This study investigates the thermal degradation kinetics of mesoporous triazine-based polymers, namely triazine-amine and triazine-ether polymers. The synthesis, physicochemical characterization, and catalytic applications of these polymers were discussed in our previous report. Herein, the thermal stability parameters, including kinetic triplets and thermodynamic parameters, were determined using thermogravimetric analysis (TGA) and non-isothermal mathematical approximations such as Coats-Redfern, Broido, and Horowitz–Metzger methods. Triazine-ether polymers exhibit thermal stability within the range of 200°C–300°C, while triazine-amine polymer demonstrates superior thermal stability, reaching up to 450°C. According to the Coats-Redfern method, the degradation follows reaction orders of 0.5 ≤ n ≤ 1. The activation energy of triazine-amine polymer is notably high, particularly at the third degradation stage (e.g., 89.0 kJ/mol by the Broido method), attributed to its high nitrogen content. Conversely, the higher carbon content of triazine-ether polymers reduces their activation energy to approximately 30 kJ/mol at all stages and thus, facilitates the degradation process. Thermodynamically, the degradation process is favorable yet non-spontaneous, with intermediate states of the polymers exhibiting higher entropy, indicative of their enhanced degradation capability.
{"title":"Insights into the oxidative thermal stability of mesoporous triazine-based organic polymers: Kinetics and thermodynamic parameters","authors":"Suha Altarawneh","doi":"10.1002/kin.21754","DOIUrl":"10.1002/kin.21754","url":null,"abstract":"<p>This study investigates the thermal degradation kinetics of mesoporous triazine-based polymers, namely triazine-amine and triazine-ether polymers. The synthesis, physicochemical characterization, and catalytic applications of these polymers were discussed in our previous report. Herein, the thermal stability parameters, including kinetic triplets and thermodynamic parameters, were determined using thermogravimetric analysis (TGA) and non-isothermal mathematical approximations such as Coats-Redfern, Broido, and Horowitz–Metzger methods. Triazine-ether polymers exhibit thermal stability within the range of 200°C–300°C, while triazine-amine polymer demonstrates superior thermal stability, reaching up to 450°C. According to the Coats-Redfern method, the degradation follows reaction orders of 0.5 ≤ <i>n</i> ≤ 1. The activation energy of triazine-amine polymer is notably high, particularly at the third degradation stage (e.g., 89.0 kJ/mol by the Broido method), attributed to its high nitrogen content. Conversely, the higher carbon content of triazine-ether polymers reduces their activation energy to approximately 30 kJ/mol at all stages and thus, facilitates the degradation process. Thermodynamically, the degradation process is favorable yet non-spontaneous, with intermediate states of the polymers exhibiting higher entropy, indicative of their enhanced degradation capability.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"56 12","pages":"691-702"},"PeriodicalIF":1.5,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The current research highlighted the usage of serpentine clay to remove Nile red dye from an aqueous solution. At first serpentine clay minerals were analyzed by various analytical techniques like Fourier transform infrared spectroscopy (FTIR), X ray diffraction (XRD), and thermal gravimetric analysis (TGA) analysis. From the characterization results it was found that the clay was determined to be a separate group. Sorption studies investigated the impacts of adsorbent dosage, initial pH, initial dye concentration, and temperature on Nile red color elimination. From the test results it was found that the capacity of adsorption was seen to increase from 32.4 mg/g to a high value of 43.8 mg/g by raising the pH value from 2 to 6. Adsorption on serpentine clay decreased from 234.7 to 33.2 mg/g due to an increase in the adsorbent dosage. The removal capacity of Nile red dye increased from 12.2% to 88.5% with the rise in the adsorbent dosage. This rise in the Nile red dye removal may be observed due to the increase in the area as well as the pore volume of the surface. Experimental study was carried out to study the effect of initial concentration of adsorbate on adsorption at a pH of 6, adsorbent dosage of 3 g/L, and at a temperature of 28°C. The removal efficiency of the Nile red dye was reduced from 96.7% to 42.6%. To determine the temperature effect on the removal of Nile red dye by the clay, the initial pH value was set to 6, and the temperature was set at 28, 38, 48, and 58°C. Without reaching the equilibrium conditions, at a time of 30 min, the removal efficiency of dye rises from 60% to 81% due to the temperature rise. The experimental findings indicated that the adsorption of the dye on the clay followed the “Langmuir adsorption” isotherm rather than the Freundlich adsorption isotherm. Adsorption on clay minerals follows the pseudo-second-order adsorption kinetics compared to pseudo-first-order adsorption kinetics.
{"title":"Kinetics and equilibrium studies on the adsorptive removal of Nile red dye from aqueous solution using serpentine clay","authors":"Panchali Bharali","doi":"10.1002/kin.21751","DOIUrl":"10.1002/kin.21751","url":null,"abstract":"<p>The current research highlighted the usage of serpentine clay to remove Nile red dye from an aqueous solution. At first serpentine clay minerals were analyzed by various analytical techniques like Fourier transform infrared spectroscopy (FTIR), X ray diffraction (XRD), and thermal gravimetric analysis (TGA) analysis. From the characterization results it was found that the clay was determined to be a separate group. Sorption studies investigated the impacts of adsorbent dosage, initial pH, initial dye concentration, and temperature on Nile red color elimination. From the test results it was found that the capacity of adsorption was seen to increase from 32.4 mg/g to a high value of 43.8 mg/g by raising the pH value from 2 to 6. Adsorption on serpentine clay decreased from 234.7 to 33.2 mg/g due to an increase in the adsorbent dosage. The removal capacity of Nile red dye increased from 12.2% to 88.5% with the rise in the adsorbent dosage. This rise in the Nile red dye removal may be observed due to the increase in the area as well as the pore volume of the surface. Experimental study was carried out to study the effect of initial concentration of adsorbate on adsorption at a pH of 6, adsorbent dosage of 3 g/L, and at a temperature of 28°C. The removal efficiency of the Nile red dye was reduced from 96.7% to 42.6%. To determine the temperature effect on the removal of Nile red dye by the clay, the initial pH value was set to 6, and the temperature was set at 28, 38, 48, and 58°C. Without reaching the equilibrium conditions, at a time of 30 min, the removal efficiency of dye rises from 60% to 81% due to the temperature rise. The experimental findings indicated that the adsorption of the dye on the clay followed the “Langmuir adsorption” isotherm rather than the Freundlich adsorption isotherm. Adsorption on clay minerals follows the pseudo-second-order adsorption kinetics compared to pseudo-first-order adsorption kinetics.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"56 11","pages":"661-673"},"PeriodicalIF":1.5,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}