Story visualization aims to generate a series of images that match the story described in texts, and it requires the generated images to satisfy high quality, alignment with the text description, and consistency in character identities. Given the complexity of story visualization, existing methods drastically simplify the problem by considering only a few specific characters and scenarios, or requiring the users to provide per-image control conditions such as sketches. However, these simplifications render these methods incompetent for real applications. To this end, we propose an automated story visualization system that can effectively generate diverse, high-quality, and consistent sets of story images, with minimal human interactions. Specifically, we utilize the comprehension and planning capabilities of large language models for layout planning, and then leverage large-scale text-to-image models to generate sophisticated story images based on the layout. We empirically find that sparse control conditions, such as bounding boxes, are suitable for layout planning, while dense control conditions, e.g., sketches, and keypoints, are suitable for generating high-quality image content. To obtain the best of both worlds, we devise a dense condition generation module to transform simple bounding box layouts into sketch or keypoint control conditions for final image generation, which not only improves the image quality but also allows easy and intuitive user interactions. In addition, we propose a simple yet effective method to generate multi-view consistent character images, eliminating the reliance on human labor to collect or draw character images. This allows our method to obtain consistent story visualization even when only texts are provided as input. Both qualitative and quantitative experiments demonstrate the superiority of our method.
{"title":"AutoStory: Generating Diverse Storytelling Images with Minimal Human Efforts","authors":"Wen Wang, Canyu Zhao, Hao Chen, Zhekai Chen, Kecheng Zheng, Chunhua Shen","doi":"10.1007/s11263-024-02309-y","DOIUrl":"https://doi.org/10.1007/s11263-024-02309-y","url":null,"abstract":"<p>Story visualization aims to generate a series of images that match the story described in texts, and it requires the generated images to satisfy high quality, alignment with the text description, and consistency in character identities. Given the complexity of story visualization, existing methods drastically simplify the problem by considering only a few specific characters and scenarios, or requiring the users to provide per-image control conditions such as sketches. However, these simplifications render these methods incompetent for real applications. To this end, we propose an automated story visualization system that can effectively generate diverse, high-quality, and consistent sets of story images, with minimal human interactions. Specifically, we utilize the comprehension and planning capabilities of large language models for layout planning, and then leverage large-scale text-to-image models to generate sophisticated story images based on the layout. We empirically find that sparse control conditions, such as bounding boxes, are suitable for layout planning, while dense control conditions, <i>e.g.</i>, sketches, and keypoints, are suitable for generating high-quality image content. To obtain the best of both worlds, we devise a dense condition generation module to transform simple bounding box layouts into sketch or keypoint control conditions for final image generation, which not only improves the image quality but also allows easy and intuitive user interactions. In addition, we propose a simple yet effective method to generate multi-view consistent character images, eliminating the reliance on human labor to collect or draw character images. This allows our method to obtain consistent story visualization even when only texts are provided as input. Both qualitative and quantitative experiments demonstrate the superiority of our method.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"32 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Multimodal emotion recognition identifies human emotions from various data modalities like video, text, and audio. However, we found that this task can be easily affected by noisy information that does not contain useful semantics and may occur at different locations of a multimodal input sequence. To this end, we present a novel paradigm that attempts to extract noise-resistant features in its pipeline and introduces a noise-aware learning scheme to effectively improve the robustness of multimodal emotion understanding against noisy information. Our new pipeline, namely Noise-Resistant Multimodal Transformer (NORM-TR), mainly introduces a Noise-Resistant Generic Feature (NRGF) extractor and a multimodal fusion Transformer for the multimodal emotion recognition task. In particular, we make the NRGF extractor learn to provide a generic and disturbance-insensitive representation so that consistent and meaningful semantics can be obtained. Furthermore, we apply a multimodal fusion Transformer to incorporate Multimodal Features (MFs) of multimodal inputs (serving as the key and value) based on their relations to the NRGF (serving as the query). Therefore, the possible insensitive but useful information of NRGF could be complemented by MFs that contain more details, achieving more accurate emotion understanding while maintaining robustness against noises. To train the NORM-TR properly, our proposed noise-aware learning scheme complements normal emotion recognition losses by enhancing the learning against noises. Our learning scheme explicitly adds noises to either all the modalities or a specific modality at random locations of a multimodal input sequence. We correspondingly introduce two adversarial losses to encourage the NRGF extractor to learn to extract the NRGFs invariant to the added noises, thus facilitating the NORM-TR to achieve more favorable multimodal emotion recognition performance. In practice, extensive experiments can demonstrate the effectiveness of the NORM-TR and the noise-aware learning scheme for dealing with both explicitly added noisy information and the normal multimodal sequence with implicit noises. On several popular multimodal datasets (e.g., MOSI, MOSEI, IEMOCAP, and RML), our NORM-TR achieves state-of-the-art performance and outperforms existing methods by a large margin, which demonstrates that the ability to resist noisy information in multimodal input is important for effective emotion recognition.
