首页 > 最新文献

International Journal of Computer Vision最新文献

英文 中文
Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening 基于模型的泛锐化的多头注意残差展开网络
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-12 DOI: 10.1007/s11263-025-02651-9
Ivan Pereira-Sánchez, Eloi Sans, Julia Navarro, Joan Duran
{"title":"Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening","authors":"Ivan Pereira-Sánchez, Eloi Sans, Julia Navarro, Joan Duran","doi":"10.1007/s11263-025-02651-9","DOIUrl":"https://doi.org/10.1007/s11263-025-02651-9","url":null,"abstract":"","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"27 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic MAsk-Pruning Strategy for Source-Free Model Intellectual Property Protection 无源模型知识产权保护的动态掩码修剪策略
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-12 DOI: 10.1007/s11263-025-02619-9
Boyang Peng, Sanqing Qu, Yong Wu, Tianpei Zou, Lianghua He, Alois Knoll, Guang Chen, Changjun Jiang
{"title":"Dynamic MAsk-Pruning Strategy for Source-Free Model Intellectual Property Protection","authors":"Boyang Peng, Sanqing Qu, Yong Wu, Tianpei Zou, Lianghua He, Alois Knoll, Guang Chen, Changjun Jiang","doi":"10.1007/s11263-025-02619-9","DOIUrl":"https://doi.org/10.1007/s11263-025-02619-9","url":null,"abstract":"","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"27 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain3D: Generating 3D Objects from fMRI Brain3D:从功能磁共振成像生成3D对象
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-12 DOI: 10.1007/s11263-025-02609-x
Yuankun Yang, Li Zhang, Ziyang Xie, Zhiyuan Yuan, Jianfeng Feng, Xiatian Zhu, Yu-Gang Jiang
{"title":"Brain3D: Generating 3D Objects from fMRI","authors":"Yuankun Yang, Li Zhang, Ziyang Xie, Zhiyuan Yuan, Jianfeng Feng, Xiatian Zhu, Yu-Gang Jiang","doi":"10.1007/s11263-025-02609-x","DOIUrl":"https://doi.org/10.1007/s11263-025-02609-x","url":null,"abstract":"","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"146 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guest Editorial: Special Issue for the British Machine Vision Conference (BMVC), 2024 (Glasgow, Scotland, UK) 嘉宾评论:英国机器视觉会议(BMVC)特刊,2024(格拉斯哥,苏格兰,英国)
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-12 DOI: 10.1007/s11263-025-02721-y
Carlos Francisco Moreno-García, Gerardo Aragon Camarasa, Edmond S. L. Ho, Paul Henderson, Nicolas Pugeault, Jungong Han, Sergio Escalera
{"title":"Guest Editorial: Special Issue for the British Machine Vision Conference (BMVC), 2024 (Glasgow, Scotland, UK)","authors":"Carlos Francisco Moreno-García, Gerardo Aragon Camarasa, Edmond S. L. Ho, Paul Henderson, Nicolas Pugeault, Jungong Han, Sergio Escalera","doi":"10.1007/s11263-025-02721-y","DOIUrl":"https://doi.org/10.1007/s11263-025-02721-y","url":null,"abstract":"","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"6 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-domain Few-shot Classification via Invariant-content Feature Reconstruction 基于不变内容特征重构的跨域少镜头分类
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-11 DOI: 10.1007/s11263-025-02601-5
Hongduan Tian, Feng Liu, Ka Chun Cheung, Zhen Fang, Simon See, Tongliang Liu, Bo Han
In cross-domain few-shot classification (CFC), mainstream studies aim to train a simple module (e.g. a linear transformation head) to select or transform features (a.k.a., the high-level semantic features) for previously unseen domains with a few labeled training data available on top of a powerful pre-trained model. These studies usually assume that high-level semantic features are shared across these domains, and just simple feature selection or transformations are enough to adapt features to previously unseen domains. However, in this paper, we find that the simply transformed features are too general to fully cover the key content features regarding each class. Thus, we propose an effective method, invariant-content feature reconstruction (IFR), to train a simple module that simultaneously considers both high-level and fine-grained invariant-content features for the previously unseen domains. Specifically, the fine-grained invariant-content features are considered as a set of informative and discriminative features learned from a few labeled training data of tasks sampled from unseen domains and are extracted by retrieving features that are invariant to style modifications from a set of content-preserving augmented data in pixel level with an attention module. Extensive experiments on the Meta-Dataset benchmark show that IFR achieves good generalization performance on unseen domains, which demonstrates the effectiveness of the fusion of the high-level features and the fine-grained invariant-content features. Specifically, IFR improves the average accuracy on unseen domains by 1.6% and 6.5% respectively under two different cross-domain few-shot classification settings.
