首页 > 最新文献

International Journal of Computer Vision最新文献

英文 中文
Reliable Evaluation of Attribution Maps in CNNs: A Perturbation-Based Approach CNN 中归因图的可靠评估:基于扰动的方法
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-23 DOI: 10.1007/s11263-024-02282-6
Lars Nieradzik, Henrike Stephani, Janis Keuper

In this paper, we present an approach for evaluating attribution maps, which play a central role in interpreting the predictions of convolutional neural networks (CNNs). We show that the widely used insertion/deletion metrics are susceptible to distribution shifts that affect the reliability of the ranking. Our method proposes to replace pixel modifications with adversarial perturbations, which provides a more robust evaluation framework. By using smoothness and monotonicity measures, we illustrate the effectiveness of our approach in correcting distribution shifts. In addition, we conduct the most comprehensive quantitative and qualitative assessment of attribution maps to date. Introducing baseline attribution maps as sanity checks, we find that our metric is the only contender to pass all checks. Using Kendall’s (tau ) rank correlation coefficient, we show the increased consistency of our metric across 15 dataset-architecture combinations. Of the 16 attribution maps tested, our results clearly show SmoothGrad to be the best map currently available. This research makes an important contribution to the development of attribution maps by providing a reliable and consistent evaluation framework. To ensure reproducibility, we will provide the code along with our results.

在本文中,我们提出了一种评估归因图的方法,归因图在解释卷积神经网络(CNN)的预测方面发挥着核心作用。我们表明,广泛使用的插入/删除度量容易受到分布偏移的影响,从而影响排名的可靠性。我们的方法建议用对抗扰动代替像素修改,从而提供一个更稳健的评估框架。通过使用平滑度和单调性度量,我们说明了我们的方法在纠正分布偏移方面的有效性。此外,我们还对归因图进行了迄今为止最全面的定量和定性评估。在引入基准归因图作为理智检查时,我们发现我们的度量方法是唯一能通过所有检查的方法。使用 Kendall 的等级相关系数,我们显示了我们的度量标准在 15 个数据集-架构组合中一致性的提高。在测试的 16 个归因图中,我们的结果清楚地表明 SmoothGrad 是目前最好的归因图。这项研究通过提供可靠、一致的评估框架,为归因图的开发做出了重要贡献。为确保可重复性,我们将在提供结果的同时提供代码。
{"title":"Reliable Evaluation of Attribution Maps in CNNs: A Perturbation-Based Approach","authors":"Lars Nieradzik, Henrike Stephani, Janis Keuper","doi":"10.1007/s11263-024-02282-6","DOIUrl":"https://doi.org/10.1007/s11263-024-02282-6","url":null,"abstract":"<p>In this paper, we present an approach for evaluating attribution maps, which play a central role in interpreting the predictions of convolutional neural networks (CNNs). We show that the widely used insertion/deletion metrics are susceptible to distribution shifts that affect the reliability of the ranking. Our method proposes to replace pixel modifications with adversarial perturbations, which provides a more robust evaluation framework. By using smoothness and monotonicity measures, we illustrate the effectiveness of our approach in correcting distribution shifts. In addition, we conduct the most comprehensive quantitative and qualitative assessment of attribution maps to date. Introducing baseline attribution maps as sanity checks, we find that our metric is the only contender to pass all checks. Using Kendall’s <span>(tau )</span> rank correlation coefficient, we show the increased consistency of our metric across 15 dataset-architecture combinations. Of the 16 attribution maps tested, our results clearly show SmoothGrad to be the best map currently available. This research makes an important contribution to the development of attribution maps by providing a reliable and consistent evaluation framework. To ensure reproducibility, we will provide the code along with our results.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"18 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-Shot Generative Domain Adaptation in 3D GANs 三维泛函网络中的单次生成域自适应
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-22 DOI: 10.1007/s11263-024-02268-4
Ziqiang Li, Yi Wu, Chaoyue Wang, Xue Rui, Bin Li

3D-aware image generation necessitates extensive training data to ensure stable training and mitigate the risk of overfitting. This paper first consider a novel task known as One-shot 3D Generative Domain Adaptation (GDA), aimed at transferring a pre-trained 3D generator from one domain to a new one, relying solely on a single reference image. One-shot 3D GDA is characterized by the pursuit of specific attributes, namely, high fidelity, large diversity, cross-domain consistency, and multi-view consistency. Within this paper, we introduce 3D-Adapter, the first one-shot 3D GDA method, for diverse and faithful generation. Our approach begins by judiciously selecting a restricted weight set for fine-tuning, and subsequently leverages four advanced loss functions to facilitate adaptation. An efficient progressive fine-tuning strategy is also implemented to enhance the adaptation process. The synergy of these three technological components empowers 3D-Adapter to achieve remarkable performance, substantiated both quantitatively and qualitatively, across all desired properties of 3D GDA. Furthermore, 3D-Adapter seamlessly extends its capabilities to zero-shot scenarios, and preserves the potential for crucial tasks such as interpolation, reconstruction, and editing within the latent space of the pre-trained generator. Code will be available at https://github.com/iceli1007/3D-Adapter.

