune checkpoint inhibitors (ICI). However, the TME heterogeneity of melanoma is still widely characterized.</p><p><strong>Methods: </strong>We downloaded the single-cell sequencing data sets of two melanoma patients from the GEO database, and used the \"Scissor\" algorithm and the \"BayesPrism\" algorithm to comprehensively analyze the characteristics of microenvironment cells based on single-cell and bulk RNA-seq data. The prediction model of immunotherapy response was constructed by machine learning and verified in three cohorts of GEO database.</p><p><strong>Results: </strong>We identified seven cell types. In the Scissor<sup>+</sup> subtype cell population, the top three were T cells, B cells and melanoma cells. In the Scissor<sup>-</sup> subtype, there are more macrophages. By quantifying the characteristics of TME, significant differences in B cells between responders and non-responders were observed. The higher the proportion of B cells, the better the prognosis. At the same time, macrophages in the non-responsive group increased significantly. Finally, nine gene features for predicting ICI response were constructed, and their predictive performance was superior in three external validation groups.</p><p><strong>Conclusion: </strong>Our study revealed the heterogeneity of melanoma TME and found a new predictive biomarker, which provided theoretical support and new insights for precise immunotherapy of melanoma patients.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1393-1409"},"PeriodicalIF":4.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-15DOI: 10.1007/s00011-024-01904-6
Hye Suk Baek, Victor Sukbong Hong, Hyunsu Kang, Sang-Jin Lee, Jin-Young Lee, Hyunju Kang, Seungik Jeong, Hyunho Jung, Jong Wook Park, Taeg Kyu Kwon, Chang-Nam Son, Sang Hyon Kim, Jinho Lee, Ki-Suk Kim, Shin Kim
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder characterized by joint destruction due to synovial hypertrophy and the infiltration of inflammatory cells. Despite substantial progress in RA treatment, challenges persist, including suboptimal treatment responses and adverse effects associated with current therapies. This study investigates the anti-rheumatic capabilities of the newly identified multi-protein kinase inhibitor, KMU-11342, aiming to develop innovative agents targeting RA. In this study, we synthesized the novel multi-protein kinase inhibitor KMU-11342, based on indolin-2-one. We assessed its cardiac electrophysiological safety using the Langendorff system in rat hearts and evaluated its toxicity in zebrafish in vivo. Additionally, we examined the anti-rheumatic effects of KMU-11342 on human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), THP-1 cells, and osteoclastogenesis in RAW264.7 cells. KMU-11342 demonstrated the ability to inhibit LPS-induced chemokine inhibition and the upregulation of pro-inflammatory cytokines, cyclooxygenase-2, inducible nitric oxide synthase, p-IKKα/β, p-NF-κB p65, and the nuclear translocation of NF-κB p65 in RA-FLS. It effectively suppressed the upregulation of NLR family pyrin domain containing 3 (NLRP3) and caspase-1 cleavage. Furthermore, KMU-11342 hindered the activation of osteoclast differentiation factors such as RANKL-induced TRAP, cathepsin K, NFATc-1, and c-Fos in RAW264.7 cells. KMU-11342 mitigates LPS-mediated inflammatory responses in THP-1 cells by inhibiting the activation of NLRP3 inflammasome. Notably, KMU-11342 exhibited minimal cytotoxicity in vivo and electrophysiological cardiotoxicity ex vivo. Consequently, KMU-11342 holds promise for development as a therapeutic agent in RA treatment.
