Pub Date : 2021-08-15DOI: 10.21741/9781644901618-1
S. Sujatha, R. Sivarethinamohan
Abstract. Owing to the recurrent modifications in the lifestyle and demands of humans the regular life of buildings is decreasing whereas the demolition or renovation of the buildings increases. Building materials and their components ingest just about 40 percent of world-wide vigour per annum in their life segments such as fabrication and procurement of building materials, construction and demolition. The development of the construction industry completely relies on the deployable resources. To abate the consumption of construction materials in current years, the construction industry has established an environmental track, which wishes to use naturally available materials. Reviving such technology, further developing this technology green building materials are paramount for constructing green buildings. Such a green-building constructional model does not require energy contributions frequently for production. The advantage of reducing the energy used in manufacturing, increases strength. Green Building material is one which utilizes less water, optimizes energy efficiency, conserves natural resources, generates less waste, produces less carbon dioxide emissions and provides improved space for inhabitants as compared to conventional buildings. It includes environmental, economic, and social benefits as well. This paper aims to provide knowledge about some of the green building materials that help for sustainable living. These elucidations can obligate a significant influence in contemporary construction owed to the escalation in the charges of traditional construction materials.
{"title":"Broad-Spectrum of Sustainable Living Management Using Green Building Materials- An Insights","authors":"S. Sujatha, R. Sivarethinamohan","doi":"10.21741/9781644901618-1","DOIUrl":"https://doi.org/10.21741/9781644901618-1","url":null,"abstract":"Abstract. Owing to the recurrent modifications in the lifestyle and demands of humans the regular life of buildings is decreasing whereas the demolition or renovation of the buildings increases. Building materials and their components ingest just about 40 percent of world-wide vigour per annum in their life segments such as fabrication and procurement of building materials, construction and demolition. The development of the construction industry completely relies on the deployable resources. To abate the consumption of construction materials in current years, the construction industry has established an environmental track, which wishes to use naturally available materials. Reviving such technology, further developing this technology green building materials are paramount for constructing green buildings. Such a green-building constructional model does not require energy contributions frequently for production. The advantage of reducing the energy used in manufacturing, increases strength. Green Building material is one which utilizes less water, optimizes energy efficiency, conserves natural resources, generates less waste, produces less carbon dioxide emissions and provides improved space for inhabitants as compared to conventional buildings. It includes environmental, economic, and social benefits as well. This paper aims to provide knowledge about some of the green building materials that help for sustainable living. These elucidations can obligate a significant influence in contemporary construction owed to the escalation in the charges of traditional construction materials.","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"175 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133809464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-15DOI: 10.21741/9781644901618-20
M. Veerapathran, S. Arnesh, M. K. Kumar, S. Rakeshwaran, A. Sarankarthi
Abstract. This project reveals about the detailed investigation of eco-friendly interlocking masonry units. Interlocking between individual units is enabled by providing grooves, male and female joint on them. Hence less mortar is required for construction of masonry units while using these interlocking bricks. Various trails and tests will be conducted on these interlocking bricks by addition of various materials such as E-wastes, coir pith and saw dust in clay soil. Hence the cost of these masonry units will be reduced. All these various mixtures are mixed at different proportions and ideal mixture are to be found then the grooves are to be altered by male and female joints. Further in addition of clay and sand, wooden powder and coir pith are to be added so that while burning of these masonry units results in good colour and more strength (35% improved strength while comparing to an A-Class brick). Optimum ratio with minimal cost and max efficiency with sustainability to the environment is recommended to the market. In the past year there was a spread of pandemic COVID 19. Precautious measures are taken to avoid the spread of this pandemic. By considering this situation a chemical is to be added in this masonry unit which will be acting as an disinfectious agent which will avoid the entry of various common viruses and bacteria like rhino viruses, salmonella. This ability of the masonry unit will last more than 24 months and beyond. And this can also be replenished after specific period of time. These masonry units have less mortar consumption (70% less mortar consumption while comparing to an A-Class brick), more workability, disinfectious and accommodates waste materials. Hence it is considered to be eco-friendly and sustainable.