三维感知图像生成需要大量的训练数据,以确保稳定的训练并降低过度拟合的风险。本文首先考虑的是一种被称为 "一枪式三维生成域适应"(GDA)的新任务,其目的是将预先训练好的三维生成器从一个域转移到一个新域,而这完全依赖于单个参考图像。单次三维 GDA 的特点是追求特定属性,即高保真、大多样性、跨域一致性和多视角一致性。在本文中,我们介绍了 3D-Adapter - 第一种单次 3D GDA 方法,用于生成多样化的忠实图像。我们的方法首先是明智地选择一个有限的权重集进行微调,然后利用四个先进的损失函数来促进适应。此外,我们还实施了一种高效的渐进微调策略,以加强适应过程。这三个技术组件的协同作用使 3D-Adapter 在 3D GDA 的所有预期特性方面实现了卓越的性能,并在定量和定性方面都得到了证实。此外,3D-Adapter 还能将其功能无缝扩展到零拍摄场景,并在预训练生成器的潜在空间内保留执行插值、重建和编辑等关键任务的潜力。代码可在 https://github.com/iceli1007/3D-Adapter 上获取。
{"title":"One-Shot Generative Domain Adaptation in 3D GANs","authors":"Ziqiang Li, Yi Wu, Chaoyue Wang, Xue Rui, Bin Li","doi":"10.1007/s11263-024-02268-4","DOIUrl":"https://doi.org/10.1007/s11263-024-02268-4","url":null,"abstract":"<p>3D-aware image generation necessitates extensive training data to ensure stable training and mitigate the risk of overfitting. This paper first consider a novel task known as One-shot 3D Generative Domain Adaptation (GDA), aimed at transferring a pre-trained 3D generator from one domain to a new one, relying solely on a single reference image. One-shot 3D GDA is characterized by the pursuit of specific attributes, namely, <i>high fidelity</i>, <i>large diversity</i>, <i>cross-domain consistency</i>, and <i>multi-view consistency</i>. Within this paper, we introduce 3D-Adapter, the first one-shot 3D GDA method, for diverse and faithful generation. Our approach begins by judiciously selecting a restricted weight set for fine-tuning, and subsequently leverages four advanced loss functions to facilitate adaptation. An efficient progressive fine-tuning strategy is also implemented to enhance the adaptation process. The synergy of these three technological components empowers 3D-Adapter to achieve remarkable performance, substantiated both quantitatively and qualitatively, across all desired properties of 3D GDA. Furthermore, 3D-Adapter seamlessly extends its capabilities to zero-shot scenarios, and preserves the potential for crucial tasks such as interpolation, reconstruction, and editing within the latent space of the pre-trained generator. Code will be available at https://github.com/iceli1007/3D-Adapter.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"61 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142684360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NAFT and SynthStab: A RAFT-Based Network and a Synthetic Dataset for Digital Video Stabilization NAFT 和 SynthStab:基于 RAFT 的网络和用于数字视频稳定的合成数据集
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-22 DOI: 10.1007/s11263-024-02264-8
Marcos Roberto e Souza, Helena de Almeida Maia, Helio Pedrini

Multiple deep learning-based stabilization methods have been proposed recently. Some of them directly predict the optical flow to warp each unstable frame into its stabilized version, which we called direct warping. These methods primarily perform online or semi-online stabilization, prioritizing lower computational cost while achieving satisfactory results in certain scenarios. However, they fail to smooth intense instabilities and have considerably inferior results in comparison to other approaches. To improve their quality and reduce this difference, we propose: (a) NAFT, a new direct warping semi-online stabilization method, which adapts RAFT to videos by including a neighborhood-aware update mechanism, called IUNO. By using our training approach along with IUNO, we can learn the characteristics that contribute to video stability from the data patterns, rather than requiring an explicit stability definition. Furthermore, we demonstrate how leveraging an off-the-shelf video inpainting method to achieve full-frame stabilization; (b) SynthStab, a new synthetic dataset consisting of paired videos that allows supervision by camera motion instead of pixel similarities. To build SynthStab, we modeled camera motion using kinematic concepts. In addition, the unstable motion respects scene constraints, such as depth variation. We performed several experiments on SynthStab to develop and validate NAFT. We compared our results with five other methods from the literature with publicly available code. Our experimental results show that we were able to stabilize intense camera motion, outperforming other direct warping methods and bringing its performance closer to state-of-the-art methods. In terms of computational resources, our smallest network has only about 7% of model size and trainable parameters than the smallest values among the competing methods.

