Chemerin is a newly described adipokine with significant effects on obesity, metabolic disorders, and immune trafficking. Recently, chemerin has gained prominence for its potential roles in cancer and tumorigenesis with pro- or antitumor effects. To date, most referenced multifunctions of chemerin are attributed to the chemokine-like receptor 1 (CMKLR1), distributing broadly in many tissues. This study investigates the in vitro roles of chemerin treatment on migration and invasion of ovarian carcinoma cells (OVCAR-3 and SK-OV-3) and potential underlying mechanisms. Herein, exogenous chemerin treatment promotes growth and invasion of SK-OV-3 cells but has no significant effects on OVCAR-3 cells. SK-OV-3 cells undergo morphological elongation characterized by epithelial-to-mesenchymal transition (EMT) and Ras homologous genome members A (RhoA)/Rho protein-related curl spiral kinase-1 (ROCK1) activation. Furthermore, chemerin-enhanced invasion and EMT of SK-OV-3 cells are effectively blocked by C3 transferase (C3T) and Y27632 and RhoA and ROCK1 inhibitor, respectively. More importantly, RhoA/ROCK1-EMT-mediated SK-OV-3 cell invasion is orchestrated by CMKLR1 upregulation after chemerin treatment (50 ng/mL). The silencing of CMKLR1 significantly (P < 0.0001) reverses the chemerin-enhanced invasion, EMT, and RhoA/ROCK1 activation of SK-OV-3 cells. Our study indicates that chemerin promotes invasion of OC cells via CMKLR1-RhoA/ROCK1-mediated EMT, offering a novel potential target for metastasis of OC.
Introduction: The correlation between potassium and nonalcoholic fatty liver disease (NAFLD) is currently still poorly understood. We conducted this study to explore the correlation between dietary potassium intake and NAFLD, as well as advanced hepatic fibrosis (AHF). The study also sought to identify any potential interactions.
Methods: The data employed in this study were obtained from the National Health and Nutrition Examination Survey (NHANES) program, encompassing a period from 2007 to 2018. Employing the multiple logistic regression analysis, we evaluated the association of dietary potassium intake with NAFLD and AHF. Subsequently, stratification analysis, based on demographic variables, was constructed so as to assess the stability of the results. In addition, potential interaction effects were assessed by interaction tests.
Results: A total of 9443 participants were included in the analysis. The mean age of the participants was 50.4 years, and their daily mean dietary potassium and vitamin C intake was 2556.49 mg and 82.93 mg, respectively. Following comprehensive statistical analyses, the findings indicated a negative correlation between dietary potassium intake and both NAFLD and AHF. Participants in Q4 group with dietary potassium intake exhibited a 31% and 42% reduction in the odds of developing NAFLD and AHF, respectively, in comparison to Q1 group. An interaction effect of dietary vitamin C intake was observed in the association between dietary potassium intake and NAFLD. The results imply that high dietary vitamin C intake augment the inverse relationship between dietary potassium intake and NAFLD.
Conclusion: Dietary potassium intake was found to have an inverse association with the odds of both NAFLD and AHF. The association between dietary potassium intake and NAFLD was amplified by the presence of vitamin C in the diet.
Exposure to particulate matter 2.5 (PM2.5) is detrimental to multiple organ systems. Given the factor that aging also alters the cellularity and response of immune system and dysfunction of hypothalamic-pituitary-adrenal, -gonad and -thyroid axes, it is imperative to investigate whether chronic exposure to PM2.5 interacts with aging in these aspects. In this study, two-months-old Sprague-Dawley rats were exposed to real world PM2.5 for 16 months. PM2.5 exposure diminished the relative numbers of CD4+ T cells and CD8+ T cells and increased the relative number of B cells in the peripheral blood of male rats. Conversely, only reduced relative number of CD4+ T cells was seen in the blood of female rats. These shifts resulted in elevated levels of proinflammatory factors interleukin-6 and tumor necrosis factor-α in the circulatory systems of both sex, with females also evidencing a rise in interleukin-1β levels. Moreover, heightened interleukin-6 was solely discernible in the hippocampus of female subjects, while increased tumor necrosis factor-α concentrations were widespread in female brain regions but confined to the male hypothalamus. Notable hormonal decreases were observed following PM2.5 exposure in both sex. These comprised declines in biomolecules such as corticotrophin-releasing hormone and cortisol, generated by the hypothalamic-pituitary-adrenal axis, and thyroid-releasing hormone and triiodothyronine, produced by the hypothalamic-pituitary-thyroid axis. Hormonal elements such as gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone, derived from the hypothalamic-pituitary-gonad axis, were also diminished. Exclusive to male rats was a reduction in adrenocorticotropic hormone levels, whereas a fall in thyroid-stimulating hormone was unique to female rats. Decreases in sex-specific hormones, including testosterone, estradiol, and progesterone, were also noted. These findings significantly enrich our comprehension of the potential long-term health repercussions associated with PM2.5 interaction particularly among the aging populace.
Methods and results: In this prospective cohort study, 1197 patients with type 2 diabetes (T2D) were divided into two groups (360 patients with NAFLD and 847 without NAFLD) and were followed for a median of 5 years for the incidence of CVD. Cox regression analysis was used to assess the association between NAFLD, liver enzyme level, aspartate aminotransferase to platelet ratio index (APRI), and the incidence risk of CVD and its subgroups (i.e., myocardial infarction, chronic heart disease, coronary artery bypass grafting, and percutaneous coronary intervention). There was a significant positive association between CVD incidence and NAFLD (HR = 1.488, 95% CI = 1.041-2.124, p value = 0.029). Although patients with NAFLD had higher levels of ALT and AST levels (p value = <0.001), there was no significant association between liver enzymes and the incidence risk of CVD when adjusted for different variables. Furthermore, NAFLD was associated with NAFLD APRI Q (2), APRI Q (3), and APRIQ (4) (1.365 (1.046-1.781), 1.623 (1.234-2.135), and 3.373 (2.509-4.536)), respectively.
Conclusion: NAFLD increased the incidence risk of CVD in T2D. However, there was no association between liver enzymes (ALT, AST, ALK-P, and GGT) and a higher incidence risk of CVD in T2D when adjusted for confounding variables.
Background and aims: The aim of this study was to investigate the association between serum phosphate levels and diabetic retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM).
Methods and results: The study sample consisted of 1657 T2DM patients hospitalized between 2017 and 2019. Patients were categorized into quartiles based on their serum phosphate levels (Q1-Q4). An increasing trend in the prevalence of DR was observed across these quartiles. Subsequently, logistic regression analysis was employed to adjust for potential confounders, such as gender, age, BMI, and duration of diabetes, and to evaluate the odds ratios (ORs) associated with these quartiles. The prevalence of DR showed an increasing trend with elevated serum phosphate levels. Logistic regression further confirmed that serum phosphate levels remain an independent risk factor for DR.
Conclusion: Elevated serum phosphate levels are closely associated with the prevalence of DR in hospitalized T2DM patients. Further studies are needed to establish causality. This trial is registered with chiCTR2000032374.