{"title":"Noise-Resistant Multimodal Transformer for Emotion Recognition","authors":"Yuanyuan Liu, Haoyu Zhang, Yibing Zhan, Zijing Chen, Guanghao Yin, Lin Wei, Zhe Chen","doi":"10.1007/s11263-024-02304-3","DOIUrl":"https://doi.org/10.1007/s11263-024-02304-3","url":null,"abstract":"<p>Multimodal emotion recognition identifies human emotions from various data modalities like video, text, and audio. However, we found that this task can be easily affected by noisy information that does not contain useful semantics and may occur at different locations of a multimodal input sequence. To this end, we present a novel paradigm that attempts to extract noise-resistant features in its pipeline and introduces a noise-aware learning scheme to effectively improve the robustness of multimodal emotion understanding against noisy information. Our new pipeline, namely Noise-Resistant Multimodal Transformer (NORM-TR), mainly introduces a Noise-Resistant Generic Feature (NRGF) extractor and a multimodal fusion Transformer for the multimodal emotion recognition task. In particular, we make the NRGF extractor learn to provide a generic and disturbance-insensitive representation so that consistent and meaningful semantics can be obtained. Furthermore, we apply a multimodal fusion Transformer to incorporate Multimodal Features (MFs) of multimodal inputs (serving as the key and value) based on their relations to the NRGF (serving as the query). Therefore, the possible insensitive but useful information of NRGF could be complemented by MFs that contain more details, achieving more accurate emotion understanding while maintaining robustness against noises. To train the NORM-TR properly, our proposed noise-aware learning scheme complements normal emotion recognition losses by enhancing the learning against noises. Our learning scheme explicitly adds noises to either all the modalities or a specific modality at random locations of a multimodal input sequence. We correspondingly introduce two adversarial losses to encourage the NRGF extractor to learn to extract the NRGFs invariant to the added noises, thus facilitating the NORM-TR to achieve more favorable multimodal emotion recognition performance. In practice, extensive experiments can demonstrate the effectiveness of the NORM-TR and the noise-aware learning scheme for dealing with both explicitly added noisy information and the normal multimodal sequence with implicit noises. On several popular multimodal datasets (e.g., MOSI, MOSEI, IEMOCAP, and RML), our NORM-TR achieves state-of-the-art performance and outperforms existing methods by a large margin, which demonstrates that the ability to resist noisy information in multimodal input is important for effective emotion recognition.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"22 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polynomial functions have been employed to represent shape-related information in 2D and 3D computer vision, even from the very early days of the field. In this paper, we present a framework using polynomial-type basis functions to promote shape awareness in contemporary generative architectures. The benefits of using a learnable form of polynomial basis functions as drop-in modules into generative architectures are several—including promoting shape awareness, a noticeable disentanglement of shape from texture, and high quality generation. To enable the architectures to have a small number of parameters, we further use implicit neural representations (INR) as the base architecture. Most INR architectures rely on sinusoidal positional encoding, which accounts for high-frequency information in data. However, the finite encoding size restricts the model’s representational power. Higher representational power is critically needed to transition from representing a single given image to effectively representing large and diverse datasets. Our approach addresses this gap by representing an image with a polynomial function and eliminates the need for positional encodings. Therefore, to achieve a progressively higher degree of polynomial representation, we use element-wise multiplications between features and affine-transformed coordinate locations after every ReLU layer. The proposed method is evaluated qualitatively and quantitatively on large datasets such as ImageNet. The proposed Poly-INR model performs comparably to state-of-the-art generative models without any convolution, normalization, or self-attention layers, and with significantly fewer trainable parameters. With substantially fewer training parameters and higher representative power, our approach paves the way for broader adoption of INR models for generative modeling tasks in complex domains. The code is publicly available at https://github.com/Rajhans0/Poly_INR.