最近提出了多种基于深度学习的稳定方法。其中一些方法直接预测光流,将每个不稳定帧翘曲成稳定版本,我们称之为直接翘曲。这些方法主要执行在线或半在线稳定,优先考虑较低的计算成本,同时在某些场景下取得令人满意的结果。然而,与其他方法相比,它们无法平滑强烈的不稳定性,效果也差得多。为了提高它们的质量并缩小这种差异,我们提出了:(a) NAFT,一种新的直接翘曲半在线稳定方法,它通过包含一种邻域感知更新机制(称为 IUNO),将 RAFT 适应于视频。通过使用我们的训练方法和 IUNO,我们可以从数据模式中学习有助于视频稳定性的特征,而不需要明确的稳定性定义。此外,我们还演示了如何利用现成的视频内画方法实现全帧稳定;(b)SynthStab,一种由配对视频组成的新合成数据集,允许通过摄像机运动而非像素相似性进行监督。为了建立 SynthStab,我们使用运动学概念对摄像机运动进行建模。此外,不稳定运动会受到场景限制,如深度变化。我们在 SynthStab 上进行了多次实验,以开发和验证 NAFT。我们将我们的结果与其他五种公开代码的文献方法进行了比较。实验结果表明,我们能够稳定摄像机的剧烈运动,优于其他直接扭曲方法,使其性能更接近最先进的方法。在计算资源方面,我们的最小网络的模型大小和可训练参数仅为其他竞争方法最小值的 7%。
{"title":"NAFT and SynthStab: A RAFT-Based Network and a Synthetic Dataset for Digital Video Stabilization","authors":"Marcos Roberto e Souza, Helena de Almeida Maia, Helio Pedrini","doi":"10.1007/s11263-024-02264-8","DOIUrl":"https://doi.org/10.1007/s11263-024-02264-8","url":null,"abstract":"<p>Multiple deep learning-based stabilization methods have been proposed recently. Some of them directly predict the optical flow to warp each unstable frame into its stabilized version, which we called direct warping. These methods primarily perform online or semi-online stabilization, prioritizing lower computational cost while achieving satisfactory results in certain scenarios. However, they fail to smooth intense instabilities and have considerably inferior results in comparison to other approaches. To improve their quality and reduce this difference, we propose: (a) NAFT, a new direct warping semi-online stabilization method, which adapts RAFT to videos by including a neighborhood-aware update mechanism, called IUNO. By using our training approach along with IUNO, we can learn the characteristics that contribute to video stability from the data patterns, rather than requiring an explicit stability definition. Furthermore, we demonstrate how leveraging an off-the-shelf video inpainting method to achieve full-frame stabilization; (b) SynthStab, a new synthetic dataset consisting of paired videos that allows supervision by camera motion instead of pixel similarities. To build SynthStab, we modeled camera motion using kinematic concepts. In addition, the unstable motion respects scene constraints, such as depth variation. We performed several experiments on SynthStab to develop and validate NAFT. We compared our results with five other methods from the literature with publicly available code. Our experimental results show that we were able to stabilize intense camera motion, outperforming other direct warping methods and bringing its performance closer to state-of-the-art methods. In terms of computational resources, our smallest network has only about 7% of model size and trainable parameters than the smallest values among the competing methods.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"24 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CS-CoLBP: Cross-Scale Co-occurrence Local Binary Pattern for Image Classification CS-CoLBP:用于图像分类的跨尺度共现局部二进制模式
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-19 DOI: 10.1007/s11263-024-02297-z
Bin Xiao, Danyu Shi, Xiuli Bi, Weisheng Li, Xinbo Gao

The local binary pattern (LBP) is an effective feature, describing the size relationship between the neighboring pixels and the current pixel. While individual LBP-based methods yield good results, co-occurrence LBP-based methods exhibit a better ability to extract structural information. However, most of the co-occurrence LBP-based methods excel mainly in dealing with rotated images, exhibiting limitations in preserving performance for scaled images. To address the issue, a cross-scale co-occurrence LBP (CS-CoLBP) is proposed. Initially, we construct an LBP co-occurrence space to capture robust structural features by simulating scale transformation. Subsequently, we use Cross-Scale Co-occurrence pairs (CS-Co pairs) to extract the structural features, keeping robust descriptions even in the presence of scaling. Finally, we refine these CS-Co pairs through Rotation Consistency Adjustment (RCA) to bolster their rotation invariance, thereby making the proposed CS-CoLBP as powerful as existing co-occurrence LBP-based methods for rotated image description. While keeping the desired geometric invariance, the proposed CS-CoLBP maintains a modest feature dimension. Empirical evaluations across several datasets demonstrate that CS-CoLBP outperforms the existing state-of-the-art LBP-based methods even in the presence of geometric transformations and image manipulations.

