首页 > 最新文献

Int. J. Model. Simul. Sci. Comput.最新文献

英文 中文
Hybrid model with optimization tactics for software defect prediction 基于优化策略的软件缺陷预测混合模型
Pub Date : 2023-01-01 DOI: 10.1142/S1793962323500319
S. G. Gollagi
{"title":"Hybrid model with optimization tactics for software defect prediction","authors":"S. G. Gollagi","doi":"10.1142/S1793962323500319","DOIUrl":"https://doi.org/10.1142/S1793962323500319","url":null,"abstract":"","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"12 1","pages":"2350031:1-2350031:34"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81049709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum invasive weed optimization-based energy aware task scheduling for cyber-physical system environment 基于量子入侵杂草优化的网络物理系统环境能量感知任务调度
Pub Date : 2023-01-01 DOI: 10.1142/S1793962323410167
Neelakandan Subramani, K. Keerthika, P. Ilanchezhian, TamilSelvi Madeswaran, V. Hardas, U. Sakthi
{"title":"Quantum invasive weed optimization-based energy aware task scheduling for cyber-physical system environment","authors":"Neelakandan Subramani, K. Keerthika, P. Ilanchezhian, TamilSelvi Madeswaran, V. Hardas, U. Sakthi","doi":"10.1142/S1793962323410167","DOIUrl":"https://doi.org/10.1142/S1793962323410167","url":null,"abstract":"","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"42 1","pages":"2341016:1-2341016:15"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74149213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Energy-efficient resource allocation for NOMA heterogeneous networks using feedback water cycle algorithm 基于反馈水循环算法的NOMA异构网络节能资源分配
Pub Date : 2022-12-27 DOI: 10.1142/s1793962322500623
Kasula Raghu, P. Reddy
In recent years, nonorthogonal multiple access (NOMA) has grasped the attention of all researchers in both industrial and academic fields because it has been regarded as an effective solution for 5G technologies to maximize spectral efficiency and connectivity of the system. Also, it has sufficient potential to maximize the performance of a network. Besides, the deployment of NOMA in heterogeneous networks (HetNets) satisfies the requirements of user’s explosive data traffic. However, the increasing demand for energy consumption of the wireless network provokes the researchers to establish an energy-efficient resource allocation scheme. The applications of NOMA provide better utilization of spectrum efficiency and minimize the cost of resource allocation. The resource allocation problem in wireless networks still remains a challenging task as the HetNets are suffered from mutual cross-tier interference. Hence, this research proposes a new effective hybrid optimization-based energy-efficient resource allocation scheme for NOMA HetNets by introducing a newly proposed method called Feedback Water Cycle Algorithm (FWCA). The method evaluates the user-pairing and sub-channel issue for reducing computational complexity. In addition to this, the network is analyzed for determining the power consumption and energy model with dynamic coefficients. Moreover, the developed FWCO obtained the maximum achievable rate of 25.992[Formula: see text]Mbps/Hz, maximum energy efficiency of 77.398%, maximum sum rate of 31.748[Formula: see text]Mbps/Hz, and maximum throughput of 8.888[Formula: see text]Mbps.