{"title":"Polynomial Implicit Neural Framework for Promoting Shape Awareness in Generative Models","authors":"Utkarsh Nath, Rajhans Singh, Ankita Shukla, Kuldeep Kulkarni, Pavan Turaga","doi":"10.1007/s11263-024-02270-w","DOIUrl":"https://doi.org/10.1007/s11263-024-02270-w","url":null,"abstract":"<p>Polynomial functions have been employed to represent shape-related information in 2D and 3D computer vision, even from the very early days of the field. In this paper, we present a framework using polynomial-type basis functions to promote shape awareness in contemporary generative architectures. The benefits of using a learnable form of polynomial basis functions as drop-in modules into generative architectures are several—including promoting shape awareness, a noticeable disentanglement of shape from texture, and high quality generation. To enable the architectures to have a small number of parameters, we further use implicit neural representations (INR) as the base architecture. Most INR architectures rely on sinusoidal positional encoding, which accounts for high-frequency information in data. However, the finite encoding size restricts the model’s representational power. Higher representational power is critically needed to transition from representing a single given image to effectively representing large and diverse datasets. Our approach addresses this gap by representing an image with a polynomial function and eliminates the need for positional encodings. Therefore, to achieve a progressively higher degree of polynomial representation, we use element-wise multiplications between features and affine-transformed coordinate locations after every ReLU layer. The proposed method is evaluated qualitatively and quantitatively on large datasets such as ImageNet. The proposed Poly-INR model performs comparably to state-of-the-art generative models without any convolution, normalization, or self-attention layers, and with significantly fewer trainable parameters. With substantially fewer training parameters and higher representative power, our approach paves the way for broader adoption of INR models for generative modeling tasks in complex domains. The code is publicly available at https://github.com/Rajhans0/Poly_INR.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"1 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lymph node (LN) metastasis status is one of the most critical prognostic and cancer staging clinical factors for patients with resectable pancreatic ductal adenocarcinoma (PDAC, generally for any types of solid malignant tumors). Pre-operative prediction of LN metastasis from non-invasive CT imaging is highly desired, as it might be directly and conveniently used to guide the follow-up neoadjuvant treatment decision and surgical planning. Most previous studies only use the tumor characteristics in CT imaging alone to implicitly infer LN metastasis. To the best of our knowledge, this is the first work to propose a fully-automated LN segmentation and identification network to directly facilitate the LN metastasis status prediction task for patients with PDAC. Specially, (1) we explore the anatomical spatial context priors of pancreatic LN locations by generating a guiding attention map from related organs and vessels to assist segmentation and infer LN status. As such, LN segmentation is impelled to focus on regions that are anatomically adjacent or plausible with respect to the specific organs and vessels. (2) The metastasized LN identification network is trained to classify the segmented LN instances into positives or negatives by reusing the segmentation network as a pre-trained backbone and padding a new classification head. (3) Importantly, we develop a LN metastasis status prediction network that combines and aggregates the holistic patient-wise diagnosis information of both LN segmentation/identification and deep imaging characteristics by the PDAC tumor region. Extensive quantitative nested five-fold cross-validation is conducted on a discovery dataset of 749 patients with PDAC. External multi-center clinical evaluation is further performed on two other hospitals of 191 total patients. Our multi-staged LN metastasis status prediction network statistically significantly outperforms strong baselines of nnUNet and several other compared methods, including CT-reported LN status, radiomics, and deep learning models.