局部二值模式(LBP)是一种有效的特征,它描述了相邻像素与当前像素之间的大小关系。虽然基于单个 LBP 的方法效果不错,但基于共生 LBP 的方法提取结构信息的能力更强。然而,大多数基于共生 LBP 的方法主要擅长处理旋转图像,在保持缩放图像的性能方面表现出局限性。为了解决这个问题,我们提出了一种跨尺度共现 LBP(CS-CoLBP)。首先,我们构建了一个 LBP 共现空间,通过模拟尺度变换来捕捉稳健的结构特征。随后,我们使用跨尺度共现对(CS-Co 对)来提取结构特征,即使在缩放的情况下也能保持稳健的描述。最后,我们通过旋转一致性调整(RCA)来完善这些 CS-Co 对,以增强其旋转不变性,从而使所提出的 CS-CoLBP 与现有的基于共现 LBP 的旋转图像描述方法一样强大。在保持所需的几何不变性的同时,所提出的 CS-CoLBP 保持了适度的特征维度。对多个数据集的经验评估表明,即使在存在几何变换和图像处理的情况下,CS-CoLBP 的性能也优于现有最先进的基于 LBP 的方法。
{"title":"CS-CoLBP: Cross-Scale Co-occurrence Local Binary Pattern for Image Classification","authors":"Bin Xiao, Danyu Shi, Xiuli Bi, Weisheng Li, Xinbo Gao","doi":"10.1007/s11263-024-02297-z","DOIUrl":"https://doi.org/10.1007/s11263-024-02297-z","url":null,"abstract":"<p>The local binary pattern (LBP) is an effective feature, describing the size relationship between the neighboring pixels and the current pixel. While individual LBP-based methods yield good results, co-occurrence LBP-based methods exhibit a better ability to extract structural information. However, most of the co-occurrence LBP-based methods excel mainly in dealing with rotated images, exhibiting limitations in preserving performance for scaled images. To address the issue, a cross-scale co-occurrence LBP (CS-CoLBP) is proposed. Initially, we construct an LBP co-occurrence space to capture robust structural features by simulating scale transformation. Subsequently, we use Cross-Scale Co-occurrence pairs (CS-Co pairs) to extract the structural features, keeping robust descriptions even in the presence of scaling. Finally, we refine these CS-Co pairs through Rotation Consistency Adjustment (RCA) to bolster their rotation invariance, thereby making the proposed CS-CoLBP as powerful as existing co-occurrence LBP-based methods for rotated image description. While keeping the desired geometric invariance, the proposed CS-CoLBP maintains a modest feature dimension. Empirical evaluations across several datasets demonstrate that CS-CoLBP outperforms the existing state-of-the-art LBP-based methods even in the presence of geometric transformations and image manipulations.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"53 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Warping the Residuals for Image Editing with StyleGAN 使用 StyleGAN 对残差进行翘曲处理以进行图像编辑
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-18 DOI: 10.1007/s11263-024-02301-6
Ahmet Burak Yildirim, Hamza Pehlivan, Aysegul Dundar

StyleGAN models show editing capabilities via their semantically interpretable latent organizations which require successful GAN inversion methods to edit real images. Many works have been proposed for inverting images into StyleGAN’s latent space. However, their results either suffer from low fidelity to the input image or poor editing qualities, especially for edits that require large transformations. That is because low bit rate latent spaces lose many image details due to the information bottleneck even though it provides an editable space. On the other hand, higher bit rate latent spaces can pass all the image details to StyleGAN for perfect reconstruction of images but suffer from low editing qualities. In this work, we present a novel image inversion architecture that extracts high-rate latent features and includes a flow estimation module to warp these features to adapt them to edits. This is because edits often involve spatial changes in the image, such as adjustments to pose or smile. Thus, high-rate latent features must be accurately repositioned to match their new locations in the edited image space. We achieve this by employing flow estimation to determine the necessary spatial adjustments, followed by warping the features to align them correctly in the edited image. Specifically, we estimate the flows from StyleGAN features of edited and unedited latent codes. By estimating the high-rate features and warping them for edits, we achieve both high-fidelity to the input image and high-quality edits. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements.

StyleGAN 模型通过其语义可解释的潜在组织显示出编辑能力,这就需要成功的 GAN 反演方法来编辑真实图像。已经有很多人提出了将图像反转到 StyleGAN 潜在空间的方法。但是,它们的结果要么与输入图像的保真度较低,要么编辑质量较差,尤其是对于需要大量变换的编辑。这是因为低比特率潜空间虽然提供了一个可编辑的空间,但由于信息瓶颈而丢失了许多图像细节。另一方面,高比特率潜空间可以将所有图像细节传递给 StyleGAN,从而完美地重建图像,但编辑质量较低。在这项工作中,我们提出了一种新颖的图像反转架构,该架构可提取高比特率潜特征,并包含一个流量估计模块来扭曲这些特征,使其适应编辑。这是因为编辑通常涉及图像的空间变化,如姿势或微笑的调整。因此,必须对高速潜特征进行精确的重新定位,使其与编辑后图像空间中的新位置相匹配。为此,我们采用流量估算来确定必要的空间调整,然后对特征进行扭曲,使其在编辑后的图像中正确对齐。具体来说,我们从已编辑和未编辑潜码的 StyleGAN 特征中估算流量。通过估算高速率特征并对其进行编辑扭曲,我们实现了对输入图像的高保真和高质量编辑。我们进行了大量实验,并将我们的方法与最先进的反转方法进行了比较。定性指标和可视化比较结果表明,我们的方法有了显著的改进。
{"title":"Warping the Residuals for Image Editing with StyleGAN","authors":"Ahmet Burak Yildirim, Hamza Pehlivan, Aysegul Dundar","doi":"10.1007/s11263-024-02301-6","DOIUrl":"https://doi.org/10.1007/s11263-024-02301-6","url":null,"abstract":"<p>StyleGAN models show editing capabilities via their semantically interpretable latent organizations which require successful GAN inversion methods to edit real images. Many works have been proposed for inverting images into StyleGAN’s latent space. However, their results either suffer from low fidelity to the input image or poor editing qualities, especially for edits that require large transformations. That is because low bit rate latent spaces lose many image details due to the information bottleneck even though it provides an editable space. On the other hand, higher bit rate latent spaces can pass all the image details to StyleGAN for perfect reconstruction of images but suffer from low editing qualities. In this work, we present a novel image inversion architecture that extracts high-rate latent features and includes a flow estimation module to warp these features to adapt them to edits. This is because edits often involve spatial changes in the image, such as adjustments to pose or smile. Thus, high-rate latent features must be accurately repositioned to match their new locations in the edited image space. We achieve this by employing flow estimation to determine the necessary spatial adjustments, followed by warping the features to align them correctly in the edited image. Specifically, we estimate the flows from StyleGAN features of edited and unedited latent codes. By estimating the high-rate features and warping them for edits, we achieve both high-fidelity to the input image and high-quality edits. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"64 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142670356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulling Target to Source: A New Perspective on Domain Adaptive Semantic Segmentation 将目标拉向源头:领域自适应语义分割的新视角
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-16 DOI: 10.1007/s11263-024-02285-3
Haochen Wang, Yujun Shen, Jingjing Fei, Wei Li, Liwei Wu, Yuxi Wang, Zhaoxiang Zhang