{"title":"Investigation of Eco – Friendly Interlocking Masonry Units","authors":"M. Veerapathran, S. Arnesh, M. K. Kumar, S. Rakeshwaran, A. Sarankarthi","doi":"10.21741/9781644901618-20","DOIUrl":"https://doi.org/10.21741/9781644901618-20","url":null,"abstract":"Abstract. This project reveals about the detailed investigation of eco-friendly interlocking masonry units. Interlocking between individual units is enabled by providing grooves, male and female joint on them. Hence less mortar is required for construction of masonry units while using these interlocking bricks. Various trails and tests will be conducted on these interlocking bricks by addition of various materials such as E-wastes, coir pith and saw dust in clay soil. Hence the cost of these masonry units will be reduced. All these various mixtures are mixed at different proportions and ideal mixture are to be found then the grooves are to be altered by male and female joints. Further in addition of clay and sand, wooden powder and coir pith are to be added so that while burning of these masonry units results in good colour and more strength (35% improved strength while comparing to an A-Class brick). Optimum ratio with minimal cost and max efficiency with sustainability to the environment is recommended to the market. In the past year there was a spread of pandemic COVID 19. Precautious measures are taken to avoid the spread of this pandemic. By considering this situation a chemical is to be added in this masonry unit which will be acting as an disinfectious agent which will avoid the entry of various common viruses and bacteria like rhino viruses, salmonella. This ability of the masonry unit will last more than 24 months and beyond. And this can also be replenished after specific period of time. These masonry units have less mortar consumption (70% less mortar consumption while comparing to an A-Class brick), more workability, disinfectious and accommodates waste materials. Hence it is considered to be eco-friendly and sustainable.","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"33 11","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114126199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-15DOI: 10.21741/9781644901618-24
S. Pradeep, R. Bharathi, K. T. Vignesh, T. Mukesh
Abstract. No-fine concrete (also called as pervious concrete or porous concrete) is a lightweight concrete made up of primary binder and coarse aggregates with little or no sand. Due to the reduced amount or absence of fines, it produces large number of voids which improves permeability to greater extent. Hence this type of concrete can be used in pavements and in parking lots. The literature review is carried out to study the physical and mechanical properties of no-fine concrete with additives. Various reports were collected and studied about variation in physical and mechanical properties of pervious concrete with different additives. Additives may be either mineral additives (fly ash, silica fumes, rice husk ash etc..,) or chemical additives (plasticizers, super plasticizers, retarders etc..,). Our project involved the utilization of recycled coarse aggregates, fly ash and rice husk in no-fine concrete. After this study, it was concluded that ‘upon the addition of additives, it increases permeability by decreasing its strength and vice-versa’. Balancing its permeability and strength remains challenging.
{"title":"A Systematic Study on Physical and Mechanical Properties of No-Fine Concrete with Additives","authors":"S. Pradeep, R. Bharathi, K. T. Vignesh, T. Mukesh","doi":"10.21741/9781644901618-24","DOIUrl":"https://doi.org/10.21741/9781644901618-24","url":null,"abstract":"Abstract. No-fine concrete (also called as pervious concrete or porous concrete) is a lightweight concrete made up of primary binder and coarse aggregates with little or no sand. Due to the reduced amount or absence of fines, it produces large number of voids which improves permeability to greater extent. Hence this type of concrete can be used in pavements and in parking lots. The literature review is carried out to study the physical and mechanical properties of no-fine concrete with additives. Various reports were collected and studied about variation in physical and mechanical properties of pervious concrete with different additives. Additives may be either mineral additives (fly ash, silica fumes, rice husk ash etc..,) or chemical additives (plasticizers, super plasticizers, retarders etc..,). Our project involved the utilization of recycled coarse aggregates, fly ash and rice husk in no-fine concrete. After this study, it was concluded that ‘upon the addition of additives, it increases permeability by decreasing its strength and vice-versa’. Balancing its permeability and strength remains challenging.","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124242746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-15DOI: 10.21741/9781644901618-19
S. Jayashree, S. Ramakrishnan, V. Senthilkumar, M. Rajendran, S. Suchithra, S. Sanjaygandhi
Abstract. Concrete is the predominant material in the construction industry. To be sustainable, the old Reinforced Concrete (RC) buildings should be retrofitted, and the life of the building should be extended. Experimental study has been attempted to investigate the load carrying capacity of concrete beam strengthened with glass fiber and banana fiber mat. The primary aim of this study is to retrofit the RC beam specimen to enhance the load carrying capacity. All the beams were casted with the same grade of concrete (M30) and same structural detailing. Two-point symmetrical loading were given to the control beams to obtain load at initial crack and ultimate load. Then the beams other than control beams were loaded till it showes initial crack and then retrofitted with banana fiber and glass fiber bonded externally with resin. The retrofitted beams were tested for ultimate load performance. Load carrying capacity was higher for both retrofitting but the beam retrofitter with glass fiber showed significant improvement in the ultimate load carrying capacity.