{"title":"Deep Attention Learning for Pre-operative Lymph Node Metastasis Prediction in Pancreatic Cancer via Multi-object Relationship Modeling","authors":"Zhilin Zheng, Xu Fang, Jiawen Yao, Mengmeng Zhu, Le Lu, Yu Shi, Hong Lu, Jianping Lu, Ling Zhang, Chengwei Shao, Yun Bian","doi":"10.1007/s11263-024-02314-1","DOIUrl":"https://doi.org/10.1007/s11263-024-02314-1","url":null,"abstract":"<p>Lymph node (LN) metastasis status is one of the most critical prognostic and cancer staging clinical factors for patients with resectable pancreatic ductal adenocarcinoma (PDAC, generally for any types of solid malignant tumors). Pre-operative prediction of LN metastasis from non-invasive CT imaging is highly desired, as it might be directly and conveniently used to guide the follow-up neoadjuvant treatment decision and surgical planning. Most previous studies only use the tumor characteristics in CT imaging alone to implicitly infer LN metastasis. To the best of our knowledge, this is the first work to propose a fully-automated LN segmentation and identification network to directly facilitate the LN metastasis status prediction task for patients with PDAC. Specially, (1) we explore the anatomical spatial context priors of pancreatic LN locations by generating a guiding attention map from related organs and vessels to assist segmentation and infer LN status. As such, LN segmentation is impelled to focus on regions that are anatomically adjacent or plausible with respect to the specific organs and vessels. (2) The metastasized LN identification network is trained to classify the segmented LN instances into positives or negatives by reusing the segmentation network as a pre-trained backbone and padding a new classification head. (3) Importantly, we develop a LN metastasis status prediction network that combines and aggregates the holistic patient-wise diagnosis information of both LN segmentation/identification and deep imaging characteristics by the PDAC tumor region. Extensive quantitative nested five-fold cross-validation is conducted on a discovery dataset of 749 patients with PDAC. External multi-center clinical evaluation is further performed on two other hospitals of 191 total patients. Our multi-staged LN metastasis status prediction network statistically significantly outperforms strong baselines of nnUNet and several other compared methods, including CT-reported LN status, radiomics, and deep learning models.\u0000</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"31 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142867002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Visual tracking aims to estimate object state automatically in a video sequence, which is challenging especially in complex scenarios. Recent Transformer-based trackers enable the interaction between the target template and search region in the feature extraction phase for target-aware feature learning, which have achieved superior performance. However, visual tracking is essentially a task to discriminate the specified target from the backgrounds. These trackers commonly ignore the role of background in feature learning, which may cause backgrounds to be mistakenly enhanced in complex scenarios, affecting temporal robustness and spatial discriminability. To address the above limitations, we propose a scenario-aware tracker (SATrack) based on a specifically designed scenario-aware Vision Transformer, which integrates a scenario knowledge extractor and a scenario knowledge modulator. The proposed SATrack enjoys several merits. Firstly, we design a novel scenario-aware Vision Transformer for visual tracking, which can decouple historic scenarios into explicit target and background knowledge to guide discriminative feature learning. Secondly, a scenario knowledge extractor is designed to dynamically acquire decoupled and compact scenario knowledge from video contexts, and a scenario knowledge modulator is designed to embed scenario knowledge into attention mechanisms for scenario-aware feature learning. Extensive experimental results on nine tracking benchmarks demonstrate that SATrack achieves new state-of-the-art performance with high FPS.