Domain-adaptive semantic segmentation aims to transfer knowledge from a labeled source domain to an unlabeled target domain. However, existing methods primarily focus on directly learning categorically discriminative target features for segmenting target images, which is challenging in the absence of target labels. This work provides a new perspective. We ob serve that the features learned with source data manage to keep categorically discriminative during training, thereby enabling us to implicitly learn adequate target representations by simply pulling target features close to source features for each category. To this end, we propose T2S-DA, which encourages the model to learn similar cross-domain features. Also, considering the pixel categories are heavily imbalanced for segmentation datasets, we come up with a dynamic re-weighting strategy to help the model concentrate on those underperforming classes. Extensive experiments confirm that T2S-DA learns a more discriminative and generalizable representation, significantly surpassing the state-of-the-art. We further show that T2S-DA is quite qualified for the domain generalization task, verifying its domain-invariant property.

领域自适应语义分割旨在将知识从有标签的源领域转移到无标签的目标领域。然而,现有的方法主要侧重于直接学习用于分割目标图像的分类判别目标特征,这在没有目标标签的情况下具有挑战性。这项工作提供了一个新的视角。我们发现,通过源数据学习到的特征在训练过程中能够保持分类区分度,因此我们只需将目标特征拉近每个类别的源特征,就能隐式地学习到适当的目标表征。为此,我们提出了 T2S-DA,鼓励模型学习类似的跨领域特征。此外,考虑到像素类别在分割数据集上严重失衡,我们提出了一种动态再加权策略,以帮助模型专注于那些表现不佳的类别。广泛的实验证实,T2S-DA 学习到的表征更具区分性和普适性,大大超越了最先进的水平。我们进一步证明,T2S-DA 能够胜任领域泛化任务,验证了它的领域不变性。
{"title":"Pulling Target to Source: A New Perspective on Domain Adaptive Semantic Segmentation","authors":"Haochen Wang, Yujun Shen, Jingjing Fei, Wei Li, Liwei Wu, Yuxi Wang, Zhaoxiang Zhang","doi":"10.1007/s11263-024-02285-3","DOIUrl":"https://doi.org/10.1007/s11263-024-02285-3","url":null,"abstract":"<p>Domain-adaptive semantic segmentation aims to transfer knowledge from a labeled source domain to an unlabeled target domain. However, existing methods primarily focus on directly learning categorically discriminative target features for segmenting target images, which is challenging in the absence of target labels. This work provides a new perspective. We ob serve that the features learned with source data manage to keep categorically discriminative during training, thereby enabling us to implicitly learn adequate target representations by simply <i>pulling target features close to source features for each category</i>. To this end, we propose T2S-DA, which encourages the model to learn similar cross-domain features. Also, considering the pixel categories are heavily imbalanced for segmentation datasets, we come up with a dynamic re-weighting strategy to help the model concentrate on those underperforming classes. Extensive experiments confirm that T2S-DA learns a more discriminative and generalizable representation, significantly surpassing the state-of-the-art. We further show that T2S-DA is quite qualified for the domain generalization task, verifying its domain-invariant property.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"99 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature Matching via Graph Clustering with Local Affine Consensus 通过图聚类与局部仿射共识进行特征匹配
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-15 DOI: 10.1007/s11263-024-02291-5
Yifan Lu, Jiayi Ma

This paper studies graph clustering with application to feature matching and proposes an effective method, termed as GC-LAC, that can establish reliable feature correspondences and simultaneously discover all potential visual patterns. In particular, we regard each putative match as a node and encode the geometric relationships into edges where a visual pattern sharing similar motion behaviors corresponds to a strongly connected subgraph. In this setting, it is natural to formulate the feature matching task as a graph clustering problem. To construct a geometric meaningful graph, based on the best practices, we adopt a local affine strategy. By investigating the motion coherence prior, we further propose an efficient and deterministic geometric solver (MCDG) to extract the local geometric information that helps construct the graph. The graph is sparse and general for various image transformations. Subsequently, a novel robust graph clustering algorithm (D2SCAN) is introduced, which defines the notion of density-reachable on the graph by replicator dynamics optimization. Extensive experiments focusing on both the local and the whole of our GC-LAC with various practical vision tasks including relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multimodel fitting, demonstrate that our GC-LAC is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code for this work is publicly available at: https://github.com/YifanLu2000/GCLAC.