{"title":"Anti-rheumatic property and physiological safety of KMU-11342 in in vitro and in vivo models.","authors":"Hye Suk Baek, Victor Sukbong Hong, Hyunsu Kang, Sang-Jin Lee, Jin-Young Lee, Hyunju Kang, Seungik Jeong, Hyunho Jung, Jong Wook Park, Taeg Kyu Kwon, Chang-Nam Son, Sang Hyon Kim, Jinho Lee, Ki-Suk Kim, Shin Kim","doi":"10.1007/s00011-024-01904-6","DOIUrl":"10.1007/s00011-024-01904-6","url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder characterized by joint destruction due to synovial hypertrophy and the infiltration of inflammatory cells. Despite substantial progress in RA treatment, challenges persist, including suboptimal treatment responses and adverse effects associated with current therapies. This study investigates the anti-rheumatic capabilities of the newly identified multi-protein kinase inhibitor, KMU-11342, aiming to develop innovative agents targeting RA. In this study, we synthesized the novel multi-protein kinase inhibitor KMU-11342, based on indolin-2-one. We assessed its cardiac electrophysiological safety using the Langendorff system in rat hearts and evaluated its toxicity in zebrafish in vivo. Additionally, we examined the anti-rheumatic effects of KMU-11342 on human rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS), THP-1 cells, and osteoclastogenesis in RAW264.7 cells. KMU-11342 demonstrated the ability to inhibit LPS-induced chemokine inhibition and the upregulation of pro-inflammatory cytokines, cyclooxygenase-2, inducible nitric oxide synthase, p-IKKα/β, p-NF-κB p65, and the nuclear translocation of NF-κB p65 in RA-FLS. It effectively suppressed the upregulation of NLR family pyrin domain containing 3 (NLRP3) and caspase-1 cleavage. Furthermore, KMU-11342 hindered the activation of osteoclast differentiation factors such as RANKL-induced TRAP, cathepsin K, NFATc-1, and c-Fos in RAW264.7 cells. KMU-11342 mitigates LPS-mediated inflammatory responses in THP-1 cells by inhibiting the activation of NLRP3 inflammasome. Notably, KMU-11342 exhibited minimal cytotoxicity in vivo and electrophysiological cardiotoxicity ex vivo. Consequently, KMU-11342 holds promise for development as a therapeutic agent in RA treatment.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1371-1391"},"PeriodicalIF":4.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281989/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo.
Methods: A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo.
Results: In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed.
Conclusions: A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.
背景:调节性 T 细胞(Tregs调节性 T 细胞(Tregs)在控制免疫反应和维持机体免疫耐受方面发挥着重要作用。活化的 CD8+T 细胞有针对性地破坏表皮黑色素细胞是白癜风发病的关键因素。然而,Tregs可能会对CD8+T细胞产生免疫抑制作用,从而有利于治疗白癜风:方法:对PubMed和Web of Science进行了全面搜索,以收集有关Tregs和白癜风的信息:结果:在白癜风患者中,Treg数量减少,Treg功能受损,与Treg相关的信号通路也可能受损。增加Treg数量和增强Treg功能可能会对CD8+T细胞产生免疫抑制作用。本文总结了白癜风中Tregs的最新研究进展,重点介绍了正在研究用于临床的各种Treg相关疗法。此外,还讨论了与Treg相关的治疗策略的现状以及未来潜在的白癜风治疗方向:结论:加深对Tregs的了解对于推动Treg相关药物的发现和白癜风治疗方法的开发至关重要。
{"title":"The role of regulatory T cells in vitiligo and therapeutic advances: a mini-review.","authors":"Shiyu Jin, Sheng Wan, Renxue Xiong, Yujie Li, Tingru Dong, Cuiping Guan","doi":"10.1007/s00011-024-01900-w","DOIUrl":"10.1007/s00011-024-01900-w","url":null,"abstract":"<p><strong>Background: </strong>Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8<sup>+</sup>T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8<sup>+</sup>T cells, which could be beneficial in treating vitiligo.</p><p><strong>Methods: </strong>A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo.</p><p><strong>Results: </strong>In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8<sup>+</sup>T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed.</p><p><strong>Conclusions: </strong>A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1311-1332"},"PeriodicalIF":4.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-06DOI: 10.1007/s00011-024-01901-9
Ilaria Laudadio, Claudia Carissimi, Noemi Scafa, Alex Bastianelli, Valerio Fulci, Alessandra Renzini, Giusy Russo, Salvatore Oliva, Roberta Vitali, Francesca Palone, Salvatore Cucchiara, Laura Stronati
Background and aims: Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD), namely Crohn's disease (CD) and ulcerative colitis (UC), but the precise mechanism by which it occurs is incompletely understood hampering the development of effective therapeutic strategies. Here, we aimed at inducing and characterizing an inflammation-mediated fibrosis in patient-derived organoids (PDOs) issued from crypts isolated from colonic mucosal biopsies of IBD pediatric patients and age matched-control subjects (CTRLs).