近年来,非正交多址(NOMA)技术被认为是5G技术实现频谱效率和系统连通性最大化的有效解决方案,引起了工学界和学术界的广泛关注。此外,它有足够的潜力来最大化网络的性能。此外,在异构网络(HetNets)中部署NOMA可以满足用户数据流量爆炸式增长的需求。然而,无线网络对能源消耗的日益增长的需求促使研究人员建立一种节能的资源分配方案。NOMA的应用可以更好地利用频谱效率,最大限度地降低资源配置成本。无线网络的资源分配问题仍然是一个具有挑战性的问题,因为无线网络之间存在相互的跨层干扰。因此,本研究通过引入一种新提出的反馈水循环算法(FWCA),提出了一种新的有效的基于混合优化的NOMA HetNets节能资源分配方案。该方法通过评估用户配对和子信道问题来降低计算复杂度。此外,还对网络进行了分析,确定了具有动态系数的电力消耗和能量模型。实现的FWCO最大速率为25.992[公式:见文]Mbps/Hz,最大能效为77.398%,最大求和速率为31.748[公式:见文]Mbps/Hz,最大吞吐量为8.888[公式:见文]Mbps。
{"title":"Energy-efficient resource allocation for NOMA heterogeneous networks using feedback water cycle algorithm","authors":"Kasula Raghu, P. Reddy","doi":"10.1142/s1793962322500623","DOIUrl":"https://doi.org/10.1142/s1793962322500623","url":null,"abstract":"In recent years, nonorthogonal multiple access (NOMA) has grasped the attention of all researchers in both industrial and academic fields because it has been regarded as an effective solution for 5G technologies to maximize spectral efficiency and connectivity of the system. Also, it has sufficient potential to maximize the performance of a network. Besides, the deployment of NOMA in heterogeneous networks (HetNets) satisfies the requirements of user’s explosive data traffic. However, the increasing demand for energy consumption of the wireless network provokes the researchers to establish an energy-efficient resource allocation scheme. The applications of NOMA provide better utilization of spectrum efficiency and minimize the cost of resource allocation. The resource allocation problem in wireless networks still remains a challenging task as the HetNets are suffered from mutual cross-tier interference. Hence, this research proposes a new effective hybrid optimization-based energy-efficient resource allocation scheme for NOMA HetNets by introducing a newly proposed method called Feedback Water Cycle Algorithm (FWCA). The method evaluates the user-pairing and sub-channel issue for reducing computational complexity. In addition to this, the network is analyzed for determining the power consumption and energy model with dynamic coefficients. Moreover, the developed FWCO obtained the maximum achievable rate of 25.992[Formula: see text]Mbps/Hz, maximum energy efficiency of 77.398%, maximum sum rate of 31.748[Formula: see text]Mbps/Hz, and maximum throughput of 8.888[Formula: see text]Mbps.","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"19 15 1","pages":"2250062:1-2250062:24"},"PeriodicalIF":0.0,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79515859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of an IoT platform for data analytics based fault detection and classification in solar PV power plants using CFKC and ODENN 基于CFKC和ODENN的基于数据分析的太阳能光伏电站故障检测与分类物联网平台设计
Pub Date : 2022-12-23 DOI: 10.1142/s179396232350037x
S. Raj, S. Sivagnanam, K. Kumar
{"title":"Design of an IoT platform for data analytics based fault detection and classification in solar PV power plants using CFKC and ODENN","authors":"S. Raj, S. Sivagnanam, K. Kumar","doi":"10.1142/s179396232350037x","DOIUrl":"https://doi.org/10.1142/s179396232350037x","url":null,"abstract":"","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"19 1","pages":"2350037:1-2350037:27"},"PeriodicalIF":0.0,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85038004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Web page prediction using adaptive deer hunting with chicken swarm optimization based neural network model 基于鸡群优化的自适应猎鹿神经网络模型的网页预测
Pub Date : 2022-12-14 DOI: 10.1142/s1793962322500647
Roshan Gangurde
The world wide web acts as the dominant tool for data transmission due to access such as data retrieving and data transactions. The retrieval of data from the web is a complex procedure due to the large volume of web domain. The basic uses of the websites are described through web usage mining, which mines the weblog records to identify the pattern of accessing the web pages through the user. The web page prediction assists the web users in finding the plot and obtains the information as to their requirements. Several effective algorithms have been developed to mine association rules that make the predictive model more appropriate for web prediction. They can be commonly revised to ensure the changing feature of web access patterns. The Apriori algorithm involves extracting the recurrent itemset and interrelation rule that learns the relational data is commonly utilized for web page prediction. The Apriori algorithm remains the standard model for deriving the patterns and rules from the datasets in co-operative rule extraction. The Apriori algorithm thus generates large mines associated rules for web page prediction. Hence, to select the best rule, the proposed deer hunting rooster-based chicken swarm optimization algorithm is used by integrating the cockerel search agents’ dominating social search creatures’ hunting habits and their traits of looking for food. Further, the neural network (NN) is employed in this research for the prediction of web pages with minimum error. The trained NN is a technique of unsupervised learning that analyzes a dataset of input to produce the desired result, in which the effectiveness of the NN is enhanced by optimal tuning of weight by the adaptive deer hunting rooster-based chicken swarm optimization algorithm. The experimental analysis illustrates that the proposed adaptive deer hunting rooster-based chicken swarm optimization frameworks inherit lower error measures such as mean deviation = 139.89 and symmetric mean absolute percentage error[Formula: see text]0.45579 for the FIFA dataset. The proposed web page prediction models’ L2 norm and infinity norm are 58.017 and 14, respectively, for the MSNBC_SPMF dataset.