{"title":"Learning Discriminative Features for Visual Tracking via Scenario Decoupling","authors":"Yinchao Ma, Qianjin Yu, Wenfei Yang, Tianzhu Zhang, Jinpeng Zhang","doi":"10.1007/s11263-024-02307-0","DOIUrl":"https://doi.org/10.1007/s11263-024-02307-0","url":null,"abstract":"<p>Visual tracking aims to estimate object state automatically in a video sequence, which is challenging especially in complex scenarios. Recent Transformer-based trackers enable the interaction between the target template and search region in the feature extraction phase for target-aware feature learning, which have achieved superior performance. However, visual tracking is essentially a task to discriminate the specified target from the backgrounds. These trackers commonly ignore the role of background in feature learning, which may cause backgrounds to be mistakenly enhanced in complex scenarios, affecting temporal robustness and spatial discriminability. To address the above limitations, we propose a scenario-aware tracker (SATrack) based on a specifically designed scenario-aware Vision Transformer, which integrates a scenario knowledge extractor and a scenario knowledge modulator. The proposed SATrack enjoys several merits. Firstly, we design a novel scenario-aware Vision Transformer for visual tracking, which can decouple historic scenarios into explicit target and background knowledge to guide discriminative feature learning. Secondly, a scenario knowledge extractor is designed to dynamically acquire decoupled and compact scenario knowledge from video contexts, and a scenario knowledge modulator is designed to embed scenario knowledge into attention mechanisms for scenario-aware feature learning. Extensive experimental results on nine tracking benchmarks demonstrate that SATrack achieves new state-of-the-art performance with high FPS.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"24 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-18DOI: 10.1007/s11263-024-02323-0
Zixuan Chen, Xiaohua Xie, Lingxiao Yang, Jian-Huang Lai
Anomaly detectors are widely used in industrial manufacturing to detect and localize unknown defects in query images. These detectors are trained on anomaly-free samples and have successfully distinguished anomalies from most normal samples. However, hard-normal examples are scattered and far apart from most normal samples, and thus they are often mistaken for anomalies by existing methods. To address this issue, we propose Hard-normal Example-aware Template Mutual Matching (HETMM), an efficient framework to build a robust prototype-based decision boundary. Specifically, HETMM employs the proposed Affine-invariant Template Mutual Matching (ATMM) to mitigate the affection brought by the affine transformations and easy-normal examples. By mutually matching the pixel-level prototypes within the patch-level search spaces between query and template set, ATMM can accurately distinguish between hard-normal examples and anomalies, achieving low false-positive and missed-detection rates. In addition, we also propose PTS to compress the original template set for speed-up. PTS selects cluster centres and hard-normal examples to preserve the original decision boundary, allowing this tiny set to achieve comparable performance to the original one. Extensive experiments demonstrate that HETMM outperforms state-of-the-art methods, while using a 60-sheet tiny set can achieve competitive performance and real-time inference speed (around 26.1 FPS) on a Quadro 8000 RTX GPU. HETMM is training-free and can be hot-updated by directly inserting novel samples into the template set, which can promptly address some incremental learning issues in industrial manufacturing.
{"title":"Hard-Normal Example-Aware Template Mutual Matching for Industrial Anomaly Detection","authors":"Zixuan Chen, Xiaohua Xie, Lingxiao Yang, Jian-Huang Lai","doi":"10.1007/s11263-024-02323-0","DOIUrl":"https://doi.org/10.1007/s11263-024-02323-0","url":null,"abstract":"<p>Anomaly detectors are widely used in industrial manufacturing to detect and localize unknown defects in query images. These detectors are trained on anomaly-free samples and have successfully distinguished anomalies from most normal samples. However, hard-normal examples are scattered and far apart from most normal samples, and thus they are often mistaken for anomalies by existing methods. To address this issue, we propose <b>H</b>ard-normal <b>E</b>xample-aware <b>T</b>emplate <b>M</b>utual <b>M</b>atching (HETMM), an efficient framework to build a robust prototype-based decision boundary. Specifically, <i>HETMM</i> employs the proposed <b>A</b>ffine-invariant <b>T</b>emplate <b>M</b>utual <b>M</b>atching (ATMM) to mitigate the affection brought by the affine transformations and easy-normal examples. By mutually matching the pixel-level prototypes within the patch-level search spaces between query and template set, <i>ATMM</i> can accurately distinguish between hard-normal examples