{"title":"Investigation on Retrofitting of Reinforced Concrete Beam with Glass Fiber and Banana Fiber Mat","authors":"S. Jayashree, S. Ramakrishnan, V. Senthilkumar, M. Rajendran, S. Suchithra, S. Sanjaygandhi","doi":"10.21741/9781644901618-19","DOIUrl":"https://doi.org/10.21741/9781644901618-19","url":null,"abstract":"Abstract. Concrete is the predominant material in the construction industry. To be sustainable, the old Reinforced Concrete (RC) buildings should be retrofitted, and the life of the building should be extended. Experimental study has been attempted to investigate the load carrying capacity of concrete beam strengthened with glass fiber and banana fiber mat. The primary aim of this study is to retrofit the RC beam specimen to enhance the load carrying capacity. All the beams were casted with the same grade of concrete (M30) and same structural detailing. Two-point symmetrical loading were given to the control beams to obtain load at initial crack and ultimate load. Then the beams other than control beams were loaded till it showes initial crack and then retrofitted with banana fiber and glass fiber bonded externally with resin. The retrofitted beams were tested for ultimate load performance. Load carrying capacity was higher for both retrofitting but the beam retrofitter with glass fiber showed significant improvement in the ultimate load carrying capacity.","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"505 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134074460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-15DOI: 10.21741/9781644901618-17
V. Naveenra, P. Kulanthaivel
Abstract. In order to reduce the generated waste in industry the concept of reusability is adopted as an application in the civil engineering field. In this study, the experiments were performed by using shredded tyre chips, chips of fly ash bricks in partial replacement with aggregates passing through 12.5 mm sieve and retaining on 10 mm sieve (IS-Indian standard). The experiments with partial replacement of stone columns were carried out at various proportions of tyre chips and fly ash brick chips in soft clay. Corresponding settlement rate was noted by loading the stone column gradually through a hydraulic jack for various L/D ratios. On comparison the final results it was concluded that the stone column with replacement of 75% tyre chips and 25% coarse aggregate proved good to carry maximum load and with lower settlement rate than ordinary stone column without replacement.