由于数据检索和数据交易等访问,万维网成为数据传输的主要工具。由于网络域的巨大,从网络中检索数据是一个复杂的过程。通过网络使用挖掘来描述网站的基本用途,挖掘网络日志记录来识别用户访问网页的模式。网页预测可以帮助网络用户找到情节,并获得他们所需要的信息。已经开发了几种有效的算法来挖掘关联规则,使预测模型更适合web预测。它们通常可以被修改以确保web访问模式的变化特性。Apriori算法包括提取循环项集和相互关系规则,学习关系数据,通常用于网页预测。在协同规则抽取中,Apriori算法仍然是从数据集中提取模式和规则的标准模型。因此,Apriori算法生成大量与网页预测相关的规则。因此,为了选择最优规则,采用基于鸡群优化算法的猎鹿算法,将公鸡搜索agent的主导社会搜索生物的狩猎习惯和寻找食物的特征结合起来。此外,本研究采用神经网络(NN)对网页进行最小误差预测。训练后的神经网络是一种无监督学习技术,通过分析输入数据集来产生期望的结果,其中神经网络的有效性通过自适应猎鹿公鸡的鸡群优化算法优化权重来增强。实验分析表明,本文提出的基于自适应猎鹿公鸡的鸡群优化框架继承了FIFA数据集的平均偏差= 139.89和对称平均绝对百分比误差[公式:见文本]0.45579等较低的误差度量。对于MSNBC_SPMF数据集,所提出的网页预测模型的L2范数和无穷范数分别为58.017和14。
{"title":"Web page prediction using adaptive deer hunting with chicken swarm optimization based neural network model","authors":"Roshan Gangurde","doi":"10.1142/s1793962322500647","DOIUrl":"https://doi.org/10.1142/s1793962322500647","url":null,"abstract":"The world wide web acts as the dominant tool for data transmission due to access such as data retrieving and data transactions. The retrieval of data from the web is a complex procedure due to the large volume of web domain. The basic uses of the websites are described through web usage mining, which mines the weblog records to identify the pattern of accessing the web pages through the user. The web page prediction assists the web users in finding the plot and obtains the information as to their requirements. Several effective algorithms have been developed to mine association rules that make the predictive model more appropriate for web prediction. They can be commonly revised to ensure the changing feature of web access patterns. The Apriori algorithm involves extracting the recurrent itemset and interrelation rule that learns the relational data is commonly utilized for web page prediction. The Apriori algorithm remains the standard model for deriving the patterns and rules from the datasets in co-operative rule extraction. The Apriori algorithm thus generates large mines associated rules for web page prediction. Hence, to select the best rule, the proposed deer hunting rooster-based chicken swarm optimization algorithm is used by integrating the cockerel search agents’ dominating social search creatures’ hunting habits and their traits of looking for food. Further, the neural network (NN) is employed in this research for the prediction of web pages with minimum error. The trained NN is a technique of unsupervised learning that analyzes a dataset of input to produce the desired result, in which the effectiveness of the NN is enhanced by optimal tuning of weight by the adaptive deer hunting rooster-based chicken swarm optimization algorithm. The experimental analysis illustrates that the proposed adaptive deer hunting rooster-based chicken swarm optimization frameworks inherit lower error measures such as mean deviation = 139.89 and symmetric mean absolute percentage error[Formula: see text]0.45579 for the FIFA dataset. The proposed web page prediction models’ L2 norm and infinity norm are 58.017 and 14, respectively, for the MSNBC_SPMF dataset.","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"444 1","pages":"2250064:1-2250064:26"},"PeriodicalIF":0.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82892807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the quality of service by continuous traffic monitoring using reinforcement learning model in VANET 基于VANET强化学习模型的持续交通监控提高服务质量
Pub Date : 2022-09-12 DOI: 10.1142/s1793962323500344
P. Velmurugan, B. Ashok