Methods: Inflammatory-driven fibrosis was induced by exposing CTRL-, CD- and UC-PDOs to the pro-inflammatory cytokine TNF-α for one day, followed by a co-treatment with TNF-α and TGF-β1 for three days. Fibrotic response was proven by analyzing inflammatory and fibrotic markers by RT-qPCR and immunofluorescence. Transcriptomic changes were assessed by RNA-sequencing.
Results: Co-treatment with TNF-α and TGF-β1 caused in CTRL- and IBD-PDOs morphological changes towards a mesenchymal-like phenotype and up-regulation of inflammatory, mesenchymal, and fibrotic markers. Transcriptomic profiling highlighted that in all intestinal PDOs, regardless of the disease, the co-exposure to TNF-α and TGF-β1 regulated EMT genes and specifically increased genes involved in positive regulation of cell migration. Finally, we demonstrated that CD-PDOs display a specific response to fibrosis compared to both CTRL- and UC-PDOs, mainly characterized by upregulation of nuclear factors controlling transcription.
Conclusions: This study demonstrates that intestinal PDOs may develop an inflammatory-derived fibrosis thus representing a promising tool to study fibrogenesis in IBD. Fibrotic PDOs show increased expression of EMT genes. In particular, fibrotic CD-PDOs display a specific gene expression signature compared to UC and CTRL-PDOs.
{"title":"Characterization of patient-derived intestinal organoids for modelling fibrosis in Inflammatory Bowel Disease.","authors":"Ilaria Laudadio, Claudia Carissimi, Noemi Scafa, Alex Bastianelli, Valerio Fulci, Alessandra Renzini, Giusy Russo, Salvatore Oliva, Roberta Vitali, Francesca Palone, Salvatore Cucchiara, Laura Stronati","doi":"10.1007/s00011-024-01901-9","DOIUrl":"10.1007/s00011-024-01901-9","url":null,"abstract":"<p><strong>Background and aims: </strong>Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD), namely Crohn's disease (CD) and ulcerative colitis (UC), but the precise mechanism by which it occurs is incompletely understood hampering the development of effective therapeutic strategies. Here, we aimed at inducing and characterizing an inflammation-mediated fibrosis in patient-derived organoids (PDOs) issued from crypts isolated from colonic mucosal biopsies of IBD pediatric patients and age matched-control subjects (CTRLs).</p><p><strong>Methods: </strong>Inflammatory-driven fibrosis was induced by exposing CTRL-, CD- and UC-PDOs to the pro-inflammatory cytokine TNF-α for one day, followed by a co-treatment with TNF-α and TGF-β1 for three days. Fibrotic response was proven by analyzing inflammatory and fibrotic markers by RT-qPCR and immunofluorescence. Transcriptomic changes were assessed by RNA-sequencing.</p><p><strong>Results: </strong>Co-treatment with TNF-α and TGF-β1 caused in CTRL- and IBD-PDOs morphological changes towards a mesenchymal-like phenotype and up-regulation of inflammatory, mesenchymal, and fibrotic markers. Transcriptomic profiling highlighted that in all intestinal PDOs, regardless of the disease, the co-exposure to TNF-α and TGF-β1 regulated EMT genes and specifically increased genes involved in positive regulation of cell migration. Finally, we demonstrated that CD-PDOs display a specific response to fibrosis compared to both CTRL- and UC-PDOs, mainly characterized by upregulation of nuclear factors controlling transcription.</p><p><strong>Conclusions: </strong>This study demonstrates that intestinal PDOs may develop an inflammatory-derived fibrosis thus representing a promising tool to study fibrogenesis in IBD. Fibrotic PDOs show increased expression of EMT genes. In particular, fibrotic CD-PDOs display a specific gene expression signature compared to UC and CTRL-PDOs.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1359-1370"},"PeriodicalIF":4.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282153/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Uremia-associated immunodeficiency, mainly characterized by T cell dysfunction, exists in patients on maintenance hemodialysis (MHD) and promotes systemic inflammation. However, T cell senescence, one of the causes of T cell dysfunction, has not been clearly revealed yet. In this cross-sectional research, we aimed to study the manifestation of T cell premature senescence in MHD patients and further investigate the associated clinical factors.