{"title":"Model Tests on Use of Tyre Chips and Fly Ash Chips as a Replacement of Aggregate in Stone Columns","authors":"V. Naveenra, P. Kulanthaivel","doi":"10.21741/9781644901618-17","DOIUrl":"https://doi.org/10.21741/9781644901618-17","url":null,"abstract":"Abstract. In order to reduce the generated waste in industry the concept of reusability is adopted as an application in the civil engineering field. In this study, the experiments were performed by using shredded tyre chips, chips of fly ash bricks in partial replacement with aggregates passing through 12.5 mm sieve and retaining on 10 mm sieve (IS-Indian standard). The experiments with partial replacement of stone columns were carried out at various proportions of tyre chips and fly ash brick chips in soft clay. Corresponding settlement rate was noted by loading the stone column gradually through a hydraulic jack for various L/D ratios. On comparison the final results it was concluded that the stone column with replacement of 75% tyre chips and 25% coarse aggregate proved good to carry maximum load and with lower settlement rate than ordinary stone column without replacement.","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132390230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-15DOI: 10.21741/9781644901618-12
S. Vijayanand, E. Gowshika, P. K. Greevan, P. Gunaseelan
Abstract. Cold-formed steel, thin-walled steel product finds a wide application in construction worldwide. It has many advantages such as flexibility, convenient handling and fabrication and so on. The CFS is commonly used in structures like bridges, railway coaches etc., as it is economical when compared with hot-rolled steel. It can be used as single or built-up flexural members. Generally, the open section beams are susceptible to failure by lateral- torsional buckling due to the position of its centre of shear and centroid of the cross-section. To overcome this issue, open doubly-symmetric built-up sections or built-up closed sections have been used by many researchers. The parametric studies were conducted by many researchers to find the accuracy of the design strength predictions of the built-up beams. In parametric study, Eurocode specifications, the direct strength method and effective width method based on the North American specifications were used. The study reveals that there are no proper design guidelines available in the current Eurocode and North American specifications. Therefore, the paper provides an outline of research works done on various CFS sections by the researchers and their proposed design recommendations to the codal specifications were also reviewed.
{"title":"Assessment on the Behaviour of Cold-Formed Steel Built-up Beams","authors":"S. Vijayanand, E. Gowshika, P. K. Greevan, P. Gunaseelan","doi":"10.21741/9781644901618-12","DOIUrl":"https://doi.org/10.21741/9781644901618-12","url":null,"abstract":"Abstract. Cold-formed steel, thin-walled steel product finds a wide application in construction worldwide. It has many advantages such as flexibility, convenient handling and fabrication and so on. The CFS is commonly used in structures like bridges, railway coaches etc., as it is economical when compared with hot-rolled steel. It can be used as single or built-up flexural members. Generally, the open section beams are susceptible to failure by lateral- torsional buckling due to the position of its centre of shear and centroid of the cross-section. To overcome this issue, open doubly-symmetric built-up sections or built-up closed sections have been used by many researchers. The parametric studies were conducted by many researchers to find the accuracy of the design strength predictions of the built-up beams. In parametric study, Eurocode specifications, the direct strength method and effective width method based on the North American specifications were used. The study reveals that there are no proper design guidelines available in the current Eurocode and North American specifications. Therefore, the paper provides an outline of research works done on various CFS sections by the researchers and their proposed design recommendations to the codal specifications were also reviewed.","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"1944 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129262342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-15DOI: 10.21741/9781644901618-22
D. Velmurugan, T. Yuvaraj, V. Raguraman, B. Sampath, M. Sureshkumar
Abstract. In this paper, helium-assisted near-dry wire-cut electrical discharge machining (NDWEDM) method molybdenum wire has been used to reduce the environmental impact and to cut M2-HSS material. The pressurized non-reacting helium gas mixed with a small amount of water (Helium-mist) is used as the dielectric fluid to accomplish adequate cooling and flush-out debris. The new experimental setup has been developed to conduct the near-dry WEDM tests using the L9 orthogonal array of the Taguchi technique. The input parameters such as voltage (V), pulse-width (PW), pulse-interval (PI), and flow rate (F) of mixing water and output variables are the material removal rate (MRR) and surface roughness (Ra). It was observed that MRR and Ra are amplified by the rise in voltage and pulse-width, and flow rate conversely, the pulse interval minimizes the responses. The percentage of contribution of pulse width, voltage, pulse interval and flow rate are 24.06%, 32.98%, 12.75% and 30.21% on MRR and 20.94%, 22.22%, 47.86% and 8.97% on Ra respectively. Finally, the confirmation trials have been accomplished to validate the foreseen best parameter sets on optimal responses.