{"title":"Improving the quality of service by continuous traffic monitoring using reinforcement learning model in VANET","authors":"P. Velmurugan, B. Ashok","doi":"10.1142/s1793962323500344","DOIUrl":"https://doi.org/10.1142/s1793962323500344","url":null,"abstract":"","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"44 1","pages":"2350034:1-2350034:21"},"PeriodicalIF":0.0,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74335114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Numerical solution of the three-asset Black-Scholes option pricing model using an efficient hybrid method 三资产Black-Scholes期权定价模型的高效混合方法数值求解
Pub Date : 2022-09-12 DOI: 10.1142/s1793962323500356
Razieh Delpasand, M. Hosseini
{"title":"Numerical solution of the three-asset Black-Scholes option pricing model using an efficient hybrid method","authors":"Razieh Delpasand, M. Hosseini","doi":"10.1142/s1793962323500356","DOIUrl":"https://doi.org/10.1142/s1793962323500356","url":null,"abstract":"","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"5 1","pages":"2350035:1-2350035:17"},"PeriodicalIF":0.0,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89953261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A probabilistic model for estimating some design characteristics of aerostructures with an illustration of a Monte Carlo simulation, statistical inferences and applications in aerodynamics 一种估计航空结构某些设计特性的概率模型,并举例说明了蒙特卡罗模拟、统计推断及其在空气动力学中的应用
Pub Date : 2022-08-24 DOI: 10.1142/s1793962323500332
Massoud Nakhkoob
{"title":"A probabilistic model for estimating some design characteristics of aerostructures with an illustration of a Monte Carlo simulation, statistical inferences and applications in aerodynamics","authors":"Massoud Nakhkoob","doi":"10.1142/s1793962323500332","DOIUrl":"https://doi.org/10.1142/s1793962323500332","url":null,"abstract":"","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"122 1","pages":"2350033:1-2350033:20"},"PeriodicalIF":0.0,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76609535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient prediction of future stock values with Gann square using machine learning algorithm 使用机器学习算法的江恩平方有效预测未来股票价值
Pub Date : 2022-08-24 DOI: 10.1142/s1793962322430061
K. Manjunath, M. C. Sekhar
{"title":"Efficient prediction of future stock values with Gann square using machine learning algorithm","authors":"K. Manjunath, M. C. Sekhar","doi":"10.1142/s1793962322430061","DOIUrl":"https://doi.org/10.1142/s1793962322430061","url":null,"abstract":"","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"14 1","pages":"2243006:1-2243006:16"},"PeriodicalIF":0.0,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82436927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hybrid model for predicting academic performance of engineering undergraduates 工程本科生学业成绩预测的混合模型
Pub Date : 2022-07-30 DOI: 10.1142/s1793962323500307
Keui‐Hsien Niu, Baoting Jia, Yuhang Zhou, Guoqiang Lu
{"title":"A hybrid model for predicting academic performance of engineering undergraduates","authors":"Keui‐Hsien Niu, Baoting Jia, Yuhang Zhou, Guoqiang Lu","doi":"10.1142/s1793962323500307","DOIUrl":"https://doi.org/10.1142/s1793962323500307","url":null,"abstract":"","PeriodicalId":13657,"journal":{"name":"Int. J. Model. Simul. Sci. Comput.","volume":"73 1","pages":"2350030:1-2350030:19"},"PeriodicalIF":0.0,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85200055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Int. J. Model. Simul. Sci. Comput.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1