and anomalies, achieving low false-positive and missed-detection rates. In addition, we also propose <i>PTS</i> to compress the original template set for speed-up. <i>PTS</i> selects cluster centres and hard-normal examples to preserve the original decision boundary, allowing this tiny set to achieve comparable performance to the original one. Extensive experiments demonstrate that <i>HETMM</i> outperforms state-of-the-art methods, while using a 60-sheet tiny set can achieve competitive performance and real-time inference speed (around 26.1 FPS) on a Quadro 8000 RTX GPU. <i>HETMM</i> is training-free and can be hot-updated by directly inserting novel samples into the template set, which can promptly address some incremental learning issues in industrial manufacturing.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"26 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, we introduce an innovative task focused on human communication, aiming to generate 3D holistic human motions for both speakers and listeners. Central to our approach is the incorporation of factorization to decouple audio features and the combination of textual semantic information, thereby facilitating the creation of more realistic and coordinated movements. We separately train VQ-VAEs with respect to the holistic motions of both speaker and listener. We consider the real-time mutual influence between the speaker and the listener and propose a novel chain-like transformer-based auto-regressive model specifically designed to characterize real-world communication scenarios effectively which can generate the motions of both the speaker and the listener simultaneously. These designs ensure that the results we generate are both coordinated and diverse. Our approach demonstrates state-of-the-art performance on two benchmark datasets. Furthermore, we introduce the HoCo holistic communication dataset, which is a valuable resource for future research. Our HoCo dataset and code will be released for research purposes upon acceptance.
{"title":"Beyond Talking – Generating Holistic 3D Human Dyadic Motion for Communication","authors":"Mingze Sun, Chao Xu, Xinyu Jiang, Yang Liu, Baigui Sun, Ruqi Huang","doi":"10.1007/s11263-024-02300-7","DOIUrl":"https://doi.org/10.1007/s11263-024-02300-7","url":null,"abstract":"<p>In this paper, we introduce an innovative task focused on human communication, aiming to generate 3D holistic human motions for both speakers and listeners. Central to our approach is the incorporation of factorization to decouple audio features and the combination of textual semantic information, thereby facilitating the creation of more realistic and coordinated movements. We separately train VQ-VAEs with respect to the holistic motions of both speaker and listener. We consider the real-time mutual influence between the speaker and the listener and propose a novel chain-like transformer-based auto-regressive model specifically designed to characterize real-world communication scenarios effectively which can generate the motions of both the speaker and the listener simultaneously. These designs ensure that the results we generate are both coordinated and diverse. Our approach demonstrates state-of-the-art performance on two benchmark datasets. Furthermore, we introduce the <span>HoCo</span> holistic communication dataset, which is a valuable resource for future research. Our <span>HoCo</span> dataset and code will be released for research purposes upon acceptance.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"22 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142832329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Text-to-3D generation represents an exciting field that has seen rapid advancements, facilitating the transformation of textual descriptions into detailed 3D models. However, current progress often neglects the intricate high-order correlation of geometry and texture within 3D objects, leading to challenges such as over-smoothness, over-saturation and the Janus problem. In this work, we propose a method named “3D Gaussian Generation via Hypergraph (Hyper-3DG)”, designed to capture the sophisticated high-order correlations present within 3D objects. Our framework is anchored by a well-established mainflow and an essential module, named “Geometry and Texture Hypergraph Refiner (HGRefiner)”. This module not only refines the representation of 3D Gaussians but also accelerates the update process of these 3D Gaussians by conducting the Patch-3DGS Hypergraph Learning on both explicit attributes and latent visual features. Our framework allows for the production of finely generated 3D objects within a cohesive optimization, effectively circumventing degradation. Extensive experimentation has shown that our proposed method significantly enhances the quality of 3D generation while incurring no additional computational overhead for the underlying framework. (Project code: https://github.com/yjhboy/Hyper3DG).