{"title":"Experimental Investigations on Eco-Friendly Helium-Mist Near-Dry Wire-Cut EDM of M2-HSS Material","authors":"D. Velmurugan, T. Yuvaraj, V. Raguraman, B. Sampath, M. Sureshkumar","doi":"10.21741/9781644901618-22","DOIUrl":"https://doi.org/10.21741/9781644901618-22","url":null,"abstract":"Abstract. In this paper, helium-assisted near-dry wire-cut electrical discharge machining (NDWEDM) method molybdenum wire has been used to reduce the environmental impact and to cut M2-HSS material. The pressurized non-reacting helium gas mixed with a small amount of water (Helium-mist) is used as the dielectric fluid to accomplish adequate cooling and flush-out debris. The new experimental setup has been developed to conduct the near-dry WEDM tests using the L9 orthogonal array of the Taguchi technique. The input parameters such as voltage (V), pulse-width (PW), pulse-interval (PI), and flow rate (F) of mixing water and output variables are the material removal rate (MRR) and surface roughness (Ra). It was observed that MRR and Ra are amplified by the rise in voltage and pulse-width, and flow rate conversely, the pulse interval minimizes the responses. The percentage of contribution of pulse width, voltage, pulse interval and flow rate are 24.06%, 32.98%, 12.75% and 30.21% on MRR and 20.94%, 22.22%, 47.86% and 8.97% on Ra respectively. Finally, the confirmation trials have been accomplished to validate the foreseen best parameter sets on optimal responses.","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"95 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121744063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-15DOI: 10.21741/9781644901618-5
A. S. Rameswari, N. Anuja, V. Sherin, P. Jeganmurugan
Abstract.The increasing population and massive use of vehicles caused the atmospheric air to be more polluted and its effect on human beings is increasing all over the world and hence the introduction of pollution controlling paver blocks can helps in absorbing the vehicles pollution. From this paver block the venture is being made to reduce the pollution using titanium oxide and other chemicals by photocatalytic method. The titanium dioxide absorbs pollutions by the reaction with UV radiation titanium dioxide power is applied in three different methods on the paver blocks in order to find the most effective pollution absorbing capacity of the paver blocks.
{"title":"Experimental Study of Photocatalytic Effect on Paver Blocks","authors":"A. S. Rameswari, N. Anuja, V. Sherin, P. Jeganmurugan","doi":"10.21741/9781644901618-5","DOIUrl":"https://doi.org/10.21741/9781644901618-5","url":null,"abstract":"Abstract.The increasing population and massive use of vehicles caused the atmospheric air to be more polluted and its effect on human beings is increasing all over the world and hence the introduction of pollution controlling paver blocks can helps in absorbing the vehicles pollution. From this paver block the venture is being made to reduce the pollution using titanium oxide and other chemicals by photocatalytic method. The titanium dioxide absorbs pollutions by the reaction with UV radiation titanium dioxide power is applied in three different methods on the paver blocks in order to find the most effective pollution absorbing capacity of the paver blocks.","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"229 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123140158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-15DOI: 10.21741/9781644901618-8
S. Manivel, S. Krishnamoorthi, M. Indhu
Abstract. Our towns are increasingly protected by buildings and water paved pavements. Moreover, the city's climate is far from normal. Rainwater is not filtered underground due to the absence of the permeability of the common concrete pavement to water and air permeability. In addition, the exchange of heat and humidity with air is difficult for the soil, and it's not possible to change the temperature and relative humidity of the Earth's surface in urban areas. At the same time, the safety from both car and foot passenger traffic is limited by a plash on the road on a rainy day. Since the 1980s, work on permeable asphalt pavements has started in developed countries like the US and Japan. For roadway applications, permeable concrete is also widely used as a surface course in Europe and Japan Improving skid resistance and reducing noise from traffic. Only about 20 – 30 MPa can the material reach's compressive intensity. Due to their low strength, such materials cannot be used as pavement. Only frames, walking routes, parking garages, and park trails can be used with permeable concrete. Utilizing specified analyses, small materials, admixtures, organic intensifiers and changing the ratio, strength and abrasion resistance of the concrete mix, the porous concrete may be greatly enhanced.