Methods: 76 MHD patients including 33 patients with cardiovascular diseases (CVD) and 28 patients with arteriovenous fistula (AVF) event history were enrolled in this study. Complementarity determining region 3 (CDR3) of T cell receptor (TCR) was analyzed by immune repertoire sequencing (IR-Seq). CD28- T cell subsets and expression of senescence marker p16 and p21 genes were detected by multicolor flow cytometry and RT-qPCR, respectively.
Results: MHD patients had significantly decreased TCR diversity (P < 0.001), increased CDR3 clone proliferation (P = 0.001) and a left-skewed CDR3 length distribution. The proportion of CD4 + CD28- T cells increased in MHD patients (P = 0.014) and showed a negative correlation with TCR diversity (P = 0.001). p16 but not p21 expression in T cells was up-regulated in MHD patients (P = 0.039). Patients with CVD exhibited increased expression of p16 and p21 genes (P = 0.010 and 0.004, respectively), and patients with AVF events showed further TCR diversity and evenness reduction (P = 0.002 and 0.017, respectively) compared to patients without the comorbidities. Moreover, age, average convection volume, total cholesterol, high-density lipoprotein cholesterol and transferrin saturation were associated with TCR diversity or CD4 + CD28- T cell proportion (P < 0.05).
Conclusions: MHD patients undergo T cell premature senescence characterized by significant TCR diversity reduction and repertoire skew, as well as accumulation of the CD4 + CD28- subset and up-regulation of p16 gene. Patients with CVD or AVF events show higher level of immunosenescence. Furthermore, T cell senescence in MHD patients is associated with blood cholesterol and uremic toxin retention, suggesting potential intervention strategies in the future.
背景:维持性血液透析(MHD)患者中存在以 T 细胞功能障碍为主要特征的尿毒症相关免疫缺陷,并导致全身性炎症。然而,T 细胞衰老是导致 T 细胞功能障碍的原因之一,目前尚未明确揭示。在这项横断面研究中,我们旨在研究 MHD 患者中 T 细胞早衰的表现,并进一步调查相关的临床因素。通过免疫组群测序(IR-Seq)分析了T细胞受体(TCR)的互补决定区3(CDR3)。多色流式细胞术和 RT-qPCR 分别检测了 CD28- T 细胞亚群以及衰老标志物 p16 和 p21 基因的表达:结果表明:MHD 患者的 TCR 多样性明显降低(P<0.05):MHD患者的T细胞早衰表现为TCR多样性明显降低、TCR库偏斜、CD4 + CD28-亚群聚集和p16基因上调。心血管疾病或房室纤维化事件患者的免疫衰老程度更高。此外,MHD患者的T细胞衰老与血液中胆固醇和尿毒症毒素的滞留有关,这表明未来可能采取干预策略。
{"title":"Characteristics of T cell premature senescence in maintenance hemodialysis patients.","authors":"Wangshu Wu, Ahui Song, Kewei Xie, Jiayue Lu, Bingru Zhao, Cheng Qian, Minzhou Wang, Lulin Min, Wenkai Hong, Huihua Pang, Renhua Lu, Leyi Gu","doi":"10.1007/s00011-024-01897-2","DOIUrl":"10.1007/s00011-024-01897-2","url":null,"abstract":"<p><strong>Background: </strong>Uremia-associated immunodeficiency, mainly characterized by T cell dysfunction, exists in patients on maintenance hemodialysis (MHD) and promotes systemic inflammation. However, T cell senescence, one of the causes of T cell dysfunction, has not been clearly revealed yet. In this cross-sectional research, we aimed to study the manifestation of T cell premature senescence in MHD patients and further investigate the associated clinical factors.</p><p><strong>Methods: </strong>76 MHD patients including 33 patients with cardiovascular diseases (CVD) and 28 patients with arteriovenous fistula (AVF) event history were enrolled in this study. Complementarity determining region 3 (CDR3) of T cell receptor (TCR) was analyzed by immune repertoire sequencing (IR-Seq). CD28- T cell subsets and expression of senescence marker p16 and p21 genes were detected by multicolor flow cytometry and RT-qPCR, respectively.