文本到 3D 的生成是一个令人兴奋的领域,该领域取得了突飞猛进的发展,促进了文本描述到详细 3D 模型的转化。然而,当前的进展往往忽视了三维物体内部几何和纹理之间错综复杂的高阶相关性,从而导致了诸如过度平滑、过度饱和和杰纳斯问题等挑战。在这项工作中,我们提出了一种名为 "通过超图生成三维高斯(Hyper-3DG)"的方法,旨在捕捉三维物体内部复杂的高阶相关性。我们的框架由一个成熟的主流程和一个名为 "几何与纹理超图细化器(HGRefiner)"的重要模块构成。该模块不仅能完善三维高斯的表示,还能通过对显性属性和潜在视觉特征进行 Patch-3DGS 超图学习,加速这些三维高斯的更新过程。我们的框架允许在内聚优化中生成精细的三维对象,有效避免了退化。广泛的实验表明,我们提出的方法显著提高了三维生成的质量,同时不会给底层框架带来额外的计算开销。(项目代码:https://github.com/yjhboy/Hyper3DG)。
{"title":"Hyper-3DG: Text-to-3D Gaussian Generation via Hypergraph","authors":"Donglin Di, Jiahui Yang, Chaofan Luo, Zhou Xue, Wei Chen, Xun Yang, Yue Gao","doi":"10.1007/s11263-024-02298-y","DOIUrl":"https://doi.org/10.1007/s11263-024-02298-y","url":null,"abstract":"<p>Text-to-3D generation represents an exciting field that has seen rapid advancements, facilitating the transformation of textual descriptions into detailed 3D models. However, current progress often neglects the intricate high-order correlation of geometry and texture within 3D objects, leading to challenges such as over-smoothness, over-saturation and the Janus problem. In this work, we propose a method named “3D Gaussian Generation via Hypergraph (Hyper-3DG)”, designed to capture the sophisticated high-order correlations present within 3D objects. Our framework is anchored by a well-established mainflow and an essential module, named “Geometry and Texture Hypergraph Refiner (HGRefiner)”. This module not only refines the representation of 3D Gaussians but also accelerates the update process of these 3D Gaussians by conducting the Patch-3DGS Hypergraph Learning on both explicit attributes and latent visual features. Our framework allows for the production of finely generated 3D objects within a cohesive optimization, effectively circumventing degradation. Extensive experimentation has shown that our proposed method significantly enhances the quality of 3D generation while incurring no additional computational overhead for the underlying framework. (Project code: https://github.com/yjhboy/Hyper3DG).</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"63 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142825249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-13DOI: 10.1007/s11263-024-02303-4
Yingping Liang, Ying Fu
Data-free knowledge distillation transfers knowledge by recovering training data from a pre-trained model. Despite the recent success of seeking global data diversity, the diversity within each class and the similarity among different classes are largely overlooked, resulting in data homogeneity and limited performance. In this paper, we introduce a novel Relation-Guided Adversarial Learning method with triplet losses, which solves the homogeneity problem from two aspects. To be specific, our method aims to promote both intra-class diversity and inter-class confusion of the generated samples. To this end, we design two phases, an image synthesis phase and a student training phase. In the image synthesis phase, we construct an optimization process to push away samples with the same labels and pull close samples with different labels, leading to intra-class diversity and inter-class confusion, respectively. Then, in the student training phase, we perform an opposite optimization, which adversarially attempts to reduce the distance of samples of the same classes and enlarge the distance of samples of different classes. To mitigate the conflict of seeking high global diversity and keeping inter-class confusing, we propose a focal weighted sampling strategy by selecting the negative in the triplets unevenly within a finite range of distance. RGAL shows significant improvement over previous state-of-the-art methods in accuracy and data efficiency. Besides, RGAL can be inserted into state-of-the-art methods on various data-free knowledge transfer applications. Experiments on various benchmarks demonstrate the effectiveness and generalizability of our proposed method on various tasks, specially data-free knowledge distillation, data-free quantization, and non-exemplar incremental learning. Our code will be publicly available to the community.