{"title":"Experimental Investigation of Top Mix Permeable Concrete on Pedestrian Pathway","authors":"S. Manivel, S. Krishnamoorthi, M. Indhu","doi":"10.21741/9781644901618-8","DOIUrl":"https://doi.org/10.21741/9781644901618-8","url":null,"abstract":"Abstract. Our towns are increasingly protected by buildings and water paved pavements. Moreover, the city's climate is far from normal. Rainwater is not filtered underground due to the absence of the permeability of the common concrete pavement to water and air permeability. In addition, the exchange of heat and humidity with air is difficult for the soil, and it's not possible to change the temperature and relative humidity of the Earth's surface in urban areas. At the same time, the safety from both car and foot passenger traffic is limited by a plash on the road on a rainy day. Since the 1980s, work on permeable asphalt pavements has started in developed countries like the US and Japan. For roadway applications, permeable concrete is also widely used as a surface course in Europe and Japan Improving skid resistance and reducing noise from traffic. Only about 20 – 30 MPa can the material reach's compressive intensity. Due to their low strength, such materials cannot be used as pavement. Only frames, walking routes, parking garages, and park trails can be used with permeable concrete. Utilizing specified analyses, small materials, admixtures, organic intensifiers and changing the ratio, strength and abrasion resistance of the concrete mix, the porous concrete may be greatly enhanced.","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"380 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122775650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-15DOI: 10.21741/9781644901618-10
K. Anbarasi, S. Elango, Dhivyaprakash, B. Bharath
Abstract: Innate fibres, these days have become the topic of argument in the research field between different scientists to inculcate it in the formation of lightweight concrete mixture. This is due to a variety of rewards connected with natural fibres like recyclable, economical, availability in large quantity and its bio-degradability. Plenty of projects have been carried out in the production of natural fibre reinforced lightweight concrete. In this project, we would like to take the naturally existing fibre named sisal fibre and banana fibre as partial replacement material. The adding of natural fibre to the lightweight concrete will enhance the diverse strength parameters like flexural strength, compressive strength, and increase the ductile behaviour. In the current work, it is intended to explore the mechanical properties of lightweight concrete with substitution of sisal fibre and banana fibre for cement in different percentages. The compressive strength, flexural strength, deflection of the beam is calculated with the reflection of M30 concrete specimens. Totally 45 number of 500 x 100 x 100mm flexural member, 45 numbers of cubes and 45 numbers of cylinders are cast and tested. It is suggested that up to 1.5% substitution of sisal fibres and banana fibre with cement provide at M30 grade of concrete giveing the most beneficial increases of strength values. The assessment outcome indicated that the sisal fibres and banana fibre were efficient in improving the performance of lightweight concrete
{"title":"An Assessment of Flexural Improvement of Light Weight Concrete via Hybrid Fibres along with Sisal Fibres in Addition to Banana Fibres","authors":"K. Anbarasi, S. Elango, Dhivyaprakash, B. Bharath","doi":"10.21741/9781644901618-10","DOIUrl":"https://doi.org/10.21741/9781644901618-10","url":null,"abstract":"Abstract: Innate fibres, these days have become the topic of argument in the research field between different scientists to inculcate it in the formation of lightweight concrete mixture. This is due to a variety of rewards connected with natural fibres like recyclable, economical, availability in large quantity and its bio-degradability. Plenty of projects have been carried out in the production of natural fibre reinforced lightweight concrete. In this project, we would like to take the naturally existing fibre named sisal fibre and banana fibre as partial replacement material. The adding of natural fibre to the lightweight concrete will enhance the diverse strength parameters like flexural strength, compressive strength, and increase the ductile behaviour. In the current work, it is intended to explore the mechanical properties of lightweight concrete with substitution of sisal fibre and banana fibre for cement in different percentages. The compressive strength, flexural strength, deflection of the beam is calculated with the reflection of M30 concrete specimens. Totally 45 number of 500 x 100 x 100mm flexural member, 45 numbers of cubes and 45 numbers of cylinders are cast and tested. It is suggested that up to 1.5% substitution of sisal fibres and banana fibre with cement provide at M30 grade of concrete giveing the most beneficial increases of strength values. The assessment outcome indicated that the sisal fibres and banana fibre were efficient in improving the performance of lightweight concrete","PeriodicalId":135950,"journal":{"name":"Recent Advancements in Geotechnical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116600327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}