</p><p><strong>Results: </strong>MHD patients had significantly decreased TCR diversity (P < 0.001), increased CDR3 clone proliferation (P = 0.001) and a left-skewed CDR3 length distribution. The proportion of CD4 + CD28- T cells increased in MHD patients (P = 0.014) and showed a negative correlation with TCR diversity (P = 0.001). p16 but not p21 expression in T cells was up-regulated in MHD patients (P = 0.039). Patients with CVD exhibited increased expression of p16 and p21 genes (P = 0.010 and 0.004, respectively), and patients with AVF events showed further TCR diversity and evenness reduction (P = 0.002 and 0.017, respectively) compared to patients without the comorbidities. Moreover, age, average convection volume, total cholesterol, high-density lipoprotein cholesterol and transferrin saturation were associated with TCR diversity or CD4 + CD28- T cell proportion (P < 0.05).</p><p><strong>Conclusions: </strong>MHD patients undergo T cell premature senescence characterized by significant TCR diversity reduction and repertoire skew, as well as accumulation of the CD4 + CD28- subset and up-regulation of p16 gene. Patients with CVD or AVF events show higher level of immunosenescence. Furthermore, T cell senescence in MHD patients is associated with blood cholesterol and uremic toxin retention, suggesting potential intervention strategies in the future.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1299-1309"},"PeriodicalIF":4.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141293380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-06DOI: 10.1007/s00011-024-01899-0
Hong-Lian Wang, Ze Peng, Yu-Qing Li, Yi-Xuan Wang, Jian-Chun Li, Rui-Zhi Tan, Hong-Wei Su, Hong-Ping Shen, Chang-Ying Zhao, Jian Liu, Li Wang
Background: Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism.
Methods: The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays.
Results: Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1β and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells.
Conclusions: In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.
{"title":"Calycosin inhibited MIF-mediated inflammatory chemotaxis of macrophages to ameliorate ischemia reperfusion-induced acute kidney injury.","authors":"Hong-Lian Wang, Ze Peng, Yu-Qing Li, Yi-Xuan Wang, Jian-Chun Li, Rui-Zhi Tan, Hong-Wei Su, Hong-Ping Shen, Chang-Ying Zhao, Jian Liu, Li Wang","doi":"10.1007/s00011-024-01899-0","DOIUrl":"10.1007/s00011-024-01899-0","url":null,"abstract":"<p><strong>Background: </strong>Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism.</p><p><strong>Methods: </strong>The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays.</p><p><strong>Results: </strong>Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1β and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells.</p><p><strong>Conclusions: </strong>In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1267-1282"},"PeriodicalIF":4.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01Epub Date: 2024-06-21DOI: 10.1007/s00011-024-01892-7
Inés Muela-Zarzuela, Juan Miguel Suarez-Rivero, Andrea Gallardo-Orihuela, Chun Wang, Kumi Izawa, Marta de Gregorio-Procopio, Isabelle Couillin, Bernhard Ryffel, Jiro Kitaura, Alberto Sanz, Thomas von Zglinicki, Gabriel Mbalaviele, Mario D Cordero
Background: Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as senescence-associated secretory phenotype (SASP), some of which are produced by the NLRP3 inflammasome. Here, we present evidence that the NLRP1 inflammasome is a DNA damage sensor and a key mediator of senescence.
