Innate lymphoid cells (ILCs) are emerging as important components of our immune system that have critical effector and regulatory functions in both innate and adaptive immune responses. They are enriched at mucosal surfaces, such as lung and intestine. Our previous work has shown that Lineage-CRTH2-CD45+NKp44-CD117-CD127+ILC1s accumulated in the inflamed terminal ileum of patients with Crohn's disease (CD) at the expense of NKp44+ILC3s. This phenotype conversion impairs the intestinal barrier integrity and contributes to the dysregulated immune responses of CD patients. Our next step was to search for pathways to modulate this phenotype switch. The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. Initial studies of AHR concentrated on its role in the detoxification of xenobiotics. However, recent research has focused on the immune system. Especially, AHR pathway is proven to be essential for the maintenance of intestinal ILC3s in mouse models. We examined whether AHR pathway participated in the human intestinal ILC phenotype change in the inflamed terminal ileum of CD patients. As anticipated, NKp44+ILC3s, NKp44-ILC3s and ILC1s had differential AHR expression. This AHR signaling mediated CD117 expression on the surface of ILC3s. The conversion from ILC3 to ILC1 was accompanied by the downregulation of AHR expression. We further observed that there was a disparity between AHR protein expression and mRNA expression in the inflamed terminal ileum tissues of CD patients compared to unaffected areas. These findings suggest that AHR pathway is also important for human intestinal ILC phenotype regulation and impaired AHR signaling in the inflamed gut of CD patients possibly contributes to the ILC3/ILC1 conversion.
Bacterial or viral infection of the mother during the course of pregnancy can cross the placenta and actively infect the fetus. However, especially for bacteria, it is more common for mothers to experience an infection that can be treated without overt fetal infection. In this setting, it is less well understood what the risk to fetal development is, particularly in terms of neurological development. This research highlight reviews recent findings indicating that bacterial components generated during infection of the mother can cross the placenta and activate the fetal innate immune system resulting in changes in the course of brain development and subsequent progression to postnatal cognitive disorders. Bacterial cell wall is a ubiquitous bacterial PAMP (pathogen-associated molecular pattern) known to activate inflammation through the stimulation of TLR2. Cell wall is released from bacteria during antibiotic treatment and new work shows that embryos exposed to cell wall from the mother demonstrate anomalous proliferation of neuronal precursor cells in a TLR2 dependent manner. Such proliferation increases the neuronal density of the cortical plate and alters brain architecture. Although there is no fetal death, subsequent cognitive development is significantly impaired. This model system suggests that bacterial infection of the mother and its treatment can impact fetal brain development and requires greater understanding to potentially eliminate a risk factor for cognitive disorders such as autism.