本文研究了图聚类在特征匹配中的应用,并提出了一种有效的方法(称为 GC-LAC),它可以建立可靠的特征对应关系,同时发现所有潜在的视觉模式。具体而言,我们将每个可能的匹配视为一个节点,并将几何关系编码为边,其中具有相似运动行为的视觉模式对应于一个强连接子图。在这种情况下,自然可以将特征匹配任务表述为图聚类问题。为了构建有几何意义的图,我们根据最佳实践,采用了局部仿射策略。通过研究运动一致性先验,我们进一步提出了一种高效的确定性几何求解器(MCDG),以提取有助于构建图的局部几何信息。该图稀疏且通用于各种图像变换。随后,我们引入了一种新颖的鲁棒图聚类算法(D2SCAN),该算法通过复制器动态优化定义了图上可达到的密度概念。我们的 GC-LAC 在各种实际视觉任务(包括相对姿态估算、同源性和基本矩阵估算、闭环检测和多模型拟合)中进行了广泛的局部和整体实验,证明我们的 GC-LAC 在通用性、效率和有效性方面都比目前最先进的方法更具竞争力。这项工作的源代码可在以下网址公开获取:https://github.com/YifanLu2000/GCLAC。
{"title":"Feature Matching via Graph Clustering with Local Affine Consensus","authors":"Yifan Lu, Jiayi Ma","doi":"10.1007/s11263-024-02291-5","DOIUrl":"https://doi.org/10.1007/s11263-024-02291-5","url":null,"abstract":"<p>This paper studies graph clustering with application to feature matching and proposes an effective method, termed as GC-LAC, that can establish reliable feature correspondences and simultaneously discover all potential visual patterns. In particular, we regard each putative match as a node and encode the geometric relationships into edges where a visual pattern sharing similar motion behaviors corresponds to a strongly connected subgraph. In this setting, it is natural to formulate the feature matching task as a graph clustering problem. To construct a geometric meaningful graph, based on the best practices, we adopt a local affine strategy. By investigating the motion coherence prior, we further propose an efficient and deterministic geometric solver (MCDG) to extract the local geometric information that helps construct the graph. The graph is sparse and general for various image transformations. Subsequently, a novel robust graph clustering algorithm (D2SCAN) is introduced, which defines the notion of density-reachable on the graph by replicator dynamics optimization. Extensive experiments focusing on both the local and the whole of our GC-LAC with various practical vision tasks including relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multimodel fitting, demonstrate that our GC-LAC is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code for this work is publicly available at: https://github.com/YifanLu2000/GCLAC.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"75 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning to Detect Novel Species with SAM in the Wild 学会在野外用 SAM 检测新物种
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-13 DOI: 10.1007/s11263-024-02234-0
Garvita Allabadi, Ana Lucic, Yu-Xiong Wang, Vikram Adve

This paper tackles the limitation of a closed-world object detection model that was trained on one species. The expectation for this model is that it will not generalize well to recognize the instances of new species if they were present in the incoming data stream. We propose a novel object detection framework for this open-world setting that is suitable for applications that monitor wildlife, ocean life, livestock, plant phenotype and crops that typically feature one species in the image. Our method leverages labeled samples from one species in combination with a novelty detection method and Segment Anything Model, a vision foundation model, to (1) identify the presence of new species in unlabeled images, (2) localize their instances, and (3) retrain the initial model with the localized novel class instances. The resulting integrated system assimilates and learns from unlabeled samples of the new classes while not “forgetting” the original species the model was trained on. We demonstrate our findings on two different domains, (1) wildlife detection and (2) plant detection. Our method achieves an AP of 56.2 (for 4 novel species) to 61.6 (for 1 novel species) for wildlife domain, without relying on any ground truth data in the background.

本文探讨了封闭世界物体检测模型的局限性,该模型是针对一种物种进行训练的。该模型的预期结果是,如果新物种出现在输入数据流中,它将无法很好地泛化到识别新物种的实例中。我们为这种开放世界环境提出了一种新颖的物体检测框架,适用于监测野生动物、海洋生物、牲畜、植物表型和农作物的应用,这些应用通常以图像中的一个物种为特征。我们的方法利用一个物种的标注样本,结合新奇事物检测方法和视觉基础模型 Segment Anything Model,来(1)识别未标注图像中新物种的存在,(2)定位其实例,(3)利用定位的新类别实例重新训练初始模型。由此产生的集成系统会吸收和学习未标记的新类别样本,同时不会 "遗忘 "模型所训练的原始物种。我们在两个不同的领域展示了我们的研究成果:(1) 野生动物检测和 (2) 植物检测。在野生动物领域,我们的方法实现了 56.2(针对 4 个新物种)到 61.6(针对 1 个新物种)的 AP 值,而无需依赖背景中的任何地面实况数据。
{"title":"Learning to Detect Novel Species with SAM in the Wild","authors":"Garvita Allabadi, Ana Lucic, Yu-Xiong Wang, Vikram Adve","doi":"10.1007/s11263-024-02234-0","DOIUrl":"https://doi.org/10.1007/s11263-024-02234-0","url":null,"abstract":"<p>This paper tackles the limitation of a closed-world object detection model that was trained on one species. The expectation for this model is that it will not generalize well to recognize the instances of new species if they were present in the incoming data stream. We propose a novel object detection framework for this open-world setting that is suitable for applications that monitor wildlife, ocean life, livestock, plant phenotype and crops that typically feature one species in the image. Our method leverages labeled samples from one species in combination with a novelty detection method and Segment Anything Model, a vision foundation model, to (1) identify the presence of new species in unlabeled images, (2) localize their instances, and (3) <i>retrain</i> the initial model with the localized novel class instances. The resulting integrated system <i>assimilates</i> and <i>learns</i> from unlabeled samples of the new classes while not “forgetting” the original species the model was trained on. We demonstrate our findings on two different domains, (1) wildlife detection and (2) plant detection. Our method achieves an AP of 56.2 (for 4 novel species) to 61.6 (for 1 novel species) for wildlife domain, without relying on any ground truth data in the background.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"80 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MVTN: Learning Multi-view Transformations for 3D Understanding MVTN:学习多视角变换以了解 3D
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-11 DOI: 10.1007/s11263-024-02283-5
Abdullah Hamdi, Faisal AlZahrani, Silvio Giancola, Bernard Ghanem