在跨域少射分类(cross-domain few-shot classification, CFC)中,主流研究的目的是训练一个简单的模块(如线性变换头),在一个功能强大的预训练模型之上,使用少量标记的训练数据,为以前未见过的域选择或变换特征(即高级语义特征)。这些研究通常假设高级语义特征在这些领域之间是共享的,并且只需简单的特征选择或转换就足以使特征适应以前未见过的领域。然而,在本文中,我们发现简单转换的特征过于笼统,无法完全涵盖每个类的关键内容特征。因此,我们提出了一种有效的方法,不变内容特征重建(IFR),以训练一个简单的模块,该模块同时考虑先前未见过的域的高级和细粒度不变内容特征。具体来说,细粒度不变内容特征被认为是一组信息性和判别性特征,这些特征是从一些从未见域采样的任务的标记训练数据中学习到的,并通过使用注意力模块从一组保持内容的增强数据中检索对样式修改不变化的特征来提取。在Meta-Dataset基准上的大量实验表明,IFR在不可见域上取得了良好的泛化性能,证明了高级特征与细粒度不变内容特征融合的有效性。具体而言,在两种不同的跨域少射分类设置下,IFR在未见域上的平均准确率分别提高了1.6%和6.5%。
{"title":"Cross-domain Few-shot Classification via Invariant-content Feature Reconstruction","authors":"Hongduan Tian, Feng Liu, Ka Chun Cheung, Zhen Fang, Simon See, Tongliang Liu, Bo Han","doi":"10.1007/s11263-025-02601-5","DOIUrl":"https://doi.org/10.1007/s11263-025-02601-5","url":null,"abstract":"In <jats:italic>cross-domain few-shot classification</jats:italic> (CFC), mainstream studies aim to train a simple module (e.g. a linear transformation head) to select or transform features (a.k.a., the high-level semantic features) for previously unseen domains with a few labeled training data available on top of a powerful pre-trained model. These studies usually <jats:italic>assume</jats:italic> that high-level semantic features are shared across these domains, and just simple feature selection or transformations are enough to adapt features to previously unseen domains. However, in this paper, we find that the simply transformed features are too general to fully cover the key content features regarding each class. Thus, we propose an effective method, <jats:italic>invariant-content feature reconstruction</jats:italic> (IFR), to train a simple module that simultaneously considers both high-level and fine-grained invariant-content features for the previously unseen domains. Specifically, the fine-grained invariant-content features are considered as a set of <jats:italic>informative</jats:italic> and <jats:italic>discriminative</jats:italic> features learned from a few labeled training data of tasks sampled from unseen domains and are extracted by retrieving features that are invariant to style modifications from a set of content-preserving augmented data in pixel level with an attention module. Extensive experiments on the Meta-Dataset benchmark show that IFR achieves good generalization performance on unseen domains, which demonstrates the effectiveness of the fusion of the high-level features and the fine-grained invariant-content features. Specifically, IFR improves the average accuracy on unseen domains by 1.6% and 6.5% respectively under two different cross-domain few-shot classification settings.","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"38 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145955236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-Scale Pre-Trained Models Empowering Phrase Generalization in Temporal Sentence Localization 大规模预训练模型增强时态句子定位中的短语概括能力
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-10 DOI: 10.1007/s11263-025-02599-w
Yang Liu, Minghang Zheng, Qingchao Chen, Shaogang Gong, Yuxin Peng
{"title":"Large-Scale Pre-Trained Models Empowering Phrase Generalization in Temporal Sentence Localization","authors":"Yang Liu, Minghang Zheng, Qingchao Chen, Shaogang Gong, Yuxin Peng","doi":"10.1007/s11263-025-02599-w","DOIUrl":"https://doi.org/10.1007/s11263-025-02599-w","url":null,"abstract":"","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"9 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145947260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting Active Prompt Learning via Discriminative Self-Training Dual-Curriculum Learning 辨别性自我训练双课程学习促进主动提示学习
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-10 DOI: 10.1007/s11263-025-02641-x
Sen Tao, Jiawei Liu, Peng Zeng, Yongchao Xu, Bingyu Hu, Zheng-Jun Zha
{"title":"Boosting Active Prompt Learning via Discriminative Self-Training Dual-Curriculum Learning","authors":"Sen Tao, Jiawei Liu, Peng Zeng, Yongchao Xu, Bingyu Hu, Zheng-Jun Zha","doi":"10.1007/s11263-025-02641-x","DOIUrl":"https://doi.org/10.1007/s11263-025-02641-x","url":null,"abstract":"","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"21 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145947207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BayesAdapter: Enhanced Uncertainty Estimation in CLIP Few-Shot Adaptation BayesAdapter: CLIP少弹自适应中的增强不确定性估计
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-10 DOI: 10.1007/s11263-025-02630-0
Pablo Morales-Álvarez, Stergios Christodoulidis, Maria Vakalopoulou, Pablo Piantanida, Jose Dolz
{"title":"BayesAdapter: Enhanced Uncertainty Estimation in CLIP Few-Shot Adaptation","authors":"Pablo Morales-Álvarez, Stergios Christodoulidis, Maria Vakalopoulou, Pablo Piantanida, Jose Dolz","doi":"10.1007/s11263-025-02630-0","DOIUrl":"https://doi.org/10.1007/s11263-025-02630-0","url":null,"abstract":"","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"6 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145947206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
End-to-End Full-Page Optical Music Recognition for Pianoform Sheet Music 端到端全页光学音乐识别钢琴乐谱
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-09 DOI: 10.1007/s11263-025-02654-6
Antonio Ríos-Vila, Jorge Calvo-Zaragoza, David Rizo, Thierry Paquet
Optical Music Recognition (OMR) has made significant progress since its inception, with various approaches now capable of accurately transcribing music scores into digital formats. Despite these advancements, most so-called end-to-end OMR approaches still rely on multi-stage processing pipelines for transcribing full-page score images, which entails challenges such as the need for dedicated layout analysis and specific annotated data, thereby limiting the general applicability of such methods. In this paper, we present the first truly end-to-end approach for page-level OMR in complex layouts. Our system, which combines convolutional layers with autoregressive Transformers, processes an entire music score page and outputs a complete transcription in a music encoding format. This is made possible by both the architecture and the training procedure, which utilizes curriculum learning through incremental synthetic data generation. We evaluate the proposed system using pianoform corpora, which is one of the most complex sources in the OMR literature. This evaluation is conducted first in a controlled scenario with synthetic data, and subsequently against two real-world corpora of varying conditions. Our approach is compared with leading commercial OMR software. The results demonstrate that our system not only successfully transcribes full-page music scores but also outperforms the commercial tool in both zero-shot settings and after fine-tuning with the target domain, representing a significant contribution to the field of OMR.