{"title":"Relation-Guided Adversarial Learning for Data-Free Knowledge Transfer","authors":"Yingping Liang, Ying Fu","doi":"10.1007/s11263-024-02303-4","DOIUrl":"https://doi.org/10.1007/s11263-024-02303-4","url":null,"abstract":"<p>Data-free knowledge distillation transfers knowledge by recovering training data from a pre-trained model. Despite the recent success of seeking global data diversity, the diversity within each class and the similarity among different classes are largely overlooked, resulting in data homogeneity and limited performance. In this paper, we introduce a novel Relation-Guided Adversarial Learning method with triplet losses, which solves the homogeneity problem from two aspects. To be specific, our method aims to promote both intra-class diversity and inter-class confusion of the generated samples. To this end, we design two phases, an image synthesis phase and a student training phase. In the image synthesis phase, we construct an optimization process to push away samples with the same labels and pull close samples with different labels, leading to intra-class diversity and inter-class confusion, respectively. Then, in the student training phase, we perform an opposite optimization, which adversarially attempts to reduce the distance of samples of the same classes and enlarge the distance of samples of different classes. To mitigate the conflict of seeking high global diversity and keeping inter-class confusing, we propose a focal weighted sampling strategy by selecting the negative in the triplets unevenly within a finite range of distance. RGAL shows significant improvement over previous state-of-the-art methods in accuracy and data efficiency. Besides, RGAL can be inserted into state-of-the-art methods on various data-free knowledge transfer applications. Experiments on various benchmarks demonstrate the effectiveness and generalizability of our proposed method on various tasks, specially data-free knowledge distillation, data-free quantization, and non-exemplar incremental learning. Our code will be publicly available to the community.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"76 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent advancements in diffusion models have showcased their impressive capacity to generate visually striking images. However, ensuring a close match between the generated image and the given prompt remains a persistent challenge. In this work, we identify that a crucial factor leading to the erroneous generation of objects and their attributes is the inadequate cross-modality relation learning between the prompt and the generated images. To better align the prompt and image content, we advance the cross-attention with an adaptive mask, which is conditioned on the attention maps and the prompt embeddings, to dynamically adjust the contribution of each text token to the image features. This mechanism explicitly diminishes the ambiguity in the semantic information embedding of the text encoder, leading to a boost of text-to-image consistency in the synthesized images. Our method, termed MaskDiffusion, is training-free and hot-pluggable for popular pre-trained diffusion models. When applied to the latent diffusion models, our MaskDiffusion can largely enhance their capability to correctly generate objects and their attributes, with negligible computation overhead compared to the original diffusion models. Our project page is https://github.com/HVision-NKU/MaskDiffusion.
{"title":"MaskDiffusion: Boosting Text-to-Image Consistency with Conditional Mask","authors":"Yupeng Zhou, Daquan Zhou, Yaxing Wang, Jiashi Feng, Qibin Hou","doi":"10.1007/s11263-024-02294-2","DOIUrl":"https://doi.org/10.1007/s11263-024-02294-2","url":null,"abstract":"<p>Recent advancements in diffusion models have showcased their impressive capacity to generate visually striking images. However, ensuring a close match between the generated image and the given prompt remains a persistent challenge. In this work, we identify that a crucial factor leading to the erroneous generation of objects and their attributes is the inadequate cross-modality relation learning between the prompt and the generated images. To better align the prompt and image content, we advance the cross-attention with an adaptive mask, which is conditioned on the attention maps and the prompt embeddings, to dynamically adjust the contribution of each text token to the image features. This mechanism explicitly diminishes the ambiguity in the semantic information embedding of the text encoder, leading to a boost of text-to-image consistency in the synthesized images. Our method, termed MaskDiffusion, is training-free and hot-pluggable for popular pre-trained diffusion models. When applied to the latent diffusion models, our MaskDiffusion can largely enhance their capability to correctly generate objects and their attributes, with negligible computation overhead compared to the original diffusion models. Our project page is https://github.com/HVision-NKU/MaskDiffusion.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"47 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142809694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}