Multi-view projection techniques have shown themselves to be highly effective in achieving top-performing results in the recognition of 3D shapes. These methods involve learning how to combine information from multiple view-points. However, the camera view-points from which these views are obtained are often fixed for all shapes. To overcome the static nature of current multi-view techniques, we propose learning these view-points. Specifically, we introduce the Multi-View Transformation Network (MVTN), which uses differentiable rendering to determine optimal view-points for 3D shape recognition. As a result, MVTN can be trained end-to-end with any multi-view network for 3D shape classification. We integrate MVTN into a novel adaptive multi-view pipeline that is capable of rendering both 3D meshes and point clouds. Our approach demonstrates state-of-the-art performance in 3D classification and shape retrieval on several benchmarks (ModelNet40, ScanObjectNN, ShapeNet Core55). Further analysis indicates that our approach exhibits improved robustness to occlusion compared to other methods. We also investigate additional aspects of MVTN, such as 2D pretraining and its use for segmentation. To support further research in this area, we have released MVTorch, a PyTorch library for 3D understanding and generation using multi-view projections.

多视角投影技术在三维图形识别中取得优异成绩方面已显示出巨大的功效。这些方法涉及学习如何结合来自多个视点的信息。然而,对于所有形状而言,获取这些视图的摄像机视点往往是固定的。为了克服当前多视角技术的静态特性,我们建议学习这些视点。具体来说,我们引入了多视角变换网络(Multi-View Transformation Network,MVTN),它使用可变渲染来确定三维形状识别的最佳视角。因此,MVTN 可以与任何用于三维形状分类的多视角网络进行端对端训练。我们将 MVTN 集成到新颖的自适应多视角管道中,该管道能够渲染三维网格和点云。我们的方法在多个基准(ModelNet40、ScanObjectNN、ShapeNet Core55)上展示了最先进的三维分类和形状检索性能。进一步的分析表明,与其他方法相比,我们的方法对遮挡的鲁棒性有所提高。我们还研究了 MVTN 的其他方面,如二维预训练及其在分割中的应用。为了支持这一领域的进一步研究,我们发布了 MVTorch,这是一个利用多视角投影进行 3D 理解和生成的 PyTorch 库。
{"title":"MVTN: Learning Multi-view Transformations for 3D Understanding","authors":"Abdullah Hamdi, Faisal AlZahrani, Silvio Giancola, Bernard Ghanem","doi":"10.1007/s11263-024-02283-5","DOIUrl":"https://doi.org/10.1007/s11263-024-02283-5","url":null,"abstract":"<p>Multi-view projection techniques have shown themselves to be highly effective in achieving top-performing results in the recognition of 3D shapes. These methods involve learning how to combine information from multiple view-points. However, the camera view-points from which these views are obtained are often fixed for all shapes. To overcome the static nature of current multi-view techniques, we propose learning these view-points. Specifically, we introduce the Multi-View Transformation Network (MVTN), which uses differentiable rendering to determine optimal view-points for 3D shape recognition. As a result, MVTN can be trained end-to-end with any multi-view network for 3D shape classification. We integrate MVTN into a novel adaptive multi-view pipeline that is capable of rendering both 3D meshes and point clouds. Our approach demonstrates state-of-the-art performance in 3D classification and shape retrieval on several benchmarks (ModelNet40, ScanObjectNN, ShapeNet Core55). Further analysis indicates that our approach exhibits improved robustness to occlusion compared to other methods. We also investigate additional aspects of MVTN, such as 2D pretraining and its use for segmentation. To support further research in this area, we have released MVTorch, a PyTorch library for 3D understanding and generation using multi-view projections.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"38 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142598289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive Middle Modality Alignment Learning for Visible-Infrared Person Re-identification 用于可见光-红外线人员再识别的自适应中间模态对齐学习
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-11-09 DOI: 10.1007/s11263-024-02276-4
Yukang Zhang, Yan Yan, Yang Lu, Hanzi Wang