光学音乐识别(OMR)自诞生以来已经取得了重大进展,现在有各种方法能够准确地将乐谱转录成数字格式。尽管取得了这些进步,但大多数所谓的端到端OMR方法仍然依赖于多阶段处理管道来转录整页乐谱图像,这带来了诸如需要专门的布局分析和特定注释数据等挑战,从而限制了此类方法的一般适用性。在本文中,我们为复杂布局中的页面级OMR提供了第一个真正的端到端方法。我们的系统结合了卷积层和自回归变压器,处理整个乐谱页面,并以音乐编码格式输出完整的转录。这可以通过体系结构和训练过程来实现,训练过程通过增量合成数据生成来利用课程学习。我们使用钢琴形式语料库来评估所提出的系统,钢琴形式语料库是OMR文献中最复杂的来源之一。该评估首先在一个具有合成数据的受控场景中进行,然后在两个不同条件的真实语料库中进行。我们的方法与领先的商业OMR软件进行了比较。结果表明,我们的系统不仅成功地转录了整页乐谱,而且在零射击设置和经过目标域微调后都优于商业工具,代表了对OMR领域的重大贡献。
{"title":"End-to-End Full-Page Optical Music Recognition for Pianoform Sheet Music","authors":"Antonio Ríos-Vila, Jorge Calvo-Zaragoza, David Rizo, Thierry Paquet","doi":"10.1007/s11263-025-02654-6","DOIUrl":"https://doi.org/10.1007/s11263-025-02654-6","url":null,"abstract":"Optical Music Recognition (OMR) has made significant progress since its inception, with various approaches now capable of accurately transcribing music scores into digital formats. Despite these advancements, most so-called <jats:italic>end-to-end</jats:italic> OMR approaches still rely on multi-stage processing pipelines for transcribing full-page score images, which entails challenges such as the need for dedicated layout analysis and specific annotated data, thereby limiting the general applicability of such methods. In this paper, we present the first truly end-to-end approach for page-level OMR in complex layouts. Our system, which combines convolutional layers with autoregressive Transformers, processes an entire music score page and outputs a complete transcription in a music encoding format. This is made possible by both the architecture and the training procedure, which utilizes curriculum learning through incremental synthetic data generation. We evaluate the proposed system using pianoform corpora, which is one of the most complex sources in the OMR literature. This evaluation is conducted first in a controlled scenario with synthetic data, and subsequently against two real-world corpora of varying conditions. Our approach is compared with leading commercial OMR software. The results demonstrate that our system not only successfully transcribes full-page music scores but also outperforms the commercial tool in both zero-shot settings and after fine-tuning with the target domain, representing a significant contribution to the field of OMR.","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"3 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145947208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delving into Pre-training for Domain Transfer: A Broad Study of Pre-training for Domain Generalization and Domain Adaptation 领域迁移预训练研究:领域泛化与领域自适应预训练的广泛研究
IF 19.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2026-01-09 DOI: 10.1007/s11263-025-02590-5
Jungmyung Wi, Youngkyun Jang, Dujin Lee, Myeongseok Nam, Donghyun Kim
{"title":"Delving into Pre-training for Domain Transfer: A Broad Study of Pre-training for Domain Generalization and Domain Adaptation","authors":"Jungmyung Wi, Youngkyun Jang, Dujin Lee, Myeongseok Nam, Donghyun Kim","doi":"10.1007/s11263-025-02590-5","DOIUrl":"https://doi.org/10.1007/s11263-025-02590-5","url":null,"abstract":"","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"29 1","pages":""},"PeriodicalIF":19.5,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145947209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Computer Vision
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1