Methods: Senescence was induced in fibroblasts in vitro and in mice. Cellular senescence was assessed by Western blot analysis of several proteins, including p16, p21, p53, and SASP factors, released in the culture media or serum. Inflammasome components, including NLRP1, NLRP3 and GSDMD were knocked out or silenced using siRNAs.
Results: In vitro and in vivo results suggest that the NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP factors in a Gasdermin D (GSDMD)-dependent manner. Mechanistically, the NLRP1 inflammasome is activated in response to genomic damage detected by the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS).
Conclusion: Our findings show that NLRP1 is a cGAS-dependent DNA damage sensor during senescence and a mediator of SASP release through GSDMD. This study advances the knowledge on the biology of the NLRP1 inflammasome and highlights this pathway as a potential pharmcological target to modulate senescence.
背景:衰老是一个由不同压力引发的细胞衰老相关过程,其特征是分泌各种炎症因子,被称为衰老相关分泌表型(SASP),其中一些由NLRP3炎性体产生。在此,我们提出了 NLRP1 炎性体是 DNA 损伤传感器和衰老关键介质的证据:方法:在体外和小鼠体内诱导成纤维细胞衰老。通过对培养基或血清中释放的几种蛋白质(包括 p16、p21、p53 和 SASP 因子)进行 Western 印迹分析来评估细胞衰老。使用 siRNAs 敲除或沉默炎症组成分,包括 NLRP1、NLRP3 和 GSDMD:体外和体内结果表明,NLRP1炎性体通过调节p16、p21、p53和SASP因子的表达,以Gasdermin D(GSDMD)依赖的方式促进衰老。从机理上讲,NLRP1炎性体是在细胞膜DNA传感器cGMP-AMP(cGAMP)合成酶(cGAS)检测到基因组损伤时被激活的:我们的研究结果表明,NLRP1是衰老过程中依赖于cGAS的DNA损伤传感器,也是通过GSDMD释放SASP的介质。这项研究增进了人们对 NLRP1 炎性体生物学的了解,并强调该途径是调节衰老的潜在药物靶点。
{"title":"NLRP1 inflammasome promotes senescence and senescence-associated secretory phenotype.","authors":"Inés Muela-Zarzuela, Juan Miguel Suarez-Rivero, Andrea Gallardo-Orihuela, Chun Wang, Kumi Izawa, Marta de Gregorio-Procopio, Isabelle Couillin, Bernhard Ryffel, Jiro Kitaura, Alberto Sanz, Thomas von Zglinicki, Gabriel Mbalaviele, Mario D Cordero","doi":"10.1007/s00011-024-01892-7","DOIUrl":"10.1007/s00011-024-01892-7","url":null,"abstract":"<p><strong>Background: </strong>Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as senescence-associated secretory phenotype (SASP), some of which are produced by the NLRP3 inflammasome. Here, we present evidence that the NLRP1 inflammasome is a DNA damage sensor and a key mediator of senescence.</p><p><strong>Methods: </strong>Senescence was induced in fibroblasts in vitro and in mice. Cellular senescence was assessed by Western blot analysis of several proteins, including p16, p21, p53, and SASP factors, released in the culture media or serum. Inflammasome components, including NLRP1, NLRP3 and GSDMD were knocked out or silenced using siRNAs.</p><p><strong>Results: </strong>In vitro and in vivo results suggest that the NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP factors in a Gasdermin D (GSDMD)-dependent manner. Mechanistically, the NLRP1 inflammasome is activated in response to genomic damage detected by the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS).</p><p><strong>Conclusion: </strong>Our findings show that NLRP1 is a cGAS-dependent DNA damage sensor during senescence and a mediator of SASP release through GSDMD. This study advances the knowledge on the biology of the NLRP1 inflammasome and highlights this pathway as a potential pharmcological target to modulate senescence.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1253-1266"},"PeriodicalIF":4.8,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11281979/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141436869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-01Epub Date: 2024-05-04DOI: 10.1007/s00011-024-01886-5
Pusheng Yang, Yaxin Miao, Tao Wang, Jing Sun
Objective: To understand the association between chronic inflammation, cellular senescence, and immunological infiltration in endometriosis.