Visible-infrared person re-identification (VIReID) has attracted increasing attention due to the requirements for 24-hour intelligent surveillance systems. In this task, one of the major challenges is the modality discrepancy between the visible (VIS) and infrared (NIR) images. Most conventional methods try to design complex networks or generative models to mitigate the cross-modality discrepancy while ignoring the fact that the modality gaps differ between the different VIS and NIR images. Different from existing methods, in this paper, we propose an Adaptive Middle-modality Alignment Learning (AMML) method, which can effectively reduce the modality discrepancy via an adaptive middle modality learning strategy at both image level and feature level. The proposed AMML method enjoys several merits. First, we propose an Adaptive Middle-modality Generator (AMG) module to reduce the modality discrepancy between the VIS and NIR images from the image level, which can effectively project the VIS and NIR images into a unified middle modality image (UMMI) space to adaptively generate middle-modality (M-modality) images. Second, we propose a feature-level Adaptive Distribution Alignment (ADA) loss to force the distribution of the VIS features and NIR features adaptively align with the distribution of M-modality features. Moreover, we also propose a novel Center-based Diverse Distribution Learning (CDDL) loss, which can effectively learn diverse cross-modality knowledge from different modalities while reducing the modality discrepancy between the VIS and NIR modalities. Extensive experiments on three challenging VIReID datasets show the superiority of the proposed AMML method over the other state-of-the-art methods. More remarkably, our method achieves 77.8% in terms of Rank-1 and 74.8% in terms of mAP on the SYSU-MM01 dataset for all search mode, and 86.6% in terms of Rank-1 and 88.3% in terms of mAP on the SYSU-MM01 dataset for indoor search mode. The code is released at: https://github.com/ZYK100/MMN.

由于 24 小时智能监控系统的要求,可见光-红外人员再识别(VIReID)引起了越来越多的关注。在这项任务中,主要挑战之一是可见光(VIS)和红外(NIR)图像之间的模态差异。大多数传统方法都试图设计复杂的网络或生成模型来缓解跨模态差异,但却忽视了不同可见光和近红外图像之间的模态差距是不同的这一事实。与现有方法不同,本文提出了一种自适应中间模态对齐学习(AMML)方法,通过在图像级和特征级采用自适应中间模态学习策略,有效减少模态差异。所提出的 AMML 方法有几个优点。首先,我们提出了自适应中间模态生成器(AMG)模块,从图像层面减少可见光和近红外图像之间的模态差异,从而有效地将可见光和近红外图像投射到统一的中间模态图像(UMMI)空间,自适应地生成中间模态(M-modality)图像。其次,我们提出了一种特征级自适应分布对齐(ADA)损耗,以迫使可见光特征和近红外特征的分布与中间模态特征的分布自适应地对齐。此外,我们还提出了一种新颖的基于中心的多样化分布学习(CDDL)损失,它可以有效地从不同模态学习多样化的跨模态知识,同时减少可见光和近红外模态之间的模态差异。在三个具有挑战性的 VIReID 数据集上进行的广泛实验表明,所提出的 AMML 方法优于其他最先进的方法。更值得注意的是,我们的方法在 SYSU-MM01 数据集的所有搜索模式下的 Rank-1 和 mAP 分别达到了 77.8% 和 74.8%,在 SYSU-MM01 数据集的室内搜索模式下的 Rank-1 和 mAP 分别达到了 86.6% 和 88.3%。代码发布于:https://github.com/ZYK100/MMN。
{"title":"Adaptive Middle Modality Alignment Learning for Visible-Infrared Person Re-identification","authors":"Yukang Zhang, Yan Yan, Yang Lu, Hanzi Wang","doi":"10.1007/s11263-024-02276-4","DOIUrl":"https://doi.org/10.1007/s11263-024-02276-4","url":null,"abstract":"<p>Visible-infrared person re-identification (VIReID) has attracted increasing attention due to the requirements for 24-hour intelligent surveillance systems. In this task, one of the major challenges is the modality discrepancy between the visible (VIS) and infrared (NIR) images. Most conventional methods try to design complex networks or generative models to mitigate the cross-modality discrepancy while ignoring the fact that the modality gaps differ between the different VIS and NIR images. Different from existing methods, in this paper, we propose an Adaptive Middle-modality Alignment Learning (AMML) method, which can effectively reduce the modality discrepancy via an adaptive middle modality learning strategy at both image level and feature level. The proposed AMML method enjoys several merits. First, we propose an Adaptive Middle-modality Generator (AMG) module to reduce the modality discrepancy between the VIS and NIR images from the image level, which can effectively project the VIS and NIR images into a unified middle modality image (UMMI) space to adaptively generate middle-modality (M-modality) images. Second, we propose a feature-level Adaptive Distribution Alignment (ADA) loss to force the distribution of the VIS features and NIR features adaptively align with the distribution of M-modality features. Moreover, we also propose a novel Center-based Diverse Distribution Learning (CDDL) loss, which can effectively learn diverse cross-modality knowledge from different modalities while reducing the modality discrepancy between the VIS and NIR modalities. Extensive experiments on three challenging VIReID datasets show the superiority of the proposed AMML method over the other state-of-the-art methods. More remarkably, our method achieves 77.8% in terms of Rank-1 and 74.8% in terms of mAP on the SYSU-MM01 dataset for all search mode, and 86.6% in terms of Rank-1 and 88.3% in terms of mAP on the SYSU-MM01 dataset for indoor search mode. The code is released at: https://github.com/ZYK100/MMN.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"24 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Computer Vision
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1