Methods: Datasets from GEO comprising 108 endometriosis and 97 healthy human samples and the human endometrial stromal cell. Differentially expressed genes were identified using Limma and WGCNA. Inflammatory response-related subtypes were constructed using consensus clustering analysis. The CIBERSORT algorithm and correlation analyses assessed immune cell infiltration. LASSO, SVM-RFE, and RF identified diagnostic genes. Functional enrichment analysis and multifactor regulatory networks established functional effects. Nomograms, internal and external validations, and in vitro experiments validated the diagnostic genes.
Results: Inflammatory response subtypes were highly correlated with the immune activities of B and NK cells. Sixteen genes were associated with inflammatory response and cellular senescence and six diagnostic genes (NLK, RAD51, TIMELESS, TBX3, MET, and BTG3) were identified. The six diagnostic gene models had an area under the curve of 0.828 and their expression was significantly downregulated in endometriosis samples. Low expression of NLK and BTG3 promoted the proliferation, migration, and invasion of endometriotic cells.
Conclusions: Inflammatory response subtypes were successfully constructed for endometriosis. Six diagnostic genes related to inflammatory response and cellular senescence were identified and validated. Our study provides novel insights for inflammatory response in endometriosis and markers for endometriosis diagnosis and treatment.
{"title":"Identification of diagnostic markers related to inflammatory response and cellular senescence in endometriosis using machine learning and in vitro experiment.","authors":"Pusheng Yang, Yaxin Miao, Tao Wang, Jing Sun","doi":"10.1007/s00011-024-01886-5","DOIUrl":"10.1007/s00011-024-01886-5","url":null,"abstract":"<p><strong>Objective: </strong>To understand the association between chronic inflammation, cellular senescence, and immunological infiltration in endometriosis.</p><p><strong>Methods: </strong>Datasets from GEO comprising 108 endometriosis and 97 healthy human samples and the human endometrial stromal cell. Differentially expressed genes were identified using Limma and WGCNA. Inflammatory response-related subtypes were constructed using consensus clustering analysis. The CIBERSORT algorithm and correlation analyses assessed immune cell infiltration. LASSO, SVM-RFE, and RF identified diagnostic genes. Functional enrichment analysis and multifactor regulatory networks established functional effects. Nomograms, internal and external validations, and in vitro experiments validated the diagnostic genes.</p><p><strong>Results: </strong>Inflammatory response subtypes were highly correlated with the immune activities of B and NK cells. Sixteen genes were associated with inflammatory response and cellular senescence and six diagnostic genes (NLK, RAD51, TIMELESS, TBX3, MET, and BTG3) were identified. The six diagnostic gene models had an area under the curve of 0.828 and their expression was significantly downregulated in endometriosis samples. Low expression of NLK and BTG3 promoted the proliferation, migration, and invasion of endometriotic cells.</p><p><strong>Conclusions: </strong>Inflammatory response subtypes were successfully constructed for endometriosis. Six diagnostic genes related to inflammatory response and cellular senescence were identified and validated. Our study provides novel insights for inflammatory response in endometriosis and markers for endometriosis diagnosis and treatment.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1107-1122"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective and design: To elucidate Sirt1's role in gouty arthritis inflammation and its potential mechanisms.
Material: Constructed murine models of gouty arthritis and conducted THP-1 cell experiments.
Treatment: 1 mg of MSU crystals injected into mice ankle joints for a 72-h intervention. After a 3-h pre-treatment with Sirt1-specific inhibitor (EX527) and agonist (SRT2104), inflammation was induced for 21 h using lipopolysaccharide (LPS) plus MSU crystals.
Methods: We assessed gouty arthritis severity through joint inflammation index, swelling, and hematoxylin and eosin (H&E) staining, and measured CD68 mononuclear macrophages and Sirt1 expression in synovial tissue via immunohistochemistry. ELISA, NO assay, RT-qPCR, Flow cytometry, and Western blot were utilized to examine macrophage inflammatory factors, polarization, reactive oxygen species(ROS), MAPK/NF-κB/AP-1 and Nrf2/HO-1 pathways proteins.
Results: Significant joint swelling, synovial tissue edema, and inflammatory cell infiltration were observed. CD68 mononuclear macrophages and Sirt1 expression were elevated in synovium. Sirt1 activation decreased inflammatory factors, M1 polarization, and ROS generation. Sirt1 activation reduced p38/JNK phosphorylation, thereby inhibiting downstream NF-κB p65/AP-1 and enhancing Nrf2/HO-1, thus suppressing inflammation.
Conclusions: Sirt1 alleviates M1 macrophage polarization and inflammation in gouty arthritis by inhibiting the MAPK/NF-κB/AP-1 pathway and activating the Nrf2/HO-1 pathway. Thus, activating Sirt1 may provide a new therapeutic target for gouty arthritis.
{"title":"Sirt1 inhibits macrophage polarization and inflammation in gouty arthritis by inhibiting the MAPK/NF-κB/AP-1 pathway and activating the Nrf2/HO-1 pathway.","authors":"Xu Zhao, Menglan Li, Yiwei Lu, Mi Wang, Jiawei Xiao, Qingqing Xie, Xinyi He, Shiquan Shuai","doi":"10.1007/s00011-024-01890-9","DOIUrl":"10.1007/s00011-024-01890-9","url":null,"abstract":"<p><strong>Objective and design: </strong>To elucidate Sirt1's role in gouty arthritis inflammation and its potential mechanisms.</p><p><strong>Material: </strong>Constructed murine models of gouty arthritis and conducted THP-1 cell experiments.</p><p><strong>Treatment: </strong>1 mg of MSU crystals injected into mice ankle joints for a 72-h intervention. After a 3-h pre-treatment with Sirt1-specific inhibitor (EX527) and agonist (SRT2104), inflammation was induced for 21 h using lipopolysaccharide (LPS) plus MSU crystals.</p><p><strong>Methods: </strong>We assessed gouty arthritis severity through joint inflammation index, swelling, and hematoxylin and eosin (H&E) staining, and measured CD68 mononuclear macrophages and Sirt1 expression in synovial tissue via immunohistochemistry. ELISA, NO assay, RT-qPCR, Flow cytometry, and Western blot were utilized to examine macrophage inflammatory factors, polarization, reactive oxygen species(ROS), MAPK/NF-κB/AP-1 and Nrf2/HO-1 pathways proteins.</p><p><strong>Results: </strong>Significant joint swelling, synovial tissue edema, and inflammatory cell infiltration were observed. CD68 mononuclear macrophages and Sirt1 expression were elevated in synovium. Sirt1 activation decreased inflammatory factors, M1 polarization, and ROS generation. Sirt1 activation reduced p38/JNK phosphorylation, thereby inhibiting downstream NF-κB p65/AP-1 and enhancing Nrf2/HO-1, thus suppressing inflammation.</p><p><strong>Conclusions: </strong>Sirt1 alleviates M1 macrophage polarization and inflammation in gouty arthritis by inhibiting the MAPK/NF-κB/AP-1 pathway and activating the Nrf2/HO-1 pathway. Thus, activating Sirt1 may provide a new therapeutic target for gouty arthritis.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":" ","pages":"1173-1184"},"PeriodicalIF":4.8,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11214610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}